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a b s t r a c t

Some of the best described examples of unsustainable deep-sea fisheries have been for the orange
roughy, Hoplostethus atlanticus. Nevertheless, fisheries for orange roughy around New Zealand have
persisted for more than 30 years, and some stocks that were overfished and substantially depleted now
appear to be recovering. Scientific advice on the status of New Zealand orange roughy stocks has
historically used population models fitted to various observational data, but this approach has proved
problematic, largely due to uncertainty in recruitment, to the extent that from 2008 these models were
replaced by a simple harvest control rule (HCR). The catches taken under this HCR were a fixed
proportion of the weight of the mature stock, estimated principally from acoustic surveys. We test the
performance of the current HCR, and some alternative HCRs, using a simulation model. The model
simulates long-term single-species orange roughy stock dynamics, stock monitoring surveys, and
management decisions. We allow for uncertainty in model parameters, but focus on the effects of
changes in mean recruitment and recruitment variability, because the latter have been considered the
primary source of uncertainty in future stock status. Results show that the current HCR is likely to lead to
a sustainable fishery. Nevertheless, there are alternative HCRs that could out-perform the existing HCR.
With a reliable series of biomass estimates from acoustic surveys, good knowledge of biological
parameters (natural mortality in particular), some revision of a HCR to control catch, and spatial
management to control habitat damage, it appears that an orange roughy fishery might achieve best-
practice sustainability and environmental standards.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The expansion of the fishing industry into the deep sea was
relatively recent, and followed the decline of shallow-water fish-
eries and the advent of new technology (Morato et al., 2006; Norse
et al., 2012; Watson and Morato, 2013). Many deep-sea fisheries
have proven to be short-lived, however, and commercial deep-sea
fisheries have a worldwide, and often deserved, reputation for
being unsustainable (Roberts, 2002; Morato et al., 2006; Norse
et al., 2012). This led researchers to call for a stop to deep-sea
fishing, and a focus instead on rebuilding and sustainably fishing
more resilient and productive coastal species (Norse et al., 2012).
The plea to stop deep-sea fishing was echoed by non-governmental
organisations and lobby groups worldwide (e.g., Greenpeace, WWF,
Deep Sea Conservation Coalition). Despite these opinions, it seems
likely that many deep-sea fisheries will persist. In December 2013,
the European Parliament rejected a proposal to ban deep-sea
trawling in EU waters, and in New Zealand, for example, deep-sea

fisheries continue to be a mainstay of the commercial fishing
industry (Ministry for Primary Industries, 2013).

Some of the best described examples of unsustainable fisheries
have been for the orange roughy, Hoplostethus atlanticus, and as a
result this species is commonly cited as one of the worst possible
purchasing choices for ethical seafood consumers (Roheim, 2009).
Nevertheless, a few fisheries for orange roughy have persisted, and
some around New Zealand continue after 35 years of fishing
(Ministry for Primary Industries, 2013). In addition, the orange
roughy stock (population) on the Challenger Plateau (New Zeal-
and) was depleted and then closed to fishing, but surveys show
biomass has been rebuilding in the area and it now supports low
levels of fishing again (Ministry for Primary Industries, 2013).

The reasons for the collapse of many orange roughy fisheries
have already been discussed (Boyer et al., 2001; Bax et al., 2005;
Francis and Clark, 2005; Foley et al., 2011; Clark and Dunn, 2012),
but briefly it has been because orange roughy (i) are a valuable
product in premium international markets, providing incentive for
fishing, (ii) form large and predictable aggregations that can be
easily found and rapidly depleted by industrial-scale trawlers
operating in the deep-sea, (iii) are long-lived and unproductive,
meaning sustainable catches are relatively small and recovery
from overfishing is slow, and (iv) have proven difficult and
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expensive to study scientifically, such that scientific data and
advice are often sparse or acutely uncertain, and consequently
science can be a marginal contributor to fishery management.

In this study, we consider how the remaining or rebuilding
orange roughy stocks might be managed to support sustainable
fisheries. We use a case study of the fishery on the east and south
Chatham Rise, New Zealand, but our analyses could, in principle,
be applied to any orange roughy stock, or other species having
similar population dynamics. The Chatham Rise orange roughy
fishery started in the late 1970s, and has proven to be the largest in
the world (Clark, 2001; Norse et al., 2012; Ministry for Primary
Industries, 2013). Chatham Rise is a relatively large and highly
productive area of continental shelf; as such, the east and south
Chatham Rise orange roughy stock may be rather special in having
been able to support a long-term fishery. Historically, the status
and sustainable yield of the stock was scientifically assessed using
demographic population (stock assessment) models fitted to
various observational data (Sissenwine and Mace, 2007). Stock
assessment model results led total allowable commercial catch
limits (TACCs) to be reduced in the mid-1990s, to levels estimated
to be sustainable and to allow the stock to rebuild. However, over
the following decade the expected biomass rebuild was not
apparent in scientific observations, nor in fishery performance
(Sissenwine and Mace, 2007). The biomass rebuild was predicted
by stock assessment models assuming deterministic recruitment,
and it was therefore suspected that recruitment had not been
deterministic, but a period of reduced recruitment had started at
about the time that the fishery started (Ministry for Primary
Industries, 2013). In 2008, the credibility of the stock assessment
model was questioned to such an extent that it was discarded, and
in its place an assessment-model-free stock evaluation was com-
pleted (Dunn et al., 2008; Ministry for Primary Industries, 2013).
Stock assessment models, although still used to provide scientific
advice for some New Zealand orange roughy stocks, continue to be
problematic, as they do not always explain observed data well, and
are not easily applied where observational data are sparse (Clark
and Dunn, 2012; Ministry for Primary Industries, 2013).

In the absence of predictions of sustainable yield from a stock
assessment model, the TACCs for the east and south Chatham Rise
were set using a relatively simple harvest control rule (HCR) (Ministry
for Primary Industries, 2013). In essence, the HCR sets the TACC to be a
small proportion of the current estimated stock size. The first step in
this process is to obtain an estimate of the current size of the
spawning stock, primarily from an acoustic survey of the spawning
aggregation (‘plume’) that occurs in early July on flat areas of the
northeast Chatham Rise, in an area known as the ‘Spawning Box’.
Technological advances make acoustic surveys currently the most
credible method for estimating orange roughy biomass (Branch, 2001;
Hordyk et al., 2011; O’Driscoll et al., 2012; Macaulay et al., 2013). The
survey of the Spawning Box plume covers the historical main
spawning aggregation, but orange roughy are also known to spawn
simultaneously elsewhere within the stock boundaries. This additional
spawning biomass has been surveyed less frequently, and the available
estimates are added to the Spawning Box plume estimate to give total
spawning biomass. It is known that not all mature orange roughy
spawn every year, so the total spawning biomass is then scaled up,
using a fixed ratio, to give the total mature biomass. Subsequent
fishery management decisions about the size of the TACC are made
using the estimate of total mature biomass. The simple HCR sets the
TACC equal to the total mature biomass multiplied by the estimate of
natural mortality (M). This is a constant fishing mortality rate (F) HCR,
where the TACC is equal to F� current mature biomass, and F¼M.
Setting F equal to M has been suggested as a surrogate for fishing at
the rate that produces maximum sustainable yield (FMSY; Mace, 1994;
Quinn and Deriso, 1999; Gabriel and Mace, 1999; Deroba and Bence,
2008). However, simulation studies have suggested M may be better

viewed as an upper bound for FMSY rather than a surrogate, and setting
F equal to M may not be sustainable for some stocks (Quinn and
Deriso, 1999).

To determine whether the F¼M HCR should result in a long-term
sustainable fishery for orange roughy, we test this HCR in a simulation
model of the east and south Chatham Rise stock. The model simulates
the population dynamics, acoustic surveys, and the HCR decisions and
resulting fishery catches. Many simulations are conducted, using
different model parameter settings, thereby evaluating the HCR across
a wide range of uncertainties about stock status and dynamics, which
includes changing levels of mean recruitment. The latter was included
because of the pronounced uncertainty in orange roughy recruit-
ment. We then use the simulationmodel to evaluate alternative HCRs,
to see if any of these might do better than F¼M. We evaluate the
performance of the HCRs using simple measures, such as the level of
fishery yield, stability in yield over time, and the risk of stock biomass
being depleted below reference levels. Our performance measures
were set without stakeholder consultation, and therefore our study is
best described as an evaluation of an empirical management proce-
dure, rather than a management strategy evaluation (Rademeyer
et al., 2007).

2. Materials and methods

2.1. Overview of the simulation model

Each HCR was tested with 1000 model simulations. The simula-
tions were completed using a simple age-structured stock model
(Beverton and Holt, 1957). The model was age structured with ages
1–120, with the final age including all fish at that age and older
(a plus group), with a single sex, assumed to reside within a single
homogenous area. Age was incremented at the start of the year, and
recruitment entered at age 1. The fishery was assumed to take the
catch at the mid-point of the year. The model was single species,
with no species interactions.

Some demographic parameters were assumed to be constant
across all simulations. The constant parameters described the
initial size of the unfished stock (B0), maturity at age, spawning
at age, vulnerability to the fishery at age, and the fish growth
rate (weight at age). We thereby assumed that productivity was
determined primarily by recruitment levels, not by growth rate or
maturity or proportion spawning at age, and that the fishery
exploitation pattern (fish vulnerability at age) was constant.

The demographic parameters that varied with each simulation
run were M, which determined mean productivity, the pattern of
annual recruitment variability, the shape of the relationship between
spawning stock size and subsequent recruitment, a scaling factor to
allow for the proportion of mature fish that were not spawning (SR),
and the level to which the stock was depleted when the HCR started.
The simulations were specified such that the HCR started 30 years
after the start of the fishery, consistent with the HCR starting in
2008. In each simulation run, the un-fished stock was simulated for
120 years, then a constant fishing mortality was applied over 30
years to reduce the biomass to the selected level of depletion by the
start of the HCR period. This meant that this fishing mortality during
the first 30 years varied for each simulation depending on the
selected level of depletion and the pattern of recruitment. After this,
a period under the HCR was simulated for a further 200 years.
Recruitment had stochastic variability around a mean recruitment
level (R0). Simulations either assumed a constant R0 throughout, or
that R0 halved, or doubled, for the HCR simulation period. This
persistent change in R0 is analogous to assuming a regime shift
occurred, where the carrying capacity (B0) of the environment
halved or doubled. The change in R0 took place in the first year of
the HCR simulation period, so the influence of this change on
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recruitment to the fishery occurred at the age of recruitment (38
years, see below) after the start of the HCR simulation period.
Because we chose to simulate each HCR for 200 years under each
R0 scenario, the total length of the HCR simulation period when R0
halved or doubled was 238 years (the age at recruitmentþ200
years).

We simulated annual resource surveys using the acoustic
method introduced above, consistent with the surveys that have
been completed since 2002 (Doonan et al., 2012). The survey
estimates were used to modify the TACCs, according to the HCR,
for the following year. In all simulations, the F¼M HCR always
assumed an M of 4.5% and an SR of 1.5 (Ministry for Primary
Industries, 2013), even though these parameters varied for the
stock in each simulation run. We assumed that the catch set by the
HCR was taken exactly and in full. Stock size and other parameters
were recorded for the last 200 years so that performance criteria
could be calculated. In these simulations, we did not incorporate
correlations between demographic parameters (i.e., joint prob-
ability distributions) as these were not available, but we did check
that each set of parameters were a reasonable combination by
repeating each simulation without fishing, and if the stock failed to
rebuild and dropped below 10% B0 after 100 years of the HCR
simulation period then we considered this unreasonable (there
was only a single simulation run where this occurred, and it was
excluded).

2.2. Model parameters

For each simulation run, a set of parameter values were
randomly chosen from their respective distributions, and distribu-
tions were assumed to be independent of each other. Parameter
bounds were set to encompass all known estimates, and thereby
allow for the ‘range of uncertainty’ of the real world, as far as
we know.

The M assumed for Chatham Rise orange roughy and used in
the HCR was 0.045, which was estimated from a lightly-fished
stock on Chatham Rise (with 95% CIs 0.030–0.060; Doonan, 1994).
A similar estimate was obtained for orange roughy off northern
New Zealand (M¼0.037, 95% CIs 0.025–0.062; Doonan and Tracey,
1997), and from a stock assessment model for the Australian
Eastern Zone orange roughy stock (M¼0.042; Wayte, 2007).
Despite the consistency of these estimates, there is still substantial
uncertainty in M, and recent stock assessment model runs for New
Zealand orange roughy assumed M to be either 0.045 or 0.025
with equal probability (Anderson and Dunn, 2011). The lower of

these values is close to an estimate for the Australian Cascade
Plateau stock (M¼0.02; Wayte and Bax, 2007). Our assumed
distribution of M was therefore uniform, with bounds at 0.015
and 0.075 (symmetrical around 0.045).

The year-to-year variability in recruitment (the year class
strength, YCS), was assumed to be autocorrelated, with a lag of
1 year. YCS in log space (ς) was given by:

ςt ¼ ηþα ςt�1�η
� �þZt

where α is the autocorrelation, Z is an independently random
normal variable with mean 0 and variance σR2/(1�α2), and η is
�σR2/2 (Chatfield, 1996). When the ς are back-transformed to get
YCS, the YCS has a mean of 1. The parameterisation of YCS variability
was therefore via α and σR in log space. There were no available
estimates of α for orange roughy, so we used estimates from the
fisheries literature to inform a distribution. A sand eel stock off
Shetland had an α of 0.54 (Poloczanska et al, 2004), in four Bristol
Bay sockeye stocks α varied from 0.44 to 0.7 (Pyper and Peterman,
1998), Baltic cod had an α of 0.6, which reduced to 0.2 when other
co-variants were included (Sparholt, 1996), Norwegian spring her-
ring had an α of 0.29 (Fiksen and Slotte, 2002), and Dorn (2002)
found Pacific rockfish species had an α of about 0.5 and Atlantic
rockfish had a weak or negative autocorrelation. Based on these
reports, we assumed α to have a uniform distribution, in the log
scale, with bounds at 0.2 and 0.8. We assumed σR to be either 0.4,
0.6, or 0.8, with equal probability, describing low, medium,
and high recruitment variability (Francis, 1992). Empirical estimates
of σR for orange roughy have been as low as 0.25 (Wayte and Bax,
2007), but this estimate is likely to be too low because age classes
will have been smeared across adjacent cohorts as a result of
considerable ageing error (Andrews et al., 2009). Other estimates
have been as high as 1.2, but this has been considered too high
because it was based upon only 4 cohorts of young fish and natural
mortality will probably dampen variability (Francis and Robertson,
1990). However the uncertainty in the parameterisation of α and σR
was not considered to be a key focus, provided that the resulting
simulations produced a wide range of different YCS patterns, from
near-constant YCS through to highly intermittent peaks in YCS
(Fig. 1).

The actual recruitment was the product of YCS and mean
recruitment. Mean recruitment was modelled as a function of
the size of the spawning stock using the Beverton and Holt (1957)
stock–recruit relationship. The steepness parameter (h) is
unknown for orange roughy, and has been assumed to be 0.75
(Francis, 1992). Shertzer and Conn (2012) found no relationship
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Fig. 1. Examples of variability in simulated year class strength (YCS). Left panel (α¼0.64; σR¼0.6); right panel (α¼0.21; σR¼0.4). Both YCS series average to 1 (indicated by
the horizontal grey line).
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between species life history parameters and h, so in our simula-
tions we assumed their general estimated Beta distribution for h,
with a mode at 0.84, and 95% CIs at 0.42 and 0.96.

The scale-up parameter SR is used to multiply the observed
spawning biomass up to the mature biomass. In the existing HCR,
the SR was assumed to be 1.5 after a review of available observa-
tions and estimates (Dunn et al., 2008). The lowest estimate of SR
found was 1.01, and the highest estimate was 1.91, with no obvious
mode. We therefore assumed the SR for the stock was uniform, with
a lower bound at 1.0 (i.e., all mature fish spawn), and the upper
bound at 2.0 (i.e., half of the mature fish spawn). The SR assumed
for the HCR was always 1.5.

The most recent published estimate of the level of the deple-
tion of the stock, expressed as a percentage of the estimated stock
size before fishing (%B0), was 7–18% and derived from recent
acoustic biomass surveys and historical stock assessment model
results (Ministry for Primary Industries, 2013). However, a survey
in 2011 indicated the spawning biomass could be larger, and
therefore less depleted, at 12 to 38% B0. We therefore set %B0 to
be uniform, with a lower bound at 7%, and an upper bound at 30%.
We assumed that this was uniform since the method to calculate it
was ad hoc and partly based on the range of SR, which we assumed
to be uniform.

2.3. Stock monitoring

The stock monitoring method used to inform the HCR was a
simulated annual acoustic survey of the spawning plume in the
Spawning Box. The survey assumed a constant lognormal observation
error coefficient of variation (CV) of 10%, consistent with recent
surveys (median CV¼8%, n¼17; Cordue, 2014). This CV does not
include uncertainty in the acoustic target strength of orange roughy
(TS). The TS is used to convert acoustic backscatter to absolute
biomass, and the estimation error of TS therefore needs to be added
to the survey observation error CV. The TS assumed in the surveys ha
a median of -52.0 dB (95% CI �53.3 to �50.9), for a 33 cm Standard
Length orange roughy (Macaulay et al., 2013). The acoustic backscatter
is given by abundance (in numbers)�10 (�52.1/10), so the simulated
survey result, before applying survey error, is abundance�10 ((�52.1-

TS)/10), where TS is drawn from a double normal distribution (mod-
e¼�53.5, sdleft¼0.06, sdright¼2.15) (Patrick Cordue, pers.comm.).

Occasional surveys of the spawning grounds outside of the
Spawning Box plume led to a best estimate of 12,700 t for this
additional spawning biomass (Dunn et al., 2008; Ministry of Fish-
eries, Science Group (comps.), 2008). From 2011, it was assumed that
the Spawning Box plume represented a constant proportion of the
total spawning biomass, with the total spawning biomass being the
plume biomass multiplied by a scale-up factor of 1.37, i.e., the plume
represented about three quarters of the total spawning biomass
(Ministry of Fisheries, Science Group (comps.), 2011). We have
assumed a constant scale-up factor of 1.37 in all simulations. Because
we have assumed no uncertainty in this scale-up factor, we have
effectively assumed that the spawning biomass will be fully mea-
sured in the simulations, and have an overall CV similar to that for
the plume in the Spawning Box.

2.4. Fixed parameters

The size of the unfished stock (B0) was assumed to be 375,000 t
(Ministry for Primary Industries, 2013). Growth in length and
weight at age was modelled using the von Bertalanffy growth
formula (K¼0.065, L1¼37.63, t0¼–0.5), with a CV of mean length
at age of 20%, and a length (L, standard length in cm) to weight (W,
total weight in tonnes) relationship of W¼9.21e�8� L2.71

(Anderson and Dunn, 2011). The percentage mature at age was
fixed and assumed to be logistic, with the difference between the

age at 50% and 95% mature set at 4.56 years (Dunn, 2007), and the
age at 50% mature was 38 years (Anderson and Dunn, 2011); this is
older than previously assumed, but consistent with current New
Zealand best practice where the age at maturity is estimated from
the age structure observed in catches from the spawning fishery.
The proportion at age vulnerable to the fishery was set equal to the
maturity ogive.

2.5. Harvest control rules

Four HCRs were investigated. HCR1 is the current HCR, where
the TACC is equal to F� current mature biomass (Bc), and F¼M.
The HCR can be expressed in the form TACC¼Bc� Y, where Y for
HCR1 is given by:

Yi ¼M � 1:5 ð1Þ
where M¼0.045 and Yi is for the current year in which biomass
was estimated from surveys. HCR2 starts with Yi¼0.045�1.5 until
there are three abundance surveys, then it uses:

Yiþ1 ¼
Yi � 1:1; 3 consecutive increases in Bc

Yi � 0:8; 3 consecutive declines in Bc

Yi; otherwise

8><
>:

ð2Þ

where Yi is for the current year and iþ1 indexes the following
year. HCR2 modifies the TACC based upon the recent biomass
gradient, but penalises declines in biomass more than increases,
making it arguably a precautionary HCR. HCR3 is HCR1 but it
reduces the TACC further when Bc is relatively low (r20% B0) and
increases it when Bc is high (Z40% B0):

Yiþ1 ¼
0:5�M � 1:5;Bcr20%B0

M � 1:5; 40%B04Bco20%B0

2�M � 1:5;BcZ40%B0

8><
>:

ð3Þ

we assumed in simulations for HCR3 that B0 is known without error.
In simulations where R0 is halved or doubled, the B0 will also halve or
double, but the HCR still uses the original B0, which assumes that the
change in productivity is unknown to the management system (HCR).
This naivety is likely to be the case in a fishery managed using HCRs
informed by biomass surveys, where recruitment is not specifically
monitored. HCR4 is based upon HCR2, but steeper changes in Bc result
in larger changes to the TACC. HCR4 starts with Yi¼0.045�1.5 until
there are five abundance surveys, then it uses:

TACCiþ1 ¼ TACCi 1þλb
� � ð4Þ

where λ is an adjustment variable for the relative change in TACC to
the perceived change in stock size (estimated from initial simulations:
λ¼1 or λ¼2), and slope is the unweighted average slope of a log-
linear regression line fitted to the last five years of surveys (Shelton,
2011). TACCi is the total allowable catch in the current year and iþ1
indexes the following year.

HCR3 relies on extra knowledge, as it requires the Bc as a
percentage of B0. HCR2 and HCR4 require the least knowledge, as
after the initial selection of the TACC they do not need to know M.
HCR4 does not depend on the absolute value of the survey
estimate after the first 5 years, only the rate of change (i.e., TS
bias becomes irrelevant).

2.6. Performance measures

The performance of HCRs in simulation trials were evaluated
against a set of performance measures. The performance measures
described catch levels, stability in catch levels, and measures of
risk. The catch level performance measures included for each
projection period were (1) mean catch, and (2) the percentage of
simulations where more than half of the projection years had a
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catch o2000 t (a nominally low catch level below which the
economic viability of the fishery might be threatened); the
performance measures for stability in catch levels were (3) the
mean change in TACC, and the percentage of simulations where
more than half of the projection years had a change in TACC of (4)
o15%, or (5) o5%; the performance measures for risk were the
percentage of simulations where more than half of the projection
years had a stock status of (6) within the target depletion level of
20–40% B0, (7) above 40% B0, (8) below 20% B0, and (9) below 10%
B0. Performance measures (8) and (9) are not mutually exclusive,
but chosen because they refer to depletion levels linked to
management action (the “soft limit” and “hard limit”, respec-
tively), as specified in the New Zealand Harvest Strategy Standard
(Ministry of Fisheries, Science Group (comps.), 2008). When R0
was halved and doubled, the value of B0 used in the risk measures
also halved or doubled.

An evaluation of HCR performance in terms of risk was also
completed using regression trees. The target variable was the percen-
tage of years where B0 dropped below 20% B0 in each simulation run
(n¼1000). The potential predictors were the model parameters.
The analysis was performed using the Recursive Partitioning and
Regression Trees function rpart (library rpart, Therneau et al., 2013) in
R (R Core Team, 2013) with the parameter maxdepth set to 2. The
function is based on the method of Breiman et al. (1984). This analysis
allowed us to identify simulation parameter combinations associated
with good (above 20% B0) and poor performance of the HCR.

3. Results

All HCRs resulted in an initial short-term reduction in catch
(Fig. 2) and increase in biomass (Fig. 3), because they all reduced

fishing mortality to a more sustainable level. Under the scenario of
constant R0, there was little difference in the performance of the
HCRs after 10 years, except that HCR3 resulted in slightly fewer
depleted (o20% B0) stocks (Table 1). Over the entire simulation
period, HCR4 (with λ¼1) matched the performance of HCR1, but
made much smaller changes to the TACC. In simulations using
HCR2 the catches declined even though the biomass increased
(Figs. 2 and 3). HCR2 did not perform well because the uncertainty
in biomass monitoring estimates over each 3-year period was
large enough that the trend in the survey biomass estimates could
go up, or down, regardless of the trend in the underlying biomass.
When upward and downward trends happen with equal regular-
ity, the unbalanced HCR2 drives the catches down. HCR3 was the
best rule on the basis of fewest years with stock biomass below
20% B0 combined with highest long term catch. The performance
of HCR3 was achieved through relatively large TACC changes, with
TACCs doubling or halving as the stock biomass fluctuated around
the HCR threshold levels (Fig. 2). Higher levels of σR resulted in
higher variability in catch levels across all HCRs (Fig. 2).

Under scenarios of productivity change (R0 halved or doubled),
HCR3 did better than HCR1, in terms of taking higher catches
when R0 doubled (Table 2). Under HCR3 with R0 halved, the TACC
was in effect reduced strongly when the stock reached o40% B0
instead of o20% B0 (the HCR doesn’t know the “new” B0 when R0
halves). When R0 doubled, whilst more catch could be taken (the
stock grew to 440% B0 and exceeded the target range, under all
HCRs), HCR3 performed materially no worse than the gradient
rules, unless the stability of TACC is considered paramount.

The performance of HCR4 with λ¼1 was similar to HCR1, but
HCR4 with λ¼2 provided a stronger response to changing bio-
mass, and performed better in terms of avoiding depletion when
the R0 halved and achieving high catches when R0 doubled
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Fig. 2. Catches under the four harvest control rules (HCRs) across an example set of simulations having the same set of model parameters (simulated R0 includes those
shown in Fig. 1). Gray lines, σR¼0.8; green lines σR¼0.6; red lines σR¼0.4.
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(Table 2). Like HCR3, the penalty for avoiding depletion when R0
halved was shown in a relatively high proportion of simulations
with catch o2000 t. When R0 doubled, HCR4 provided average
catches similar to HCR3 but with smaller changes in TACC. There
was an asymmetry between the results for HCR4 with λ¼1 or λ¼2
when productivity changed. When productivity declined (R0
halved), using λ¼2 gave similar results to a λ¼1, but when
productivity increased (R0 doubled), using λ¼2 did result in a
greater mean catch, but gave a poorer performance in the sense
that more simulation runs ended up below 20% B0. The failed
recovery of some simulated stocks under HCR4 with λ¼2 and R0
doubled was because of cases where the initial stock status was
relatively low and, with a trend of increasing biomass, the HCR
allowed too-rapid an increase in catches.

The most important parameter determining stock depletion in
the simulations was M (Fig. 4). When M dropped below about 0.02
the chances of a stock being depleted were relatively high. When

low M was combined with a spawning scale-up ratio (SR) of less
than 1.65 (the default value was 1.5), then the chances of HCR1
resulting in stock depletion were high. In simulations assuming
constant R0 and using HCR1, when M was 40.02 (a 91.7%
probability given our M distribution) and h was 40.51 (an 87.8%
probability given our h distribution), the percentage of years
where stock biomass remained above 20% B0 was 93.4%. In order
to consider research priorities, h was then excluded from the
regression analysis, on the basis of being un-estimable in practice.
In the revised analysis, M replaced h (Fig. 4), confirming M as a key
parameter determining fishery performance.

4. Discussion

When HCR1 was introduced on Chatham Rise, it was unknown
whether the rule would lead to a sustainable orange roughy
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Fig. 3. Stock biomass trajectory, as a percentage of initial biomass (B0), under the four harvest control rules (HCRs) across an example set of simulations having the same set
of model parameters (same simulations as Fig. 2). Solid black line, mean trajectory; gray lines, σR¼0.8; green lines σR¼0.6; red lines σR¼0.4.

Table 1
Performance measures from orange roughy simulation model 1 (constant R0). For each harvest control rule (HCR), the performance measure except for mean catch and mean
change in TACC is the percentage of simulations in year 10, and overall, in which more than half of the years met the criteria.

HCR 1 HCR 2 HCR 3 HCR 4 (λ¼1)
10 Overall 10 Overall 10 Overall 10 Overall

Mean catch (t) – 6547 – 3095 – 6705 – 6569
Catch o2000 t (%) 2 3 2 36 17 5 1 3
Mean change in TACC (t) – 768 – 280 – 668 – 155
Years when change TACC o15% (%) 0 100 0 28 0 93 0 100
Years when change in TACC o5% (%) 0 0 0 0 0 0 0 100
SSB 20–40% B0 (%) 67 44 70 6 69 53 67 47
SSB 440% B0 (%) 23 41 18 85 25 40 22 39
SSB o20% B0 (%) 11 13 12 2 6 6 11 14
SSB o10% B0 (%) 0 3 0 0 0 1 0 3
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fishery. Given current knowledge and assumptions about orange
roughy and fish stock productivity, our simulations indicate that
HCR1 would be unlikely to lead to a depleted orange roughy stock.
A HCR based upon a biomass gradient or taking a percentage of
current biomass will always reach a stock status equilibrium
somewhere, and our simulations had long-term modes of 40%,
35% and 50% B0 for HCRs 1, 3 and 4, respectively. These are within
or above the current management target range of 30–40% B0
(Ministry for Primary Industries, 2013), with 30% B0 being close to
the biomass level estimated to produce deterministic maximum
sustainable yield (Francis and Clark, 2005). It is somewhat oppor-
tune that HCR1, which has been used to manage the East and
South Chatham Rise stock, should lead to a stock status within the
target range. But if the target for biomass depletion was different,
for example 48% B0 as in Australia (Wayte, 2009), then HCR1
would not achieve this target and would need to be revised.

Simple harvest rules like HCR1 are a promising and tractable
approach to achieving sustainable orange roughy fisheries. The
approach has the benefit that it is transparent, in that a survey result

has an obvious management response (the same is often not true for
stock assessment model based approaches), and it can be applied
relatively quickly, requiring a biomass survey but not a stock assess-
ment model (except HCR3, which needs B0). If standardised biomass
surveys can be done from fishing industry vessels, as they are on
Chatham Rise, then the presence of the fishery establishes the stock
monitoring capability (Hordyk et al., 2011). The HCR approach does
require a representative and sufficiently precise index of abundance,
which could preclude its use for some fisheries, for example where
spawning aggregations are unpredictable, or incompletely available to
the acoustic sampling method (e.g., on steep bathymetry). In addition,
our simulations and conclusions were based upon the current situa-
tion on Chatham Rise, but they would need to be revised if surveys
were completed less frequently, if survey CVs were greater, or if other
sources of bias were suspected.

A few on-going fisheries, and some recent stock recoveries, are
giving fishery managers an opportunity to achieve demonstrably
sustainable orange roughy fisheries. Off New Zealand, substantial
orange roughy spawning aggregations have recently been detected

Table 2
Performance measures from orange roughy simulation models where R0 is halved or doubled, meaning mean recruitment levels were R0�0.5 and R0�2, respectively. For
each harvest control rule (HCR), the performance measure except for mean catch and mean change in TACC is the percentage of simulations in year 10, and overall, in which
more than half of the years met the criteria. HCR2 has been excluded from this table.

HCR 1 HCR 3 HCR 4 HCR4
λ¼1 λ¼2

10 Overall 10 Overall 10 Overall 10 Overall

R0 halved
Mean catch (t) – 3,654 – 3,165 – 3,645 – 3,322
Catch o2000 t (%) 3 12 18 29 2 12 7 17
Mean change in TACC – 462 – 264 – 82 – 214
Years when change TACC o15% (%) 0 100 0 90 0 100 0 100
Years when change in TACC o5% (%) 0 0 0 0 0 100 0 46
Years at 20–40% B0 (%) 27 39 17 25 33 40 42 35
Years at 440% B0 (%) 0 50 0 74 0 57 2 62
Years at o20% B0 (%) 69 11 82 1 63 2 51 2
Years at o10% B0 (%) 4 3 0 0 4 0 4 0
R0 doubled
Mean catch (t) – 12,296 – 14,593 – 12,139 – 14,357
Catch o2000 t (%) 1 2 5 1 1 2 2 2
Mean change in TACC – 1,437 – 3,981 – 394 – 1071
Years when change TACC o15% (%) 0 100 0 84 0 100 0 100
Years when change in TACC o5% (%) 0 0 0 0 0 100 0 19
SSB 20–40% B0 (%) 51 41 57 60 50 43 45 61
SSB 440% B0 (%) 11 38 6 14 10 38 2 7
SSB o20% B0 (%) 39 19 37 26 40 17 53 32
SSB o10% B0 (%) 8 5 3 3 8 6 9 5

Fig. 4. Regression trees of simulation results, where the target variable is the percentage of years where stock biomass was below 20% B0, for constant R0 and HCR1, including
(A) all model parameters, and (B) all model parameters except h. Each terminal node is labelled with the group mean percentage of years where stock biomass was below
20% B0, and the number of observations (n¼number of simulations out of 999).
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on Challenger Plateau and northeast Chatham Rise, consistent with
rebuilding of both of these fished stocks (Ministry for Primary
Industries, 2013). Off Australia, the Cascade Plateau orange roughy
stock continues to be fished (Wayte and Bax, 2007), and the eastern
zone orange roughy was depleted and closed to fishing, but is now
showing some signs of recovery (Wayte, 2007). However, outside of
Australia and New Zealand most territorial orange roughy fisheries
remain closed. Orange roughy fisheries off Namibia were put under
moratorium in 2008, and remain closed in 2014. The Namibian
fishery may be considered for reopening if scientific research
surveys can demonstrate that substantial orange roughy spawning
aggregations have returned (Paulus Kainge, NatMIRC, pers.comm.).
In the northeast Atlantic, the orange roughy catch quota was set to
zero from 2010, and although fishing effort has declined the current
status of the stocks is unknown (Dransfield et al., 2013). Off Chile,
the orange roughy fishery has been closed since 2006 (Nitlitschek et
al., 2010). Under the new Chilean Fishery Act 2012, trawling on
vulnerable environments, including seamounts, is forbidden until it
can be demonstrated that the fishery will not produce negative
impacts; this probably precludes the reopening of Chilean orange
roughy fisheries for the foreseeable future.

Our simulations found that even when an orange roughy stock
experiences a large shift in mean recruitment, which is a concern
that has been raised in New Zealand, some HCRs can adapt
successfully to the new situation. Although HCR1 might be con-
sidered adequate overall, it was not the best performing rule. Using
our criteria, HCR3 performed best, although the relatively ‘low
information’ HCR4, using just the rate and direction of biomass
change, was a very close second. It may well be that HCR3 does not
need to know B0 particularly well, but more work is needed to
confirm this. Nevertheless, because assessments of the size and
status of orange roughy stocks have been plagued with uncertainties
(Sissenwine and Mace, 2007), HCR4 could be considered our best
option because it performed well, whilst being relatively robust to
uncertainty by requiring relatively little information. Although HCR2
was a relative failure, we included it to illustrate an important point;
that uncertainties in biomass estimates can lead to problems in
gradient HCRs. The problem is that high uncertainty means the true
population trend cannot be detected, and thus the HCR may trigger
TACC changes that conflict with the true biomass trajectory. This
behaviour becomes most apparent when HCR responses are unba-
lanced, as in HCR2. One solution, in this case, would be to increase
the number of years over which the biomass trend is estimated. But
in general, we found that gradient-based rules like HCR2 and HCR4
do need to be carefully tuned and tested. Further HCR testing also
needs to allow for variable proportions of the mature stock turning
up to spawn in any one year (Dunn et al., 2008), as this variability
could also manifest itself as short-term trends in the biomass index.
However, one improvement would be to operate a HCR on the
spawning plume biomass estimates directly, thereby making SR
redundant. The rationale for the use of mature biomass in HCR1
rather than spawning stock biomass is not clear (Ministry for
Primary Industries, 2013), but it was most likely for consistency
with historical stock assessments where all fish above the age at
maturity were counted in the spawning stock biomass. A second
improvement would be to remove the allowance for additional
spawning biomass outside of the monitored areas. This scale-up
factor has the potential to create fish that are ‘present until proven
otherwise’. One of the benefits of the HCR approach is that it could
be operated to be inherently precautionary, in that the TACC could
be based upon discrete visible fish aggregations only; if the fishers
want a higher TACC, then they must find additional fish. The scale-
up factors for spawning to mature biomass, and the additional
spawning biomass outside of the monitored areas, both weaken a
precautionary approach as they could be viewed as being overly
optimistic about fish abundance.

Adoption of an HCR for orange roughy should be based upon a
Management Strategy Evaluation (MSE), which requires extensive
stakeholder engagement (Rademeyer et al., 2007). A MSE for
orange roughy has not yet happened in New Zealand. Reluctance
to complete a MSE is probably because (a) orange roughy science
continues to have considerable uncertainties, and arguably some
failures, which have eroded stakeholder trust in science, and (b) a
MSE can be time consuming and expensive, which makes MSE
unlikely unless the benefits become compelling. The benefit of an
MSE for orange roughy may become more apparent as New
Zealand stakeholders pursue Marine Stewardship Council certifi-
cation (www.msc.org) for their fisheries, in a bid to prove their
sustainability. In a MSE, the stakeholders would set their own
(weighted) performance measures, acceptable HCRs to be tested,
and the simulation model might be usefully extended to allow for
further uncertainties; for example, variability in the proportion
mature at age, and the proportion at age vulnerable to the fishery.
Following our regression tree approach, targeted research could
also refine knowledge about the parameters that lead to depleted
stocks under the HCRs. In the present simulations, we deliberately
fixed some of these parameters, and focused our attention on
changes in mean recruitment and recruitment variability, as these
have been considered the primary source of uncertainty in future
stock status (Francis and Clark, 2005).

Whilst orange roughy and other deep sea fisheries have been
criticized for overfishing, they have probably received as much
criticism for damaging benthic habitats (Roberts, 2002; Morato
et al., 2006; Norse et al., 2012). Damage to epibenthic fauna in the
path of a deep-sea trawl is unequivocal and often catastrophic,
even if the impact to those populations is unclear (the authors
know of no assessment of population size and status for deep sea
corals, for example). The area fished (‘footprint’) of orange roughy
target fisheries on Chatham Rise was increasing steadily during
the early-2000s (Anderson and Dunn, 2008), but the large catch
reduction (about 70%) between the mid-2000s and 2011–12 has,
anecdotally at least, caused fishers to reduce their footprint and
restrict fishing to known areas (i.e., previously impacted areas). As
a result, current fisheries are apparently much reduced in both
catches and footprint. The Marine Stewardship Council certifica-
tion includes a ‘best practice’ environmental standard for sustain-
able fishing, which is evaluated against the current and future
performance of the fishery (see www.msc.org). Whilst damage
was done to orange roughy stocks and habitats in the past, using a
HCR to control catch, and spatial management to control the
fishing footprint and limit habitat damage (Clark and Dunn, 2012),
it appears that an orange roughy fishery could achieve best-
practice sustainability and environmental standards.
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