

Fisheries New Zealand

A descriptive analysis of all ling (Genypterus blacodes) fisheries, and CPUE for ling fisheries in LIN 5\&6, from 1990 to 2017

New Zealand Fisheries Assessment Report 2019/49
S.L. Ballara

ISSN 1179-5352 (online)
ISBN 978-1-99-000857-3 (online)
October 2019

Requests for further copies should be directed to:
Publications Logistics Officer
Ministry for Primary Industries
PO Box 2526
WELLINGTON 6140

Email: brand@mpi.govt.nz
Telephone: 0800008333
Facsimile: 04-894 0300
This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-and-resources/publications
http://fs.fish.govt.nz go to Document library/Research reports
© Crown Copyright -Fisheries New Zealand.

Table of Contents

EXECUTIVE SUMMARY 1

1. INTRODUCTION 2
2. CATCH DATA 2
2.1 Methods. 2
2.2 Catch data results 3
2.1.1 East SI and Chatham (LIN 3\&4) catch data 4
2.1.3 Southland and Sub-Antarctic (LIN 5\&6) catch data 5
2.1.4 West SI (LIN 7 WC) catch data 5
2.1.4 Descriptive analysis summary 5
3. CPUE ANALYSIS 6
3.1 Methods 6
3.2 CPUE results 9
3.2.1 Longline fishery 9
3.2.2 Bottom trawl fishery 10
3.2.3 CPUE summary 11
4. ACKNOWLEDGMENTS 13
5. REFERENCES 13
6. APPENDIX A: DESCRIPTIVE OVERALL 15
7. APPENDIX B: DESCRIPTIVE EAST SI AND CHATHAM (LIN 3\&4) 27
8. APPENDIX C: DESCRIPTIVE SOUTHLAND AND SUB-ANTARCTIC (LIN 5\&6) 38
9. APPENDIX D: DESCRIPTIVE WEST SI (LIN 7WC) 50
10. APPENDIX E: SOUTHLAND and SUB-ANTARCTIC LINE CPUE (LIN 5\&6) 60
11. APPENDIX F: SOUTHLAND AND SUB-ANTARCTIC TRAWL CPUE (LIN 5\&6) 71

EXECUTIVE SUMMARY

Ballara, S.L. (2019). A descriptive analysis of all ling (Genypterus blacodes) fisheries, and CPUE for ling fisheries in LIN 5\&6, from 1990 to 2017. New Zealand Fisheries Assessment Report 2019/49. 88 p.

Updated descriptive analyses for all New Zealand ling fisheries are presented, incorporating data up to the 2016-17 fishing year. The overall 2016-17 ling catch increased to 15000 t , compared to levels of around 13000 t from 2012-13 to 2015-16. However recent catches remain lower than the landings from the 1991-92 to 2007-08 fishing years. The Southland fishery had the largest overall catch of any fishery in 2016-17. The distribution and size of trawl fishery landings showed little change, but catches increased in all areas. Overall trawl landings were higher than those taken in 2015-16, but lower than those taken during the early to mid-2000s. The line fishery catch distribution was quite similar to previous years, although line catches in 2016-17 increased overall, with most of the increase occurring at Bounty, East NI, East SI, and Sub-Antarctic, but with a notable decrease for Chatham. The line fishery catch was markedly lower than in the most productive years (1992-2002), but relatively consistent with the pattern of landings since 2003.

Series of CPUE for commercial line and trawl fisheries targeting ling on the Sub-Antarctic (LIN 5\&6, 1991-2017) were updated. Important variables in the autolongline model included total hooks, statistical area, and vessel, and important trawl variables included location and target species. Since the early 1990s the standardised indices for line fisheries have varied but show an overall decreasing trend. The line spawning CPUE was marginally higher than the CPUE in the non-spawning area. The overall line fishery trends for all indices are similar to previous analyses, and do not match the bottom trawl CPUE trend or trawl survey indices.

1. INTRODUCTION

This document reports on Specific Objective 1 of Project LIN201701, which has an overall objective "To carry out a stock assessment of ling (Genypterus blacodes) in the sub-Antarctic (LIN 5/6) including estimating biomass and stock status". It includes a descriptive analysis of the commercial catch and effort data for ling from LIN 2, 3\&4, 5\&6, 6B (Bounty Plateau) and 7, and an update of the standardised catch-per-unit-effort (CPUE) analyses from the ling longline fisheries for LIN 5\&6 (Sub-Antarctic) with the addition of data up to the end of the 2016-17 fishing year. Specific Objective 1 was "To carry out a descriptive analysis of the commercial catch and effort data for ling (LIN 5\&6) in the sub-Antarctic, and update the standardised catch and effort analyses." This objective requires that LIN 5\&6 CPUE be updated only for the series used in the most recent previous stock assessments of the Sub-Antarctic stock.

Earlier descriptive analyses of commercial catch and effort data for ling were completed for the fishing years 1989-90 to 1998-99 (Horn 2001) and 1989-90 to 2004-05 (Horn 2007b). These reports showed how the ling fisheries in the New Zealand EEZ had developed and operated, and defined seasonal and areal patterns of fish distribution. The work presented here updates an analysis by Dunn \& Ballara (2019) which included data up to the fishing year 2015-16 (fishing years run 1 October - 30 September); i.e., catch by area by method, to indicate whether any marked changes had occurred in the fisheries in the last year. Horn (2007b) provided a detailed description of the methods used to extract and summarise Fisheries New Zealand landings data.

An analysis updating series of CPUE indices from target line fisheries for ling on the Sub-Antarctic (LIN 5\&6) is also presented here. CPUE analyses of these fisheries were most recently reported by Ballara \& Horn (2015). These fisheries, along with the Chatham Rise, WCSI, Cook Strait and the Bounty Plateau line fisheries, account for over 95% of the line-caught ling. The principal lining method in all areas is bottom longline. These CPUE series are used as inputs into stock assessments.

2. CATCH DATA

2.1 Methods

Catch-effort, daily processed, and landed data were extracted from the Fisheries New Zealand catcheffort database "warehou" as extract 11384 and consist of all fishing and landing events associated with a set of fishing trips that reported a positive catch or landing of hoki, hake, or ling from fishing years 1989-90 to 2016-17. This included all fishing recorded on Trawl Catch, Effort and Processing Returns (TCEPRs); Trawl Catch Effort returns (TCERs); Catch, Effort and Landing Returns (CELRs); Lining Catch Effort Returns (LCERs); Lining Trip Catch Effort Return (LTCERs); Netting Catch Effort Landing Returns (NCELRs); and included high seas versions of these forms. Catch and effort data for ling from the Fisheries New Zealand Observer Sampling Programme (hosted by NIWA in the cod database) were also extracted.

Data were checked for errors, using simple checking and imputation algorithms similar to those used by Ballara \& O'Driscoll (2017). Data were also groomed for errors using simple checking and imputation algorithms developed in the statistical software package ' R ' (R Core Team 2017). Individual tows were investigated and errors were corrected using median imputation for start/finish latitude or longitude, fishing method, target species, tow speed, net depth, bottom depth, wingspread, duration, and headline height for each fishing day for a vessel. Range checks were defined for the remaining attributes to identify outliers in the data. The outliers were checked and corrected if possible with mean imputation on larger ranges of data such as year to vessel, target species and fishing method for a year or month, or the record was removed from the data set. Statistical areas were calculated from positions where these were available. Transposition of some data was carried out (e.g., bottom depth and depth of net).

The fishing methods examined were deepwater bottom trawl, deepwater midwater trawl, inshore bottom trawl, inshore midwater trawl, line, setnet, and fish pots. The distinction between deepwater and inshore trawls was not based on depth or position, but rather on the form type that the catch was reported on. TCEPR records were classified as deepwater; CELR and TCER records were classified as inshore.

New Zealand ling are managed as eight administrative Quota Management Areas (QMAs), although five of these (LIN 3, 4, 5, 6, and 7) (Figure A1) currently produce about 95\% of the New Zealand landings of ling. Research has supported the assumption of at least five major biological stocks of ling in New Zealand waters (Horn 2005): Chatham Rise (LIN 3 and LIN 4), Sub-Antarctic incorporating Campbell Plateau and Stewart-Snares shelf (LIN 5, and LIN 6 west of 176° E), Bounty Plateau (LIN 6 east of 176° E), west coast South Island (LIN 7 west of Cape Farewell), and Cook Strait (those parts of LIN 2 and LIN 7 between latitudes 41° and $42^{\circ} \mathrm{S}$ and longitudes 174° and $175.4^{\circ} \mathrm{E}$, equating approximately to Statistical Areas 016 and 017). These stocks are referred to as LIN 3\&4, LIN 5\&6, LIN 6B, LIN 7WC, and LIN 7CK, respectively.

The catch data from the statistical areas were combined so that the groupings generally approximated the various administrative ling stocks, with two major exceptions. The Bounty Plateau section of LIN 6 was examined separately as it is believed to contain a distinct biological stock (Horn 2005), and a Cook Strait area comprising parts of LIN 2 and LIN 7 was created. The fishery areas are labelled in this section as North North Island (North NI), East North Island (East NI), East South Island (East SI), Chatham, Southland, Sub-Antarctic, Bounty, West South Island (West SI), and Cook Strait (Table A1, Figure A2). Data for the Chatham Rise and Sub-Antarctic were grouped by statistical area as follows: Chatham Rise (LIN 3\&4): 018-024, 049-052, 301, 401-412, and Sub-Antarctic (LIN 5\&6): 025-031, 302, 303, 501-504, 601-606, 610-612, 616-620, 623-625. Consequently, the grouping of some statistical areas may appear erroneous, but has been done in a way that best approximates biological stocks. For example, Statistical Areas 302, 303, and most of 026 are in LIN 3, but they have been included in the Sub-Antarctic analysis, as ling in these areas probably derive from the Sub-Antarctic stock because the Stewart-Snares shelf and Campbell Plateau are the closest submarine shelves to these statistical areas.

2.2 Catch data results

Annual estimated catches, reported landings, and TACCs by area, from all methods combined, are listed in Table A2, and shown in Figure A3. In 2016-17, landings from Fishstocks LIN 3, LIN 4 and LIN 6 were significantly under-caught relative to their TACCs, and the LIN 1, 2 , 5 and 7 TACCs were slightly over-caught. The estimated catch totals for each year ranged between 85 and 101% of the Monthly Harvest Return (MHR) landings. Substantial catches were taken in all areas, but most catches were taken in five areas around the South Island: East SI, Chatham, Southland, Sub-Antarctic, and West SI. This pattern of catches was consistent with ling distributions derived from research trawls (Anderson et al. 1998). There were some changes to the proportions of catch contributed by some areas before and after 2000. Catches from the Sub-Antarctic increased in the latter period (although have been lower from 2008-09 to 2015-16), while those from Chatham declined. By catch weight, the largest overall fishery in 2016-17 was the Southland fishery. Most ling catches since 1989-90 were reported on TCEPR or CELR forms, and were caught by bottom trawling or bottom longlining, mainly when the target species was hoki or hake (Table A3, Figure A3).

Overall, trawl-caught ling were taken mainly by bottom trawlers targeting ling or hoki, although the proportion of ling caught in hoki target tows has decreased since the mid 2000s (Figure A4). Ling are caught all year around, but more commonly between June and January (Figure A4). They are generally caught by mid-sized vessels. Compared to the previous fishing year, the 2016-17 trawl fishery catches in all areas increased (Table A4, Figure A4).

The deepwater bottom trawl fishery was still important in the Southland and Sub-Antarctic areas with annual catches generally greater than 2000 t (Table A4). Catches from the Sub-Antarctic increased from
the late 1990s to peak at more than 4900 t in 2003-04. Only $750-1500 \mathrm{t}$ was reported from 2009-10 to 2011-12, but there was a large increase to 3390 t taken in 2012-13, with a decrease to just over 1500 t in 2015-16, and a subsequent increase to 1900 t in 2016-17. Southland catches ranged from 1900 to 3300 t , with 3200 t taken in 2016-17. West SI catches have been greater than 500 t since 1996-97, and in 2016-17 increased slightly to 980 t. Chatham and East SI catches increased slightly in 2016-17. Total landings from the deepwater midwater trawl fishery have been relatively low since 2006-07, ranging between 125 and $630 t$, and decreased slightly to $590 t$ in 2016-17 (Table A4).

For the inshore bottom trawl fishery, there were low levels of catches (i.e., generally less than 100 t annually) in all areas except for Sub-Antarctic, and Bounty, where catches were negligible or zero (Table A4). There were increased catches in Southland and West SI by inshore trawl from about 200809. Catches from the inshore midwater trawl fishery were negligible in all areas except West SI and Cook Strait; catches in 2016-17 in both of those areas were low (Table A4).

The catch from the ling longline fishery is taken mainly by bottom longliners targeting ling; landings occur all year around, but more commonly between June and December (Figure A5). Smaller vessels dominate this fishery. Relative to 2015-16, the line catches in 2016-17 increased overall, with most of the increase taking place in the Bounty, East NI, East SI, and Sub-Antarctic areas, although with a notable decrease for the Chatham area (Table A4, Figure A5). The line fishery catches by area varied markedly between years (Table A4). The Chatham area was still the most productive, but recent catches were only about a third of those taken at its peak in the mid-1990s.

The setnet fishery catches have been negligible in all areas except East SI (Table A4). The 2016-17 catches in East SI remained low.

Catches from fish pots were generally recorded only from East SI, where annual landings were generally between 10 and 50 t , until 2015-16 but have since been over 100 t (Table A4). Interestingly, the last two years have also seen increases in catches by this method in North NI, East NI, West SI, and Cook Strait.

Total catches from the EEZ increased to 15000 t , compared to levels of around 13000 t from 2012-13 to 2015-16. Catches from 2008-09 to 2015-16 were all below those from the historically high catch period of 1991-92 to 2007-08 (Table A4).

2.1.1 East SI and Chatham (LIN 3\&4) catch data

On the Chatham Rise (LIN 3\&4), ling trawl catch was taken mainly by bottom trawlers targeting hoki (Table B1, Figure B1). The proportion of ling caught in hake target tows has decreased since 2009 (Figure B1). In general, most catch was taken between September and June, often with a peak from September to November (Table B2, Figure B1). Most of the trawl catch was spread out across ECSI (Statistical Areas 021-023) and the Chatham Rise (Statistical Areas 401-404, and 407-410) (Figures B1-B3). More than 98% of the Chatham Rise trawl catch is reported on the TCEPR form, and 95% taken by bottom trawling (Figure B1). The trawl catch since 2010 has been lower than 1200 t ; 752 t in 2014 was the lowest of all years since 1990, and in 2016-17 at 1171 t the catch was still relatively low (Table B2). Mean duration, distance, speed, and depth per tow have remained relatively unchanged (Figure B4), although mean hoki catch per tow has increased since 2004. Overall catches and number of tows by year were higher for larger vessels, although overall tow duration by year was sometimes higher for smaller inshore vessels in recent years (Table B3).

Chatham Rise (LIN 3\&4) line fisheries caught ling throughout the year, but most catch is taken from July to November (Table B2; Figure B5). Most of the line catch is taken in Statistical Areas 020-021, 049, 052, 401-404, and 410 (Figures B5, B6, and B7). Over 99\% of the catch was taken by the bottom longline method, and 99% of the catch was from lines targeting ling (Figure B5), and by larger vessels using fewer than 5000 hooks/day (Table B3, Figure B8).

2.1.3 Southland and Sub-Antarctic (LIN 5\&6) catch data

In Southland and the Sub-Antarctic (LIN 5\&6), ling trawl catch was taken mainly by bottom trawlers targeting hoki or ling (Table C1, Figure C1). In general, catch was taken all year around, although higher catches were taken between September and December (Table C2, Figure C1). Most of the trawl catch was caught in Statistical Areas 027, 028, 030, 602 and 603 (Figures C1-C3). In general, trawlcaught ling were taken mainly along the edge of the Stewart-Snares shelf, in the Norwegian Hole, at Puysegur Bank, and, in smaller amounts, on the northern Campbell Plateau, and southern Auckland Islands shelf. More than 98% of the trawl ling catch in the Sub-Antarctic is reported on the TCEPR form, 96% taken by bottom trawling, and 50\% of catch by target ling trawling (Figure C1). For vessels targeting hoki, hake or ling, bottom tows showed a decrease in mean distance, speed, and depth of net and bottom since 2002 (Figure C4), which can be attributed in part to the increased bottom trawl catches by smaller Korean vessels. Mean duration increased marginally. Overall catches, number of tows, and duration by year were higher for vessels larger than 28 m (Table C3).

Sub-Antarctic (LIN 5\&6) line fisheries caught ling throughout the year, although very little catch is taken in July-August and December-January (Table C2, Figure C5). Most of the line catch is taken in Statistical Areas 030, 602-605, 610-611, 618, and 619 (Figures C5, C6, and C7). Most Puysegur (Statistical Area 030) catch was taken from October to December, and most non-Puysegur catch from December to July (Figure C5b). Over 99\% of the catch was taken by the bottom longline method targeting ling (Figure C5), and by vessels greater than 28 m using fewer than 5000 hooks per day (Table C3, Figure C8).

2.1.4 West SI (LIN 7 WC) catch data

The LIN 7 WC trawl catch was mainly bycatch in the much larger hoki target fishery, although the ling caught in hake or ling target tows increased from 2005 (Table D1, Figure D1). In general, most catch was taken between May and October, often with a peak from June to September (Table D2, Figure D1). Most of the trawl catch was taken in Statistical Areas 033-036, in the North shallow and Deep subareas (Figures D1-D3).

About 84% of the trawl catch was recorded on TCEPR forms, and 58% of the catch taken by bottom trawling, although with only 5\% of ling trawl catch targeted (Figure D1). Mean duration, distance, speed, and depth per tow decreased after about 2003-04 (Figure D4), which can be attributed in part to the increased bottom trawl catches since 2002 by smaller Korean vessels targeting hake, and changes in midwater and bottom trawl vessels. Overall catches by year were higher for larger vessels, although overall number of tows and tow duration by year were higher for smaller inshore vessels less than 28 m in length (Table D3).

LIN 7 WC line fisheries caught ling throughout the year, but most catch was taken from July to November (Table D2, Figure D5). Over 98\% of the catch was taken by the bottom longline method, with 96% of the line catch targeted (Figure D5). Most of the line catch was taken in Statistical Areas 032-034 (Figures D5, D6, and D7), and by smaller inshore vessels less than 28 m using fewer than 5000 hooks per day (Table D3, Figure D8).

2.1.4 Descriptive analysis summary

The overall 2016-17 ling catch increased to 15000 t , compared to levels of around 13000 t from 201213 to 2015-16. However recent catches remained lower than landings from the 1991-92 to 2007-08 fishing years. The Southland fishery had the largest overall catches of any fishery in 2016-17. The distribution of trawl fishery landings showed little change, but catches increased in all areas. Overall trawl landings were higher than those taken in 2015-16, but lower than those taken during the early to mid-2000s.

The line fishery catch distribution was also quite similar to previous years, although line catches in 2016-17 increased overall, with most of the increase taking place in the Bounty, East NI, East SI, and Sub-Antarctic areas, but with a notable decrease for Chatham. The line fishery catch was markedly lower than in the most productive years (1992-2002), but relatively consistent with the pattern of landings since 2003.

3. CPUE ANALYSIS

3.1 Methods

CPUE variables

Variables used in the CPUE analysis are described in Tables E1 and F1 and are generally similar to those used in previous analyses (e.g., Dunn \& Ballara 2019). CPUE indices were calculated using catch per tow (in kilograms) for TCEPR tow-by-tow data, with tow duration offered as an explanatory variable. Longline CPUE was defined as catch per day per statistical area (i.e., daily estimated catch in kilograms by a vessel in a particular statistical area), and number of hooks set per day was offered as an explanatory variable. Catch per day (rather than catch per hook) was used as the unit of CPUE because it has been shown (Horn 2002) that the relationship between catch per hook and the number of hooks set per day is non-linear.

In previous analyses, data were analysed by calendar year rather than fishing year, because of a seasonal trend of higher catch rates in most ling fisheries running across the fishing year (1 October to 30 September) boundary, from about June to December (see Horn 2007a). This created a problem for stock assessment models, where the year definition for CPUE was different. The catch history used in the LIN 5\&6 model is calculated using a September to August year, so that the September trawl catch is included with the similarly high catches immediately after it in October to December, rather than 'on its own' at the end of an October to September year (Masi 2019). Also, the trawl catch-at-age samples are taken from a 5-month period of September to January. Therefore for the current analysis CPUE year was aligned with the model year and shifted to be analysed using a September to August year. The Puysegur line fishery is almost exclusively October to December, and the non-Puysegur line fishery is mainly December to July (see Figure C5b). The trawl fishery occurs all year around, although most heavily in September to December, and least in March to May (see Figure C1). Observer data on female gonad stage clearly show that spawning in both the Puysegur, and Southland and Sub-Antarctic areas is at a peak around September to November (Table F2, Figure F1). Therefore the definitions 'spawning' and 'non-spawning' fisheries were changed to September to December, and January to August respectively. The previous analysis (Ballara \& Horn 2015) used the 'spawning' fishery as Puysegur only September to December, and the 'non-spawning’ fishery as Southland and Sub-Antarctic January to December and Puysegur January to August.

Hence, year was a categorical variable and was defined as a September to August year. Season variables of both month and day of year, and statistical area (statarea) variables were offered to the model.

Vessel was incorporated into the CPUE standardisation to allow for possible differences in fishing ability between vessels. Records with no vessel identification data were excluded from analyses. Data from vessels that fished infrequently were excluded by including data only from "core" vessels, which were those that together reported at least 80% of ling estimated catches, and were all involved in the fishery for two or more years, and for a substantial number of tows or vessel-days in a year (criteria varied by gear, see below). Vessels not involved in the fishery for at least two years were excluded as they provided little information for standardisations, which could result in model over-fitting (Francis 2001). Individual vessel details were checked for consistency each year.

For line data, total hooks per day and number of sets per day were offered as an untransformed number and as log-transformed data. For trawl data, gear width was not used as an explanatory variable as this
field in the TCEPR form variously contained wingspread and doorspread measurements, and hence, headline height was the only trawl gear dimension variable offered to the model. Grid number, defined as the 0.5° latitude/longitude square where the catch was taken (V. McGregor, NIWA, pers. comm.) was included all trawl models.

CPUE data selection

For line fisheries, some vessels recorded individual set data on CELR forms, but most vessels reported a single CELR record for a day's fishing. If uncorrected, this would bias CPUE analyses, as those vessels recording individual events would contribute about four times as many records per day. Consequently, all line data for CELR, LTCER and LCER forms were condensed (catches, hooks, and sets summed for each vessel, day, and statistical area) to ensure that each record represented total catch and effort per statistical area per day. The estimated catch of the top five species per day can be reported on the CELR form, whereas the estimated catch of the top eight species per set can be reported on the LCER and LTCER forms. If there was more than one set recorded in a day, the estimated catch of numerous (up to 20-30) species may be reported for a single day of fishing on LCER and LTCER forms, compared to five species on CELR forms. This can result in small catches being reported in LCER and LTCER records that would not have appeared had CELR forms been used. Therefore the daily aggregate estimated catch of ling was only included with the LCER or LTCER daily aggregate effort record if the catch of that species was ranked amongst the five largest species catches (by weight) for the vessel fishing day and statistical area. As a result of this correction, there were 25 vessel-daystatistical area aggregate records removed from the dataset.

It was identified by the MPI Deepwater Fisheries Assessment Working Group meeting on 8 February 2018 that handbait vessels are more likely to have higher catchrates than autoliners (owing to more hooks being comprehensively and successfully baited than by the auto-baiting process), hence identifying and excluding these vessels from a CPUE analysis is important. It was not simple to use number of hooks per day as a cutoff to define autolongliners, so information was obtained from industry and MPI to identify longline vessel types as either autolongline or handbait. Some vessels were able to be identified as exclusively autolongline or handbait vessels, but there was a set of vessels that were current autolongliners but had potentially previously converted from handbait to autolongline. Hence there were three types of autolongliners identified: "always autolongline" (vessel has always been an autolongliner); "autolongline now" (currently an autolongline vessel, but no information as to whether it converted from handbait to autolongline in the past); and "handbait" (handbait longliner). Overall the "always autolongline" vessels accounted for 89.5% of the catch, 82% of vessel-days, but only 24% of longline vessels, while the "handbait" category made up 56% of longline vessels (Table E2).

To ensure that the data were in plausible ranges and related to vessels that had consistently targeted and caught significant landings of ling, data were accepted if all the constraints were met (Tables E3 and F3). Core vessel analyses were run for trawl fisheries using TCEPR tow-by-tow data, and for line fisheries using vessel-day data.

For line fishery analyses, data were accepted from the CELR and LTCER forms for target ling and line method BLL (bottom longline) for calendar years 1991-2017 for vessels that had always been an autolongline vessel, and for statistical areas with at least 50 vessel-day-statistical area combined sets (Table E3). Records were excluded if catches were outside of the range $1-35000 \mathrm{~kg}$, and the total number of hooks was outside of the range 50-50 000. Examination of records reporting zero catch indicated that most represented either duplicate records (two records for a particular day, one with and one without catches) or obvious mistakes (two or three days fishing with no catch). Because of the relatively high number of hooks fished in any set, a zero catch of ling in any set that was targeting ling was likely to result either from a reporting error or, if real, some gear malfunction or unsuccessful exploratory fishing. As a result, zero catch records were removed from the data set. There were 73 records having zero ling catch, making up 0.9% of the records.

Data for bottom trawling were accepted for the September to August years 1991-2017, for target fisheries hoki, hake and ling, and statistical areas with at least 100 tows (Table F3). Records were
excluded if catch weight was greater than 50 t (assumed to be an error), bottom depths were not within $150-1000 \mathrm{~m}$ (known depth range of ling), and duration of trawling was not within $0.2-15$ hours (assumed to be an error).

The data were also analysed as two fisheries within the Southland and Sub-Antarctic stock using all the data records that were accepted into the 'whole stock' analysis. The two fisheries were: "spawning" as September to December, and non-spawning as January to August.

The CPUE model

Annual unstandardised (raw) CPUE indices were calculated as the mean of the individual daily catch (kg) for a longline or as catch per tow (kg) for TCEPR tow-by-tow data. All series used the lognormal distribution for the positive catch model. For the trawl series, a binomial model based on the presence/absence of ling in each data set was also calculated, with the two models combined using the delta-lognormal method to provide the final series (Vignaux 1994). Estimates of relative year effects were obtained from a stepwise multiple regression method, where the data were fitted using a lognormal model using log transformed non-zero catch-effort data. The predictor variable year was forced into the model (as it is mandatory for a biomass index), and other variables tested for inclusion. A forward stepwise multiple-regression fitting algorithm (Chambers \& Hastie 1991) implemented in the R statistical programming language (R Core Team 2017) was used to select additional predictor variables, and they were entered into the model in the order which gave the maximum decrease in the AIC. The algorithm generates a final regression model iteratively and used the year term as the initial or base model in all cases. The reduction in residual deviance (denoted r^{2}) was calculated for each single term added to the base model. The term that resulted in the greatest reduction in the residual deviance was then added to the base model, where the change was at least 1%. The algorithm was then repeated, updating the base model, until no more terms were added. A stopping rule of 1% change in residual deviance was used because this results in a relatively parsimonious model with moderate explanatory power. Alternative stopping rules or error structures were not investigated.

Predictor variables were either categorical or continuous. The variable year was treated as a categorical value so that the regression coefficients of each year could vary independently within the model. The relative year effects calculated from the regression coefficients represent the change in CPUE through time, all other effects having been taken into account, and represents a possible index of abundance. Year was standardised to the first year of the data series and were presented in canonical form (Francis 1999). Variables were either categorical or continuous. Potential continuous variables were modelled as third-order polynomials, although a fourth-order polynomial was also offered for duration (see Tables E1 and F1). Vessel was incorporated into the CPUE standardisation to allow for differences in fishing ability between vessels. Grid number was also incorporated to allow for differences in fishing area in trawl models (Table F1). Model runs with grid number included all cells, top cell (cell with the highest overall catch), the top 5 cells (cells with the highest catches), and complement of the top cells (all cells not in top cells model run) (Figure F2). The index CVs represent the ratio of the standard error to the index. The 95% confidence intervals were also calculated for each index. Date was included in the catch runs as year and month, or day of year. Interaction terms were not used in the line fisheries, because in the past their inclusion resulted in some implausible vessel coefficients (Dunn et al. 2013), although a year:fishery interaction was used in the Sub-Antarctic model (see below) .

Model fits to the lognormal component of the combined model were investigated using standard residual diagnostics. For each model, a plot of residuals against fitted values and a plot of residuals against quantiles of the standard normal distribution were produced to check for departures from the regression assumptions of homoscedasticity and normality of errors in log-space (i.e., log-normal errors). For the binomial component, model fits were investigated visually using randomised quantile residuals (Dunn \& Smyth 1996). Randomised quantile residuals are based on the idea of inverting the estimated distribution function for each observation to obtain exactly standard normal residuals. For discrete distributions, such as the binomial, some randomisation was introduced to produce continuous normal residuals.

Unstandardised CPUE was also derived for each year from the available datasets. The annual indices were calculated as the mean of the individual daily catch (kg) for line data, or catch per tow (kg) for tow-by-tow data.

The model predictors for each selected variable were plotted, with all other model predictors fixed. These fixed values were chosen to be 'typical' values (see Francis (2001) for further discussion of this method). If different fixed values were chosen, the absolute values on the plotted y-axis would change but the trend would be unchanged.

The influence of each variable accepted into the lognormal models was described by coefficient-distribution-influence (CDI) plots (Bentley et al. 2012). These plots show the combined effect of (a) the expected \log catch for each level of the variable (model coefficients) and (b) the distribution of the levels of the variable in each year, and therefore describe the influence that the variable has on the unstandardised CPUE and that is accounted for by the standardisation.

CPUE analyses were undertaken for "core" vessels that were determined for each area analysis using area-specific criteria based on approximately 80% of ling catch, the number of years of vessel participation, and the number of tows (trawl) or vessel-days (line) per vessel-year (Tables E3 and F3). As there were only ten "always autolongline" vessels, nine of these vessels which had fished in at least two years were chosen, making up 89% of the Sub-Antarctic longline catch.

The primary Southland and Sub-Antarctic line fishery analysis used data from 1992-2017, and the trawl fishery analysis used data from 1991-2017. Core vessel analyses were run both as a single fishery and as separate spawning and non-spawning fisheries, although there were no data for 2008 and 2013 for the non-spawning line fishery. For the CPUE series estimated for separate fisheries within the Southland and Sub-Antarctic stock, a year:fishery interaction effect was forced into the model. This produced a CPUE series for each of the two fisheries within the stock, but with all other expected variable effects being the same over the fisheries. The autolongline fishery indices were compared to the previous results (all longline vessels using calendar year) from Ballara \& Horn (2015), and single fishery and two fishery results were compared for the spawning and non-spawning data. Autolongline and trawl CPUE indices were also compared with each other, and to Southland and Sub-Antarctic Tangaroa trawl survey biomass indices.

3.2 CPUE results

CPUE series for line and trawl-caught ling for Southland and the Sub-Antarctic (LIN 5\&6) are presented here, with tables and figures in Appendix E (line results) and Appendix F (tow-by-tow results).

3.2.1 Longline fishery

Sub-Antarctic line fisheries catch ling throughout the year by bottom longline and ling targeting, so only data from this method and target were included in the analysis (Table E3, see Figure C5). Statistical areas that had few days fished (i.e., less than 50) throughout the 26 years (overall 1.6% of vessel-days) were probably attributable to reporting errors or exploratory fishing, so were removed from the final analysis. Further Southland and Sub-Antarctic data constraints included vessels that had always been autolongliners (see section 2.2), catches of 1-35 000 kg , and number of hooks at $50-50000$ per vesselday.

Core vessels for the bottom longline index were defined as those participating in the fishery for at least two years (Figure E1). The core analysis included 6307 records of days fished throughout the 26 years analysed (2430 from the spawning fishery, and 3877 from the non-spawning fishery).The spawning fishery had 14-193 days fished in each year; the non-spawning fishery had 7-451 days per year. Spawning data were more abundant through the first part of the series, with the non-spawning data more abundant in later years. From 1993 to 2002 when the auto-longline fishery was at its peak, line fishing accounted for about $17-37 \%$ of the LIN $5 \& 6$ landings (excluding the Bounty Plateau) (see Tables A4
and C2). The percentage of line catch was lower from 2003 to 2009 ($8-14 \%$ of the landings), but was again relatively high (21%) in 2012, and has fluctuated between 5% and 17% since then (Tables A4 and C2). The estimated catch from this CPUE data set was 89.5% of the total estimated catch by line fishing in this area (Table E3). The core analysis included data from nine vessels; six of these had fished in six or more years of the series, and one had fished in 19 years (Figure E1).

For line single fishery CPUE, four variables were selected for the lognormal model, resulting in a total r^{2} of 61%, with $\log ($ total hooks) explaining 54% of the residual deviance (Table E4). The variables selected into the two-fishery model were similar to the single fishery model, although vessel did not enter that model. In the two-fishery model, log(total hooks) explained most of the variance (60\%), and with vessel included, 62% of total variance was explained.

The standardised year effects for the single and two fisheries models show variable series with a slightly declining trend (Table E5, Figure E2). The trends in the standardised indices do not closely follow the trends in the unstandardised indices. The variable of number of hooks has the largest impact on the standarised indices (Figure E3). There were similar trends between the three series although the indices in the spawning fishery were generally higher than those in the single fishery, and the non-spawning fishery was generally the lowest (Figure E4). In the spawning series, the high 2010 index and the low 2011 index are based on low numbers of days fishing. There were very wide confidence bounds in 2010 but small confidence bounds in 2011. The trends in the indices changed somewhat from previous analyses (Figure E4b), however this is to be expected due to the changed year definition, vessel definition, vessel selection, and spawning definition, with the apparent 1-year lag seen in the spawning fishery due to the changed year definition. The trends in the CPUE indices also had a poor match to the trend shown by the trawl survey biomass indices (Figure E4c).

Influence plots (Figure E5) showed that total hooks per day had a positive influence from 1998 (except for 2004) when there was less effort with lower total hook numbers; higher catch rates are expected with higher total hook numbers. The vessel influence on CPUE was negative in most years from 1999, although was positive in 2005-2006, and in 2015. For vessel, changes are related to the movement of vessels out of the fishery, and to differing levels of effort by individual vessels. Most vessels had similar expected catch rates, which is not surprising since they are all autolongliners. For statistical area the highest expected catch rates occurred in Statistical Area 030, but rates varied by a factor of less than 2 over all areas. There was a large positive influence in 2007, 2008, and 2013 when the effort in Statistical Area 030 was the higher. The diagnostics for each line model showed some departure from model assumptions, and the catch rate extremes were not well captured by the model (Figure E6).

3.2.2 Bottom trawl fishery

TCEPR tow-by-tow commercial data from vessels targeting hoki, hake or ling were analysed to produce a CPUE series, using the combined model. Overall a total of 122 unique vessels caught 130813 t from 91568 tows, and from these, 36 core vessels were selected (range 5-26 per year). and the core vessels caught an estimated 111561 t of ling from 73533 tows (Table F4, Figures F3). The spawning fishery included 32101 core tows with 218-2337 tows each year; the non-spawning fishery included 41432 tows with 508-4726 tows per year. The least active core vessel had participated in the fishery for only 5 years, but there were 28 vessels in the fishery for 8 or more years (with the maximum being 21 years). The proportion of zero catch tows (i.e., tows where either hoki, hake, or ling was targeted, but no ling was caught) for core vessels ranged between 0.05 and 0.36 per year, and showed an decreasing trend for both core and all vessels, although the trend flattened off from 2002 ($0.05-0.12 \%$) (Table F4). Overall, 10372 (14.1\%) tows reported no ling catch.

Seven variables were selected into the lognormal model, resulting in a total r^{2} of 55%, with grid number explaining 35% of the residual deviance; for the binomial model, grid number explained 15.2% of the variance, with the final model explaining 22% (Table F5). The variables selected into the two-fishery lognormal and binomial models were similar to those for the single fishery model.The standardised year effects from the single, spawning and non-spawning fishery lognormal models showed a flat undulating trend (Table F5, Figure F4). Unstandardised indices for the lognormal models did not follow the same
trend as the standardised indices; they were generally lower in earlier and later years and higher in middle years, with the differences attributable mainly to the influence of the variables grid number and vessel (Figure F5). The binomial series showed a flat trend, so the combined indices are similar to the lognormal model (Figure F6). A lognormal model run using data from daytime hours in NovemberDecember on the Snares Shelf showed similar trends, as did lognormal analyses using top cell, top cells or complement of top cells, although much higher values were seen for earlier years for top cell. None of the trawl CPUE series matched the line CPUE series for any of the fisheries, or the trawl survey biomass series (Figure F7).

Influence plots (Figure F8) show that fleet dynamics and behaviour have changed: most variables had a negative effect in early years. Grid number had a large positive influence on CPUE from from 2004. Expected catch varied between grid number; it was highest around the Norwegian Hole and along the Snares Shelf (Statistical Areas 028, 030, 602, and 603) with the influence of Statistical areas on CPUE more positive in the north, and from September to December (see Figure C1 and F2). Vessel had a negative trend in influence until 1999, a positive trend from 1999 to 2011, and then little influence subsequently, suggesting a change in fleet dynamics. Vessels with more overall catch tended to have higher expected catches and lower variability. Influence of target species showed that there is a positive influence on CPUE when ling are targeted (as would be expected), and a negative influence when hoki are targeted, especially from 2006 to 2008. The probability of a zero ling catch varied markedly with grid number and vessel, and was higher for tows that were outside the 400-800 m depth range, and for tows targeting hoki or ling (Figure F9). Duration has a relatively weak effect on the probability of a zero ling catch, unless the tow was very short or long. The diagnostics for both lognormal and binomial models were considered acceptable, with substantial deviation from model assumptions only occurring outside two standard deviations (Figure F10).

3.2.3 CPUE summary

In recent assessments of ling stocks around the South Island, series of CPUE indices derived from commercial fisheries have been used as indices of abundance (e.g., Horn et al. 2013, Roberts 2016), usually as a sensitivity test in conjunction with indices from trawl survey series.

The Southland and Sub-Antarctic line CPUE series were variable with a declining trend for the single, spawning, and non-spawning fisheries. As would be expected, the trends in the indices, and the variables selected into the models, have not changed markedly between the previous (Ballara \& Horn 2015) and current analyses. The longline fisheries examined here target a single species using the same method, so the sets of variables selected into the model for each stock might be expected to have some similarities. In all the analyses, total hooks or log(total hooks) and statistical area were selected into the model. Vessel was accepted into the single fishery model. With the CPUE unit being 'kg per day', it would be expected that the number of hooks set per day would be a very influential variable, and it is indeed the most influential variable in the current analyses, accounting for the largest proportion of explained variance. Skill levels and/or gear efficiency will vary between vessels so the selection of a vessel variable in each model would be expected. Clearly, catch rates vary throughout the year, probably in relation to the spawning season for ling, although no time of year variables entered the model.

One clearly apparent change in recent line fishing seasons is the reduction in effort on the Campbell Plateau, and in particular for the spawning fishery since 2008. This reduction is attributable in part to the diversion of autoline vessels to the Ross Sea toothfish fishery, but also to the permanent removal from the New Zealand fleet of some large line vessels, and to a recent reduction in overseas demand for New Zealand ling (Ballara \& Horn 2015).

Horn (2002) concluded that most ling line CPUE series performed well in relation to four criteria raised by Dunn et al. (2000), and so were probably reasonable indices of abundance (for that part of the population targeted by the fishery). Although the longline fleet composition has changed over time, Horn (2004a) completed parallel analyses for shorter time series of data and compared the results with
the "all years" indices to show that the change in fleet dynamics did not bias the line CPUE. It is considered unlikely that line CPUE series have been seriously biased by any changes in fishing practice over the durations of the fisheries (Horn 2004b), although data on some potentially influential factors are either unavailable before 2004 (e.g., hook spacing) or would be difficult to incorporate into analyses (e.g., vessel skipper, learning by fishers). The current autolongline analysis further standardises the longline dataset by excluding handbait vessels with higher catch rates and more efficient hook types and baiting practices. Most longline vessels, however, were able to be identified as exclusively autolongline or handbait vessels, but due to lack of information there were a set of vessels that were current autolongliners but it was not clear whether they had previously converted from handbait to autolongline. Classification of these vessels into years when they fished as either handbait or as autolongline vessels would expand the dataset.

A combined TCEPR tow-by-tow model using QMS data from the Southland and Sub-Antarctic hoki, hake and ling target trawl fishery was updated. The r^{2} values for the CPUE models were relatively high (55\%), and the retained variables exhibited many similarities between models, with most of the explanatory power from the first two or three variables. Locational variable grid number and target species were the most important variables in all analyses. There is a large volume of data used in the analysis, and all the tow-by-tow estimated catch CPUE series exhibit no trend. Unstandardised indices in all three datasets did not follow the same trend as the standardised indices; they were generally lower in earlier years and higher in later years, and the differences can be attributed mainly to the influence of the variables grid number and target species. The trends in the combined and lognormal indices were similar, implying that little was gained by adding data from zero catches into that analysis. There was no agreement between the Southland and Sub-Antarctic trawl survey biomass series and the CPUE series, although the biomass trend appeared closer to the single fishery model. CPUE series from both the trawl and line fisheries are available, and there are some differences in the trends from the two fishing methods. However, indices from a different data source in an individual stock would not necessarily be expected to exhibit similar trends, owing to different fishing selectivities in the different fisheries. There is no way of establishing whether this analysis is likely to produce a reliable index series.

The line CPUE was expected to provide a relatively unbiased CPUE index. However, biases in CPUE caused by changes in fishing practice not accounted for by the available predictors may still be present. This may be particularly pronounced for the ling target line fishery. For example, the line fishery generally targets ling on clearly defined geological features using relatively short longlines that can be accurately placed. The accurate placement of fishing gear in optimal ling habitat could bring about hyperstability in the CPUE index. Also, some interactions with the trawl fishery in the same area could also lead to biases, and it has been suggested that the hoki trawlers may direct the line vessels to areas with apparently high ling abundance, as indicated by the trawl bycatch (Horn \& Ballara 2012). This behaviour would enable line fishers to reduce their search time and/or fish in areas that are likely to produce relatively high, and consistently high, ling catch rates. If the extent of this behavior changed over time, it would bias the line CPUE. There are also anecdotal reports of trawlers directly transferring some of their ling catch (presumably for which they have no quota) to line or setnet boats; this behaviour would bias both trawl and line CPUE.

The current autolongline analysis rolls up data to vessel-day-statistical area, and for LCER and LTCER only uses data if ling is in the top five species (see Section 3.1). Since 2004, individual set data have been captured on LCER and LTCER forms (see Figure C5). There are now 14 years of individual set data, so it would be worthwhile to investigate a comparison of individual set information rather than a rolled up data set. This would also increase the number of records in a year, although would still not get around confidentiality issues where data cannot be reported if it is produced from fewer than 3 vessels in a year.

The diagnostic plots for both line and trawl lognormal models were unable to capture the extremes in catch rates and tended to underestimate the lower or higher catch rates. This suggests that the lognormal models can be improved, and there may be violations of model assumptions (i.e., the assumption of
normally distributed constant variance residual errors). Other models may need investigating. The diagnostics for the trawl binomial models were good and the quantile-quantile plots indicated very little deviation from the normal distribution of the residuals at both the lower and upper ends, i.e., very small and very large catch rates were well modelled.

4. ACKNOWLEDGMENTS

Thanks to Peter Horn, and members of the Deepwater Fisheries Assessment Working Group for useful discussions on this work, and to Peter Horn for a comprehensive review of this report. Also thanks to Richard Wells for providing information on longline vessel types. This work was funded by the Ministry for Primary Industries project LIN201701.

5. REFERENCES

Anderson, O.F.; Bagley, N.W.; Hurst, R.J.; Francis, M.P.; Clark, M.R.; McMillan, P.J. (1998). Atlas of New Zealand fish and squid distributions from research bottom trawls. NIWA Technical Report 42. 303 p.

Ballara, S.L.; Horn, P.L. (2015). A descriptive analysis of all ling (Genypterus blacodes) fisheries, and CPUE for ling longline fisheries for LIN 3\&4 and LIN 5\&6, from 1990 to 2013. New Zealand Fisheries Assessment Report 2015/11. 55 p.
Ballara, S.L.; O'Driscoll, R.L. (2017). Catches, size, and age structure of the 2015-16 hoki fishery, and a summary of input data used for the 2017 stock assessment. New Zealand Fisheries Assessment Report 2017/31. 119 p.
Bentley, N.; Kendrick, T.H.; Starr, P.J.; Breen, P.A. (2012). Influence plots and metrics: tools for better understanding fisheries catch-per-unit-effort standardizations. ICES Journal of Marine Science 69(1): 84-88.
Chambers, J.M.; Hastie, T.J. (1991). Statistical models in S. Wadsworth \& Brooks/Cole, Pacific Grove, CA. 608 p.
Dunn, A.; Harley, S.J.; Doonan, I.J.; Bull, B. (2000). Calculation and interpretation of catch-per-uniteffort (CPUE) indices. New Zealand Fisheries Assessment Report 2000/1. 44 p.
Dunn, M.R.; Ballara, S.L. (2019). Fishery description and stock assessment for ling off the West Coast South Island (LIN 7) to the 2015-16 fishing year. Draft New Zealand Fisheries Assessment Report held by Fisheries New Zealand.
Dunn, M.R.; Edwards, C.T.T.; Ballara, S.L.; Horn, P.L. (2013). Stock assessment of ling (Genypterus blacodes) in Cook Strait and off the West Coast South Island (LIN 7), and a descriptive analysis of all ling fisheries, for the 2012-13 fishing year. New Zealand Fisheries Assessment Report 2013/63. 102 p.
Dunn, P.K.; Smyth, G.K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics 5: 1-10.
Francis, R.I.C.C. (1999). The impact of correlations in standardised CPUE indices. New Zealand Fisheries Assessment Research Document 99/42. 30 p. (Unpublished report held in NIWA library, Wellington.)
Francis, R.I.C.C. (2001). Orange roughy CPUE on the South and East Chatham Rise. New Zealand Fisheries Assessment Report 2001/26. 30 p.
Horn, P.L. (2001). A descriptive analysis of commercial catch and effort data for ling from New Zealand waters. New Zealand Fisheries Assessment Report 2001/2. 64 p.
Horn, P.L. (2002). CPUE from commercial line fisheries for ling (Genypterus blacodes) around the South Island (Fishstocks LIN 3, 4, 5, 6, and 7). New Zealand Fisheries Assessment Report 2002/17. 32 p.
Horn, P.L. (2004a). CPUE from commercial fisheries for ling (Genypterus blacodes) in Fishstocks LIN 3, 4, 5, 6, and 7 from 1990 to 2002. New Zealand Fisheries Assessment Report 2004/12. 41 p.
Horn, P.L. (2004b). A review of the auto-longline fishery for ling (Genypterus blacodes) based on data collected by observers from 1993 to 2003. New Zealand Fisheries Assessment Report 2004/47. 28 p.

Horn, P.L. (2005). A review of the stock structure of ling (Genypterus blacodes) in New Zealand waters. New Zealand Fisheries Assessment Report 2005/59. 41 p.
Horn, P.L. (2007a). Stock assessment of ling (Genypterus blacodes) on the Bounty Plateau and in Cook Strait for the 2007-08 fishing year. Final Research Report for Ministry of Fisheries Research Project LIN2005-01, Objective 3.51 p. (Unpublished report held by Fisheries New Zealand, Wellington.)
Horn, P.L. (2007b). A descriptive analysis of commercial catch and effort data for ling from New Zealand waters in Fishstocks LIN 2, 3, 4, 5, 6, and 7. New Zealand Fisheries Assessment Report 2007/22. 71 p.
Horn, P.L.; Ballara, S.L. (2012). A descriptive analysis and CPUE from commercial fisheries for ling (Genypterus blacodes) in Fishstocks LIN 2, 3, 4, 5, 6, and 7 from 1990 to 2009. New Zealand Fisheries Assessment Report 2012/13. 69 p.
Horn, P.L.; Dunn, M.R.; Ballara, S.L. (2013). Stock assessment of ling (Genypterus blacodes) on the Chatham Rise (LIN 3\&4) and in the Sub-Antarctic (LIN 5\&6) for the 2011-12 fishing year. New Zealand Fisheries Assessment Report 2013/6. 87 p.
Masi, M. (2019). Stock assessment of ling (Genypterus blacodes) in the Sub-Antarctic (LIN 5\&6) for the 2017-18 fishing year. New Zealand Fisheries Assessment Report 2019/30. 31 p.
R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.
Roberts, J. (2016). Stock assessment of ling (Genypterus blacodes) in the Sub-Antarctic (LIN 5\&6) for the 2014-15 fishing year. New Zealand Fisheries Assessment Report 2016/05. 35 p.
Vignaux, M. (1994). Catch per unit effort (CPUE) analysis of west coast South Island and Cook Strait spawning hoki fisheries, 1987-93. New Zealand Fisheries Assessment Research Document 94/11. 29 p. (Unpublished report held in NIWA library, Wellington.)

6. APPENDIX A: DESCRIPTIVE OVERALL

Table A1: Definitions of geographical areas used in the fisheries descriptive analyses (based on statistical areas), and the administrative ling stocks they approximate. For a plot of statistical areas, see Figure A2.

Area	Statistical Areas	Administrative stock	Assessment stock
North NI	$041-048,001-010,101-110,801$	LIN 1	-
East NI	$011-015,201-206$	LIN 2	-
East SI	$018-024,301$	LIN 3	LIN 3\&4
Chatham	$049-052,401-412$	LIN 4	LIN 3\&4
Southland	$025-031,302,303,501-504$	LIN 5	LIN 5\&6
Sub-Antarctic	$601-606,610-612,616-620,623-625$	Part of LIN 6	LIN 5\&6
Bounty	$607-609,613-615,621,622$	Part of LIN 6	LIN 6B
West SI	$032-036,701-706$	Part of LIN 7	LIN 7WC
Cook Strait	$016,017,037-040$	Parts of LIN 2 \& 7	LIN 7CK

Table A2: Estimated ling catch (t) as reported on TCEPR, TCER, CELR, NCER, and LCER returns, reported landings (t) from MHR records, and TACC (t) by QMA and by assessment stock area (see Figure A1) from 1989-90 to 2016-17. All catches have been rounded to the nearest tonne. Fishing year 1989-90 is denoted as "1990", etc. The percentage of total estimated landings (Total) taken from each area is also presented (Percent). The QMR total also includes small catches from FMA 10 and outside the EEZ.

	Estimated catch											
Year	LIN1	LIN2	LIN3	LIN4	LIN5	LIN6	LIN6B	LIN7WC	LIN7CK	Total	MHR	\% of MHR
1989-90	83	268	1221	512	2116	1216	12	2323	414	8167	9026	90.5
1990-91	139	437	1935	2156	2093	2683	33	1947	527	11950	13675	87.4
1991-92	185	450	1806	4358	3832	2398	908	1859	314	16119	17796	90.6
1992-93	155	526	1622	3657	2685	5252	969	1874	323	17065	19069	89.5
1993-94	185	508	1573	3756	3248	2282	1149	1766	251	14722	15959	92.3
1994-95	219	530	2139	5737	3765	3683	396	2875	321	20027	19817	101.1
1995-96	165	553	2430	4174	4764	4112	381	2625	366	19575	21471	91.2
1996-97	254	525	2069	3849	4294	5035	340	2498	366	19285	22535	85.6
1997-98	220	607	2086	4285	4132	5359	395	2766	287	20150	23083	87.3
1998-99	178	545	1981	3924	3510	4336	563	2927	345	18334	21019	87.2
1999-00	297	485	2150	3969	3150	5072	991	2697	331	19146	21594	88.7
2000-01	236	597	1743	3445	3394	4641	1064	3070	391	18584	20551	90.4
2001-02	280	583	1583	3217	3255	5406	629	2642	289	17885	19563	91.4
2002-03	227	471	1845	2719	3061	5137	922	2338	353	17075	18908	90.3
2003-04	207	507	1473	2385	3119	5899	853	2402	360	17204	18758	91.7
2004-05	241	399	1267	2927	4126	5389	49	2057	372	16827	17186	97.9
2005-06	291	415	1218	1729	3917	3737	43	2053	297	13700	14178	96.6
2006-07	232	512	1601	1943	3998	4112	236	1797	239	14670	16099	91.1
2007-08	361	503	1505	2307	4251	3818	503	1909	186	15344	16263	94.3
2008-09	307	452	1394	1815	3201	2264	232	1851	124	11640	13137	88.6
2009-10	379	451	1373	1844	3240	2272	1	1957	75	11593	12609	91.9
2010-11	440	482	1173	1398	4013	1129	53	2288	129	11105	12337	90.0
2011-12	377	346	815	2017	3828	1885	2	2142	110	11523	12955	88.9
2012-13	386	369	1032	1918	3691	3396	3	2460	176	13431	14339	93.7
2013-14	395	425	1047	2041	3889	2832	277	2661	147	13715	15225	90.1
2014-15	400	453	876	1877	3817	2993	23	2745	146	13330	15002	88.9
2015-16	412	468	1091	2267	3633	1931	220	2890	170	13083	14666	89.2
2016-17	442	669	1381	2216	3826	2501	739	3016	230	15019	16596	90.5
Total	7694	13537	43428	78439	99850	100771	11986	66438	7641	430268	473415	-
Percent	1.8	3.1	10.1	18.2	23.2	23.4	2.8	15.4	1.8	-	-	-

Table A2: continued.

	Reported catch (MHR)								
Year LIN1 LIN2	LIN3	LIN4	LIN5	LIN6	LIN7	LIN10	Total		
1989-90	121	736	1876	587	2277	935	2496	-	9026
1990-91	207	967	2410	2420	2291	2845	2534	-	13675
$1991-92$	241	831	2423	4710	3867	3461	2262	-	17796
$1992-93$	253	944	2247	4100	2546	6504	2475	-	19069
$1993-94$	234	779	2167	3917	2459	4248	2155	-	15959
$1994-95$	261	850	2654	5072	2558	5477	2946	-	19817
$199-96$	245	1051	2962	4632	3137	6341	3103	-	21471
$1996-97$	313	1187	2976	4087	3438	7510	3024	-	22535
$1997-98$	326	992	2943	5215	3321	7331	2955	-	23083
$1998-99$	208	1070	2706	4642	2937	6112	3345	-	21019
$1999-00$	313	983	2779	4402	3136	6707	3274	-	21594
$2000-01$	296	1105	2330	3861	3430	6177	3352	-	20551
$2001-02$	303	1034	2164	3602	3295	5945	3219	-	19563
$2002-03$	246	996	2529	2997	2939	6283	2918	-	18908
$2003-04$	249	1044	1990	2618	2899	7032	2926	-	18758
$2004-05$	283	936	1597	2758	3584	5506	2522	-	17186
$2005-06$	364	780	1711	1769	3522	3553	2479	-	14178
$2006-07$	301	874	2089	2113	3731	4696	2295	-	16099
$2007-08$	381	792	1778	2383	4401	4246	2282	-	16263
$2008-09$	320	634	1751	2000	3232	2977	2223	-	13137
$2009-10$	386	584	1718	2026	3034	2414	2446	-	12609
$2010-11$	438	670	1665	1572	3856	1335	2800	-	12337
$201-12$	384	506	1292	2305	3649	2047	2771	-	12955
$2012-13$	383	579	1475	2181	3610	3102	3010	-	14339
$2013-14$	380	674	1442	2373	3935	3221	3200	-	15225
$2014-15$	374	673	1325	2246	3924	3115	3344	-	15002
$2015-16$	422	702	1440	2659	3868	2222	3351	-	14666
$2016-17$	404	1022	1808	2562	4050	3323	3428	-	16596

								TACC	
	Year	LIN1	LIN2	LIN3	LIN4	LIN5	LIN6	LIN7	LIN10

Table A3: Estimated ling catches (t) by form type and fishing year.

						Catches (tonnes)	
Year	CELR	LCER	LTCER	NCELR	TCER	TCEPR	Total
1989-90	1710	-	-	-	-	6457	8167
$1990-91$	3717	-	-	-	-	8233	11950
$1991-92$	7076	-	-	-	-	9043	16119
$1992-93$	7555	-	-	-	-	9510	17065
$1993-94$	8315	-	-	-	-	6407	14722
$1994-95$	10791	-	-	-	-	9236	20027
$1995-96$	8715	-	-	-	-	10860	19575
$1996-97$	9351	-	-	-	-	9934	19285
$1997-98$	8531	-	-	-	-	11619	20150
$1998-99$	8048	-	-	-	-	10286	18334
$1999-00$	7982	-	-	-	-	11164	19146
$2000-01$	7345	-	-	-	-	11239	18584
$2001-02$	6413	-	-	-	-	11472	17885
$2002-03$	5731	-	-	-	-	11344	17075
$2003-04$	3556	2075	-	-	-	11574	17204
$2004-05$	2040	3658	-	-	-	11129	16827
$2005-06$	1701	2550	-	-	-	9449	13700
$2006-07$	1818	2566	-	133	-	10153	14670
$2007-08$	206	2857	2045	99	515	9622	15344
$2008-09$	188	2591	1462	108	563	6727	11640
$2009-10$	131	2857	1744	109	698	6055	11593
$2010-11$	75	1887	2089	82	926	6047	11105
$2011-12$	49	2356	1975	54	828	6260	11523
$2012-13$	128	1346	2596	25	843	8493	13431
$2013-14$	165	2397	2912	32	985	7224	13715
$2014-15$	99	1694	2596	28	868	8045	13330
$2015-16$	194	2263	2616	83	1025	6903	13083
$2016-17$	271	3029	2693	35	1030	7960	15019

Table A4: Catch of ling (t) by area, by fishing year, for various fishing methods. Fishing year 1989-90 is denoted as "1990", etc. Values were rounded to the nearest tonne, so " 0 " represents estimated landings of less than 0.5 t , and "-" indicates nil reported landings. Total catches also includes catches from FMA 10 and outside the EEZ.
(a) Inshore bottom trawl (method BT and BPT on CELR and TCER forms)

Fishing year								Area		
	North NI	$\begin{array}{r} \text { East } \\ \text { NI } \end{array}$	$\begin{array}{r} \text { East } \\ \text { SI } \end{array}$	Chatham	Southland	Sub- Antarctic	Bounty	West SI	Cook Strait	Total
1989-90	10	25	148	4	47	-	-	148	4	386
1990-91	18	36	198	5	63	-	-	150	9	480
1991-92	30	21	145	2	53	-	0	192	4	448
1992-93	35	17	110	0	91	0	-	220	14	486
1993-94	29	22	64	1	78	-	-	111	22	326
1994-95	20	18	66	2	83	0	-	106	78	374
1995-96	9	24	50	3	50	0	0	188	82	406
1996-97	19	17	62	0	56	-	-	168	72	394
1997-98	9	7	45	0	30	-	-	104	24	220
1998-99	8	5	51	0	66	0	-	158	26	314
1999-00	57	7	80	0	48	-	-	129	20	340
2000-01	22	6	75	0	99	-	-	55	15	271
2001-02	11	4	99	1	89	-	-	55	17	275
2002-03	9	8	91	1	166	-	-	69	8	352
2003-04	3	3	88	0	137	-	-	54	4	290
2004-05	1	2	99	1	136	-	-	130	7	376
2005-06	6	2	46	10	106	-	-	127	3	299
2006-07	8	15	49	1	98	-	-	101	4	276
2007-08	52	18	72	0	109	-	-	240	6	496
2008-09	62	11	39	-	122	0	-	252	31	517
2009-10	86	14	66	0	180	0	-	277	26	649
2010-11	39	21	62	0	368	-	0	315	68	873
2011-12	25	51	64	13	288	0	0	275	36	753
2012-13	86	36	45	39	249	-	-	270	39	764
2013-14	78	71	53	25	399	0	-	254	19	899
2014-15	52	58	36	42	394	-	-	177	15	774
2015-16	54	65	53	25	460	-	0	234	13	904
2016-17	22	88	67	6	406	-	0	271	6	865

(b) Inshore midwater trawl (method MW and MPT on CELR and TCER forms)

Fishing year								Area		
	$\begin{array}{r} \text { North } \\ \text { NI } \end{array}$	$\begin{array}{r} \hline \text { East } \\ \text { NI } \end{array}$	$\begin{array}{r} \text { East } \\ \text { SI } \end{array}$	Chatham	Southland	Sub- Antarctic	Bounty	West SI	Cook Strait	Total
1989-90	1	1	3	-	-	-	-	2	42	49
1990-91	0	0	9	-	-	-	-	-	125	134
1991-92	0	1	6	-	-	-	-	2	36	44
1992-93	0	2	0	-	-	-	-	1	26	30
1993-94	0	0	1	-	-	-	-	3	11	14
1994-95	1	0	0	1	-	-	-	9	6	17
1995-96	1	0	2	-	-	-	-	24	16	43
1996-97	4	0	7	-	-	-	-	21	8	45
1997-98	9	0	4	-	-	-	-	45	13	74
1998-99	1	0	20	-	-	-	-	83	9	113
1999-00	0	0	7	-	-	-	-	206	18	232
2000-01	6	1	7	-	-	-	-	175	29	218
2001-02	0	0	9	-	-	-	-	83	14	106
2002-03	0	0	30	-	0	-	-	113	36	178
2003-04	0	0	13	0	-	-	-	67	29	110
2004-05	0	0	1	0	0	-	-	70	22	93
2005-06	0	0	2	-	-	-	-	63	21	86
2006-07	0	0	0	-	-	-	-	34	18	52
2007-08	-	-	0	-	0	-	-	2	4	6
2008-09	-	-	0	-	-	-	-	20	4	24
2009-10	-	0	0	-	-	-	-	19	2	21
2010-11	-	-	0	0	0	-	-	33	2	35
2011-12	-	-	0	-	0	-	-	43	1	45
2012-13	-	-	0	-	-	-	-	39	1	40
2013-14	-	0	0	-	-	-	-	48	2	49
2014-15	-	0	0	-	-	-	-	58	3	62
2015-16	-	-	0	-	-	-	-	89	4	93
2016-17	0	-	0	-	-	-	-	95	9	104

Table A4: continued.
(c) Deepwater bottom trawl (methods BT and BPT on TCEPR form)

Fishing year								Area		
	North NI	$\begin{array}{r} \hline \text { East } \\ \text { NI } \end{array}$	$\begin{array}{r} \hline \text { East } \\ \text { SI } \end{array}$	Chatham	Southland	$\begin{array}{r} \text { Sub- } \\ \text { Antarctic } \end{array}$	Bounty	West SI	Cook Strait	Total
1989-90	31	59	599	500	1953	1174	4	370	7	4698
1990-91	70	117	817	1235	1996	2457	7	260	13	6972
1991-92	55	87	933	1348	3368	2053	35	306	4	8189
1992-93	30	75	807	1028	1985	4308	0	491	4	8730
1993-94	45	74	727	451	2038	1818	4	389	47	5595
1994-95	44	77	1016	968	2557	2102	0	505	57	7327
1995-96	73	125	1081	697	3945	2807	1	385	97	9213
1996-97	141	151	1017	764	3254	2772	0	516	119	8757
1997-98	136	130	1174	2262	2933	2970	0	498	78	10182
1998-99	104	159	973	1836	2609	2389	3	875	111	9063
1999-00	188	156	871	1897	2121	3850	0	759	90	9932
2000-01	170	205	971	1480	1958	3684	0	1019	39	9527
2001-02	169	207	860	1216	2064	4517	1	1133	72	10240
2002-03	121	113	1131	1313	1896	4707	1	836	35	10153
2003-04	108	74	811	1061	2269	4936	1	815	38	10114
2004-05	75	55	641	814	3042	4875	8	764	29	10302
2005-06	124	40	610	595	2982	3095	4	994	21	8465
2006-07	63	71	945	854	3108	3920	0	701	19	9681
2007-08	74	19	828	1182	3264	3469	0	525	41	9402
2008-09	67	37	699	498	2674	2042	8	556	21	6603
2009-10	39	23	548	539	2607	1475	0	603	7	5842
2010-11	52	28	390	400	3333	749	0	854	5	5811
2011-12	86	6	256	731	2914	1158	0	761	4	5916
2012-13	83	7	260	486	3063	3390	-	811	9	8109
2013-14	39	16	242	427	3156	2135	3	665	21	6705
2014-15	73	9	286	687	3090	2387	-	859	15	7406
2015-16	75	4	320	549	2919	1541	0	779	2	6188
2016-17	107	19	418	660	3190	1935	0	980	3	7311

(d) Deepwater midwater trawl (methods MW and MPT on TCEPR forms)

Table A4: continued.
(e) Line (methods BLL, TL, and DL on CELR, LCER, and LTCER forms)

Fishing year								Area		
	North NI	$\begin{array}{r} \hline \text { East } \\ \text { NI } \end{array}$	$\begin{array}{r} \text { East } \\ \text { SI } \end{array}$	Chatham	Southland	Sub- Antarctic	Bounty	West SI	Cook Strait	Total
1989-90	39	134	185	8	0	-	-	197	66	630
1990-91	50	186	613	846	2	217	7	428	55	2406
1991-92	98	300	478	2997	288	326	835	691	70	6090
1992-93	83	401	491	2605	453	886	965	708	100	6694
1993-94	108	406	552	3272	863	449	1142	761	63	7619
1994-95	128	432	811	4707	704	1567	385	891	59	10047
1995-96	81	397	1021	3414	301	1259	378	994	53	7900
1996-97	67	328	635	3026	847	2258	340	963	20	8506
1997-98	60	446	427	1979	1084	2381	388	1008	67	7848
1998-99	39	370	528	2040	770	1940	549	972	107	7339
1999-00	50	317	779	2043	857	1206	984	784	94	7115
2000-01	36	380	473	1921	961	728	1063	917	160	6640
2001-02	100	370	385	1962	955	657	627	659	111	5826
2002-03	91	346	401	1386	850	214	921	686	137	5032
2003-04	95	425	356	1264	581	656	850	682	169	5078
2004-05	166	340	369	2097	848	310	34	728	215	5107
2005-06	161	365	434	1123	676	172	38	562	187	3718
2006-07	161	425	498	1087	685	-	234	745	153	3988
2007-08	235	461	521	1125	789	345	502	1010	93	5081
2008-09	177	397	583	1314	382	216	222	887	33	4211
2009-10	252	412	638	1303	404	789	1	864	11	4674
2010-11	349	431	629	995	252	360	51	902	33	4002
2011-12	266	289	446	1272	483	723	1	848	34	4362
2012-13	217	325	655	1391	367	0	-	957	88	4000
2013-14	275	337	661	1587	328	681	265	1190	71	5396
2014-15	275	385	461	1148	249	566	23	1157	63	4328
2015-16	276	386	519	1679	220	378	220	1149	81	4909
2016-17	274	522	694	1545	209	544	739	1121	122	5770

(f) Setnet (method SN on CELR and NCELR forms)

Fishing year								Area		
	North NI	$\begin{array}{r} \hline \text { East } \\ \text { NI } \end{array}$	$\begin{array}{r} \text { East } \\ \text { SI } \end{array}$	Chatham	Southland	Sub- Antarctic	Bounty	West SI	Cook Strait	Total
1989-90	2	48	210	0	0	-	-	346	36	642
1990-91	1	85	227	-	2	-	-	368	0	682
1991-92	3	40	144	0	1	-	-	264	1	453
1992-93	6	25	164	-	1	-	-	129	3	327
1993-94	3	4	179	0	0	-	-	154	1	342
1994-95	27	1	199	-	1	-	-	103	1	332
1995-96	1	5	179	-	0	0	-	170	1	357
1996-97	23	28	203	0	2	0	-	108	1	365
1997-98	4	12	201	-	2	-	-	127	0	346
1998-99	23	1	147	-	0	0	-	65	0	237
1999-00	1	1	165	-	0	-	-	94	0	262
2000-01	0	1	131	-	0	-	-	49	2	184
2001-02	1	0	123	-	1	0	-	62	0	187
2002-03	1	0	104	0	0	-	-	50	0	156
2003-04	1	1	120	-	1	-	-	24	0	148
2004-05	0	1	78	0	1	-	-	31	1	112
2005-06	0	5	51	-	1	-	-	39	0	96
2006-07	0	0	47	-	2	0	-	91	0	141
2007-08	1	2	55	0	3	0	0	43	0	104
2008-09	0	5	58	2	6	0	-	43	0	115
2009-10	0	0	62	2	5	0	-	47	0	116
2010-11	0	0	55	2	5	0	-	28	0	90
2011-12	0	0	34	-	4	0	-	22	1	62
2012-13	0	0	27	0	4	0	-	34	0	66
2013-14	1	0	26	0	2	0	-	18	0	48
2014-15	1	1	32	-	2	0	-	0	0	36
2015-16	1	1	46	0	4	0	-	40	0	92
2016-17	2	3	34	-	3	-	-	0	0	43

Table A4: continued.

(g) Fishpots (methods RLP, CP, and FP on CELR forms)

Fishing year	North NI	East NI	$\begin{array}{r} \hline \text { East } \\ \text { SI } \end{array}$	Chatham	Southland	Sub- Antarctic	Bounty	West SI	$\begin{array}{r} \text { Area } \\ \hline \text { Cook } \\ \text { Strait } \end{array}$	Total
1989-90	0	0	2	0	1	-	-	0	0	3
1990-91	0	0	15	0	1	0	-	-	0	16
1991-92	0	-	39	0	1	-	-	0	0	40
1992-93	0	0	15	0	1	-	-	-	0	16
1993-94	0	0	11	0	1	-	-	0	0	13
1994-95	0	0	8	0	2	-	-	-	0	10
1995-96	0	0	4	0	4	-	-	0	0	8
1996-97	0	0	38	0	2	-	-	0	0	40
1997-98	0	0	40	0	3	-	-	-	0	43
1998-99	-	0	41	0	0	0	-	-	0	42
1999-00	0	0	21	-	10	-	-	-	0	32
2000-01	2	0	4	0	25	-	-	1	0	31
2001-02	0	0	3	-	16	-	-	-	0	19
2002-03	0	-	1	0	13	-	-	0	0	14
2003-04	0	0	4	0	0	-	-	0	1	5
2004-05	0	0	10	0	0	-	-	0	0	10
2005-06	0	0	49	-	3	0	-	0	0	52
2006-07	0	0	56	0	3	-	-	0	0	60
2007-08	0	0	19	0	2	-	-	-	0	21
2008-09	0	0	10	0	11	-	-	0	0	21
2009-10	0	0	41	-	8	-	-	0	0	49
2010-11	0	0	33	-	5	-	-	-	0	39
2011-12	0	0	8	0	1	-	-	0	0	10
2012-13	0	0	26	-	3	-	-	0	0	29
2013-14	0	0	56	1	3	-	-	0	0	60
2014-15	0	0	45	-	7	0	-	0	-	52
2015-16	1	9	126	0	2	-	-	16	0	154
2016-17	15	33	143	2	1	-	-	2	18	214

Figure A1: Ling fishstocks, and the 1000 m isobath. The boundaries used to separate biological stock LIN 6B from the rest of LIN 6, and the west coast South Island section of LIN 7 from the rest of LIN 7, are shown as broken lines.

Figure A2: Definitions of geographical areas used in the analyses (based on statistical areas). See Table A1 for the administrative ling stocks they approximate.

Figure A3: Distribution of annual catch by area, form type, fishing method, target species, month, and vessel length for all ling catches by all methods. Circle size is proportional to catch; maximum circle size is indicated in the heading of each plot. Form types: CEL is Catch, Effort, Landing Return; LCE is Lining Catch Effort return; LTC is Lining Trip Catch, Effort return; NCE is Netting Catch Effort Return; TCE is Trawl Catch Effort Return; TCP is Trawl Catch Effort, and Processing Return. Method definitions: BLL, bottom longlining; BT, bottom trawl; CP, cod potting; DL, dahn lines; MB, midwater trawl on the bottom; MW, midwater trawl; SN, set net; TL, trot line. Species codes: BAR, barracouta; BNS, bluenose; HAK, hake; HOK, hoki; LIN, ling; RCO, red cod; SCI, scampi; SQU, arrow squid; SWA, silver warehou; WWA, white warehou.

Figure A4: Distribution of annual catch by area, form type, fishing method (by form type), target species, month, and vessel length for all ling catches by trawl methods. Circle size is proportional to catch; maximum circle size is indicated in the heading of each plot. Form types and method types are defined in Figure A3. Species codes: BAR, barracouta; GIZ, giant stargazer; HAK, hake; HOK, hoki; LIN, ling; RCO, red cod; SCI, scampi; SQU, arrow squid; SWA, silver warehou; WWA, white warehou.

Figure A5: Distribution of annual catch by area, form type, fishing method (by form type), target species, month, and vessel length for all ling catches by line methods. Circle size is proportional to catch; maximum circle size is indicated in the heading of each plot. Form types and method types are defined in Figure A3. BAS, bass; BNS, bluenose; BSH, seal shark; HAP, hapuku; HPB, hapuku and bass; LIN, ling; RIB, ribaldo; SCH, school shark; SKI, gemfish; SPO, rig.

7. APPENDIX B: DESCRIPTIVE EAST SI AND CHATHAM (LIN 3\&4)

Table B1: East SI and Chatham (LIN 3\&4) trawl and line catch by target species and fishing method, 198990 to 2016-17. Values have been rounded to the nearest tonne, so ' 0 ' denotes catches from 1 to 499 kg and '-' denotes zero catch.

Fishing	Trawl fishery				Line fishery	
	Hake	Hoki	Ling	Other	Ling	Other
1989-90	22	574	313	264	190	3
1990-91	10	1215	508	451	1454	5
1991-92	65	1444	330	516	3467	8
1992-93	240	946	122	584	3085	11
1993-94	110	716	27	388	3812	12
1994-95	153	1418	61	436	5502	16
1995-96	154	1436	45	262	4420	15
1996-97	179	1487	48	190	3631	30
1997-98	310	2436	710	193	2390	16
1998-99	320	2305	246	182	2555	14
1999-00	287	1934	652	124	2817	5
2000-01	270	1912	197	188	2388	6
2001-02	109	1614	339	152	2346	1
2002-03	119	2038	104	283	1783	4
2003-04	256	1554	1	174	1596	24
2004-05	229	1034	106	166	2429	37
2005-06	52	806	146	230	1505	52
2006-07	158	718	741	184	1494	92
2007-08	134	724	920	296	1577	69
2008-09	195	666	176	196	1871	26
2009-10	13	672	192	290	1912	29
2010-11	3	640	44	161	1597	26
2011-12	1	686	98	280	1676	42
2012-13	0	732	23	91	2009	37
2013-14	1	574	100	78	2222	26
2014-15	8	824	130	99	1577	32
2015-16	1	714	98	140	2166	31
2016-17	0	945	131	94	2215	24

Table B2: East SI and Chatham (LIN 3\&4) ling catch (t) by fishing method and month from 1989-90 to 2016-17. Values have been rounded to the nearest tonne, so ' 0 ' denotes catches from 1 to 499 kg and '-' denotes zero catch.

Trawl

| | | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Total |
| 1989-90 | 75 | 16 | 40 | 7 | 22 | 46 | 123 | 224 | 164 | 6 | 45 | 405 | 1173 |
| $1990-91$ | 313 | 142 | 182 | 185 | 64 | 109 | 55 | 134 | 226 | 82 | 225 | 466 | 2184 |
| $1991-92$ | 214 | 166 | 137 | 204 | 188 | 227 | 260 | 224 | 234 | 164 | 143 | 191 | 2355 |
| $1992-93$ | 326 | 203 | 185 | 200 | 90 | 124 | 178 | 178 | 194 | 24 | 93 | 96 | 1892 |
| $1993-94$ | 274 | 164 | 116 | 101 | 48 | 35 | 81 | 98 | 139 | 51 | 3 | 130 | 1240 |
| $1994-95$ | 404 | 179 | 167 | 65 | 61 | 66 | 46 | 101 | 148 | 73 | 63 | 696 | 2067 |
| $1995-96$ | 246 | 127 | 139 | 223 | 77 | 53 | 99 | 215 | 240 | 70 | 51 | 355 | 1897 |
| $1996-97$ | 258 | 202 | 149 | 130 | 153 | 152 | 132 | 196 | 107 | 136 | 13 | 275 | 1903 |
| $199-98$ | 495 | 366 | 346 | 196 | 143 | 186 | 194 | 219 | 330 | 388 | 6 | 781 | 3649 |
| $1998-99$ | 296 | 584 | 245 | 260 | 186 | 217 | 265 | 267 | 282 | 72 | 25 | 354 | 3054 |
| $1999-00$ | 203 | 525 | 432 | 177 | 129 | 252 | 244 | 139 | 221 | 27 | 1 | 647 | 2996 |
| $2000-01$ | 223 | 503 | 310 | 246 | 136 | 326 | 249 | 198 | 175 | 58 | 0 | 141 | 2567 |
| $2001-02$ | 266 | 96 | 186 | 368 | 158 | 154 | 250 | 226 | 117 | 38 | 2 | 354 | 2214 |
| $2002-03$ | 401 | 335 | 264 | 216 | 176 | 237 | 224 | 319 | 134 | 114 | 6 | 121 | 2545 |
| $200-04$ | 270 | 329 | 276 | 152 | 86 | 155 | 126 | 143 | 141 | 130 | 84 | 94 | 1985 |
| $2004-05$ | 158 | 209 | 253 | 163 | 65 | 64 | 55 | 138 | 142 | 53 | 31 | 203 | 1534 |
| $2005-06$ | 147 | 211 | 151 | 99 | 57 | 51 | 80 | 102 | 126 | 63 | 24 | 124 | 1235 |
| $2006-07$ | 157 | 145 | 113 | 108 | 103 | 96 | 92 | 130 | 101 | 64 | 98 | 592 | 1801 |
| $2007-08$ | 290 | 202 | 226 | 186 | 139 | 87 | 103 | 182 | 99 | 85 | 270 | 204 | 2073 |
| $2008-09$ | 280 | 145 | 125 | 249 | 141 | 56 | 69 | 44 | 66 | 21 | 20 | 16 | 1233 |
| $2009-10$ | 214 | 118 | 101 | 107 | 91 | 82 | 49 | 72 | 57 | 42 | 72 | 162 | 1168 |
| $2010-11$ | 78 | 158 | 169 | 68 | 87 | 85 | 46 | 65 | 36 | 16 | 10 | 31 | 848 |
| $201-12$ | 73 | 97 | 128 | 151 | 92 | 65 | 24 | 58 | 49 | 19 | 62 | 247 | 1064 |
| $2012-13$ | 92 | 102 | 136 | 148 | 87 | 103 | 43 | 42 | 31 | 37 | 9 | 17 | 847 |
| $2013-14$ | 59 | 67 | 80 | 133 | 92 | 66 | 48 | 41 | 53 | 3 | 17 | 92 | 752 |
| $2014-15$ | 78 | 115 | 179 | 198 | 62 | 65 | 62 | 75 | 50 | 5 | 63 | 109 | 1061 |
| $2015-16$ | 32 | 106 | 128 | 150 | 145 | 96 | 57 | 84 | 57 | 6 | 11 | 81 | 953 |
| $2016-17$ | 98 | 114 | 143 | 155 | 137 | 103 | 113 | 80 | 56 | 8 | 48 | 116 | 1171 |

Line

Table B3: East SI and Chatham (LIN 3\&4) catches and effort for vessels $<\mathbf{2 8} \mathbf{~ m}$ and $\geq \mathbf{2 8} \mathbf{~ m}$ overall length, by year.

Trawls

Fishing	Catches (t)		Total number of tows		Total duration (hrs)	
	<28 m	$\geq 28 \mathrm{~m}$	$<28 \mathrm{~m}$	$\geq 28 \mathrm{~m}$	<28 m	$\geq 28 \mathrm{~m}$
1989-90	54	1120	1711	9268	6124	29671
1990-91	79	2105	1960	9486	7293	35149
1991-92	351	2004	4649	10352	18972	39630
1992-93	350	1543	4292	12479	17596	44163
1993-94	272	968	3752	12428	15125	34849
1994-95	185	1882	2733	17580	10875	55890
1995-96	110	1786	2743	19033	9957	62850
1996-97	119	1784	2500	18865	9446	63596
1997-98	87	3559	2455	23740	9473	83491
1998-99	95	2958	1955	20897	7791	73111
1999-00	78	2918	2106	19652	8930	69470
2000-01	92	2475	1512	18652	6807	70271
2001-02	54	2160	1548	16136	6346	60526
2002-03	44	2500	1398	18071	6140	68465
2003-04	35	1950	1019	14738	4514	57990
2004-05	74	1460	2414	12052	12850	45758
2005-06	94	1141	2545	11951	15566	40312
2006-07	37	1764	2872	10993	17782	41263
2007-08	83	1990	5568	10761	26407	40381
2008-09	54	1180	5979	9147	26423	35098
2009-10	85	1082	7152	9330	29383	35787
2010-11	69	779	5899	8261	25694	31639
2011-12	85	979	6004	7959	26454	29567
2012-13	91	756	5805	7601	25993	28503
2013-14	83	669	7844	8111	36815	27448
2014-15	82	979	7735	8344	37343	30631
2015-16	79	874	6374	8599	28439	30631
2016-17	75	1096	7907	8382	32920	30943

Lines

Fishing	Catches (t)		Total number of days		Total number of sets	
	<28 m	$\geq 28 \mathrm{~m}$	$<28 \mathrm{~m}$	$\geq 28 \mathrm{~m}$	<28 m	$\geq 28 \mathrm{~m}$
1989-90	0	10	4	17	11	53
1990-91	18	955	40	208	77	556
1991-92	138	3089	80	478	87	1625
1992-93	88	2652	57	431	100	1660
1993-94	66	3454	92	563	152	2247
1994-95	168	4755	101	608	224	2787
1995-96	162	3931	155	636	283	2449
1996-97	176	2834	186	633	405	2381
1997-98	90	2155	126	519	233	2027
1998-99	-	2339	-	553	-	2065
1999-00	-	2446	-	602	-	2202
2000-01	-	2267	-	504	-	1689
2001-02	5	2217	2	681	2	2380
2002-03	-	1536	-	380	-	1265
2003-04	5	1448	32	529	84	1896
2004-05	56	2141	221	592	845	2253
2005-06	27	1316	172	511	760	2054
2006-07	344	1068	440	428	1508	1655
2007-08	462	1140	612	476	2134	1609
2008-09	640	1230	598	301	1774	1265
2009-10	604	1300	554	401	1727	1780
2010-11	586	995	623	399	1974	1741
2011-12	781	926	691	257	2528	1157
2012-13	805	1218	775	357	1860	1378
2013-14	944	1272	785	579	1434	2154
2014-15	664	932	754	414	1332	1513
2015-16	628	1554	708	570	1266	2229
2016-17	543	1666	595	612	906	2154

Figure B1: East SI and Chatham (LIN 3\&4) trawl; distribution of annual catch by statistical area, form type, fishing method (by form type), target species, month, and vessel length. Circle size is proportional to catch; maximum circle size is indicated in the heading of each plot. Species codes: BAR, barracouta; HAK, hake; HOK, hoki; LIN, ling; RCO, red cod; SCI, scampi; SPD, spiny dogfish; SPE, sea perch; SQU, arrow squid; SWA, silver warehou.

Trawl: 1990-1996

Figure B2: Density plots of East SI and Chatham (LIN 3\&4) commercial ling trawl catches, for combined fishing year groups (labelled by year-ending).

Trawl: 2017

Figure B3: Density plots of East SI and Chatham (LIN 3\&4) commercial ling trawl catches for the 20142017 fishing years (labelled by year-ending).

Figure B4: East SI and Chatham (LIN 3\&4) bottom trawl; means of effort variables by fishing year for tows targeting ling, or targeting hake, hoki, or ling.

Figure B5: East SI and Chatham (LIN 3\&4) line fishery distribution of annual catch by statistical area, form type, fishing method (by form type), target species, month, and vessel length. Circle size is proportional to catch; maximum circle size is indicated in the heading of each plot. Species codes: BNS, bluenose; HAP, hapuku; HPB, hapuku and bass; LIN, ling; RIB, ribaldo; SCH, school shark.

Figure B6: Density plots of East SI and Chatham (LIN 3\&4) commercial ling line fishery catches for combined fishing year groups (labelled by year-ending).

Figure B7: Density plots of East SI and Chatham (LIN 3\&4) commercial ling line fishery catches for each of the 2014-2017 fishing years (labelled by year-ending).

Figure B8: East SI and Chatham (LIN 3\&4) bottom longline fishery; means of effort variables by fishing year for sets targeting ling (Target LIN) or targeting ling and other target species (All).

8. APPENDIX C: DESCRIPTIVE SOUTHLAND AND SUB-ANTARCTIC (LIN 5\&6)

Table C1: Southland and Sub-Antarctic (LIN 5\&6) trawl and line catch by target species and fishing method, 1989-90 to 2016-17 by area. Values have been rounded to the nearest tonne, so ' 0 ' denotes catches from 1 to 499 kg and '-' denotes zero catch.

			Trawl fishery				Line fishery	
Fishing	Hake	Hoki	Ling	Other		Ling	Other	
1989-90	184	720	1982	398		-	0	
$1990-91$	77	1227	2654	533		219	1	
$1991-92$	140	2831	1955	619		613	1	
$1992-93$	49	2510	3415	521		1332	6	
$1993-94$	86	1276	2165	613		1296	16	
$1994-95$	56	1572	2900	562		264	7	
$1995-96$	115	1899	4708	536		1558	2	
$1996-97$	22	2453	3206	481		3102	3	
$1997-98$	119	2635	2892	345		3465	0	
$1998-99$	117	2146	2376	448		2708	2	
$1999-00$	46	3019	2755	287		2063	0	
$2000-01$	418	3383	1996	455		1685	4	
$2001-02$	240	4623	1369	713		1611	0	
$2002-03$	331	4217	1755	662		1063	1	
$2003-04$	260	4419	2338	626		1235	2	
$2004-05$	375	3477	3674	693		1158	0	
$2005-06$	37	1731	4122	792		846	2	
$2006-07$	105	1510	4736	903		678	8	
$2007-08$	189	1785	4260	653		1113	22	
$2008-09$	266	788	2940	809		590	8	
$2009-10$	287	1417	1643	904		1185	8	
$2010-11$	162	1022	2379	916		608	4	
$2011-12$	220	1296	2091	858		1204	2	
$2012-13$	270	1283	4310	808		366	2	
$2013-14$	281	1484	3033	858		1009	0	
$2014-15$	290	1364	3738	551		815	0	
$2015-16$	217	978	3265	449		598	0	
$2016-17$	236	1223	3307	737		748	6	

Table C2: Southland and Sub-Antarctic (LIN 5\&6) ling catch (t) by fishing method and month from 198990 to 2016-17. Values have been rounded to the nearest tonne, so ' 0 ' denotes catches from 1 to 499 kg and ‘-' denotes zero catch.

Trawl

											Month		
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1989-90	414	276	223	173	21	90	90	177	263	23	856	675	3281
1990-91	578	1053	310	60	84	31	86	142	356	86	396	1307	4490
1991-92	175	240	235	92	79	88	167	327	636	1344	1370	806	5559
1992-93	1218	684	446	179	171	160	177	332	532	1233	662	747	6540
1993-94	522	444	612	252	180	116	115	74	448	268	381	723	4136
1994-95	1493	1093	684	168	143	30	90	126	345	2	353	554	5082
1995-96	2291	1478	469	175	100	98	118	237	517	389	367	992	7230
1996-97	1065	1329	453	293	82	63	128	337	774	241	308	1062	6135
1997-98	1594	1071	515	212	267	166	200	423	640	240	178	450	5956
1998-99	1546	693	564	142	40	140	265	200	376	318	41	738	5064
1999-00	1567	1003	357	640	224	300	264	247	474	224	166	636	6100
2000-01	1900	1126	689	697	164	182	198	262	440	195	32	292	6176
2001-02	1371	744	937	891	324	319	288	208	789	624	164	274	6934
2002-03	1530	1104	913	1407	224	431	318	244	410	10	171	192	6955
2003-04	2482	1302	992	747	523	89	188	213	393	186	28	381	7525
2004-05	2161	1894	1063	329	426	31	128	97	153	455	84	1388	8209
2005-06	3130	956	544	77	6	94	97	206	224	187	273	860	6654
2006-07	2731	1445	740	558	125	35	100	64	35	456	405	606	7300
2007-08	2216	2352	916	146	121	92	137	72	50	496	67	245	6909
2008-09	1595	1185	628	258	130	141	117	83	126	148	87	351	4848
2009-10	1375	603	629	386	125	50	68	122	296	162	95	396	4306
2010-11	1081	1023	649	375	178	57	70	140	274	277	100	266	4490
2011-12	1741	702	176	262	162	153	172	161	196	210	77	488	4501
2012-13	2764	1597	663	140	109	47	120	125	312	244	14	562	6696
2013-14	1707	1427	505	322	110	152	156	160	296	77	115	669	5694
2014-15	2399	1078	469	184	155	112	101	125	149	185	82	946	5986
2015-16	2065	1171	233	184	138	31	32	129	167	141	94	575	4959
2016-17	2043	829	451	134	58	135	201	196	104	158	155	1102	5566

Line

											Month		
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1990-91	-	-	-	-	-	-	64	82	15	58	-	-	219
1991-92	-	36	211	211	108	-	-	-	40	-	2	2	611
1992-93	186	331	203	8	46	328	150	14	-	-	-	-	1265
1993-94	97	378	224	112	30	20	124	29	69	68	-	85	1237
1994-95	164	365	368	386	68	147	342	153	121	103	-	-	2216
1995-96	121	227	244	165	130	262	46	134	102	104	-	-	1534
1996-97	131	405	441	413	318	284	323	282	307	135	-	-	3039
1997-98	227	458	484	389	395	329	414	296	170	206	73	-	3440
1998-99	258	335	251	153	206	209	320	326	293	195	0	-	2547
1999-00	236	368	346	26	65	13	206	158	187	171	65	141	1984
2000-01	354	579	178	2	48	30	116	94	153	127	-	-	1681
2001-02	361	340	500	91	94	28	-	-	88	109	-	-	1611
2002-03	274	443	172	-	7	26	-	35	93	13	-	-	1063
2003-04	370	94	-	-	8	214	148	136	91	64	2	109	1236
2004-05	478	406	-	-	-	78	79	81	35	-	-	-	1158
2005-06	318	350	0	-	-	121	51	-	-	-	-	-	840
2006-07	498	147	-	-	-	-	-	7	17	2	-	7	678
2007-08	511	295	1	41	152	77	37	-	2	4	5	2	1127
2008-09	123	180	61	0	41	28	2	147	1	1	1	1	585
2009-10	6	297	15	-	64	288	139	149	169	61	2	1	1190
2010-11	68	68	0	0	40	64	125	91	65	49	19	-	587
2011-12	188	164	0	-	-	129	143	158	138	145	124	-	1189
2012-13	117	214	-	0	0	8	3	7	6	-	3	-	358
2013-14	77	165	0	-	14	143	71	125	90	194	84	3	964
2014-15	82	97	44	83	66	146	85	80	132	-	-	-	814
2015-16	110	68	-	81	30	108	76	54	-	2	-	38	566
2016-17	43	98	-	11	79	73	148	84	137	18	4	23	717

Table C3: Southland and Sub-Antarctic (LIN 5\&6) catches and effort for vessels $<\mathbf{2 8} \mathbf{m}$ and $\geq \mathbf{2 8} \mathbf{m}$ overall length, by year.

Trawls

Year	Catches (t)		Total number of tows		Total duration (hrs)	
	<28 m	$\geq 28 \mathrm{~m}$	$<28 \mathrm{~m}$	$\geq 28 \mathrm{~m}$	$<28 \mathrm{~m}$	$\geq 28 \mathrm{~m}$
1989-90	148	3133	127	11410	520	39795
1990-91	205	4285	128	13962	616	51928
1991-92	267	5292	1175	13301	5341	53770
1992-93	151	6389	1203	14227	5776	52054
1993-94	102	4034	1015	11552	5391	41548
1994-95	61	5021	1396	11416	8864	45316
1995-96	80	7139	1584	13841	9886	52785
1996-97	70	6065	1163	15469	7707	59636
1997-98	51	5905	1094	15742	7861	59959
1998-99	65	4999	1418	13915	10195	52388
1999-00	98	6002	1383	14706	10023	52536
2000-01	102	6075	1399	14637	10036	54001
2001-02	74	6860	1298	16527	9349	66030
2002-03	64	6891	878	15300	7089	65307
2003-04	41	7484	588	14894	5134	64976
2004-05	9	8201	763	14981	5252	68503
2005-06	10	6644	903	12487	6325	63893
2006-07	4	7296	705	10601	4934	53697
2007-08	114	6794	6452	9717	20419	43863
2008-09	133	4715	6530	9112	22811	42335
2009-10	198	4108	6812	8772	21183	43894
2010-11	360	4130	6087	8808	20965	44139
2011-12	310	4191	6627	7935	23038	39376
2012-13	275	6420	6802	6812	23584	34398
2013-14	408	5285	7300	6413	25527	31828
2014-15	400	5586	5751	6013	19886	30845
2015-16	473	4487	6948	5583	26447	25870
2016-17	431	5135	7039	6290	27955	32803

Lines

Year	Catches (t)		Total number of days		Total number of sets	
	$<28 \mathrm{~m}$	$\geq 28 \mathrm{~m}$	< 28 m	$\geq 28 \mathrm{~m}$	$<28 \mathrm{~m}$	$\geq 28 \mathrm{~m}$
1990-91	-	219	-	56	-	141
1991-92	2	608	1	148	1	569
1992-93	-	1265	-	267	-	1007
1993-94	-	1236	-	249	-	1011
1994-95	1	2215	1	397	1	1614
1995-96	-	1534	-	346	-	1396
1996-97	-	3039	-	552	-	2224
1997-98	0	3440	1	711	1	2719
1998-99	0	2547	1	653	1	2424
1999-00	-	1984	-	395	-	1346
2000-01	-	1681	-	289	-	1082
2001-02	2	1609	1	274	1	869
2002-03	-	1063	-	178	-	576
2003-04	1	1235	1	327	1	965
2004-05	-	1158	-	204	-	570
2005-06	-	840	-	123	-	460
2006-07	5	673	11	97	29	339
2007-08	134	993	67	153	233	505
2008-09	5	580	42	113	100	383
2009-10	130	1059	86	145	212	411
2010-11	83	504	92	141	150	445
2011-12	114	1074	74	188	75	504
2012-13	28	331	34	50	36	147
2013-14	41	923	19	172	20	491
2014-15	57	757	11	181	12	552
2015-16	79	487	34	156	36	468
2016-17	115	602	65	146	75	391

Figure C1: Southland and Sub-Antarctic (LIN 5\&6) trawl fishery; distribution of annual catch by statistical area, form type, fishing method (by form type), target species, month, and vessel length. Circle size is proportional to catch; maximum circle size is indicated in the heading of each plot. Species codes: GIZ, giant stargazer; HAK, hake; HOK, hoki; LIN, ling; RCO, red cod; SBW, southern blue whiting; SCI, scampi; SQU, arrow squid; SWA, silver warehou; WWA, white warehou.

Figure C2: Density plots of Southland and Sub-Antarctic (LIN 5\&6) commercial ling trawl catches for combined fishing year groups (labelled by year-ending).

Trawl: 2015

Trawl: 2014

Trawl: 2016

Figure C3: Density plots of Southland and Sub-Antarctic (LIN 5\&6) commercial ling trawl catches for each of the 2014-2017 fishing years (labelled by year-ending).

Figure C4: Southland and Sub-Antarctic (LIN 5\&6) bottom trawl fishery; means of effort variables by fishing year for tows targeting ling, or targeting hake, hoki, or ling.

Figure C5a: Southland and Sub-Antarctic (LIN 5\&6) line fishery distribution of annual catch by statistical area, form type, fishing method (by form type), target species, month, and vessel length. Circle size is proportional to catch; maximum circle size is indicated in the heading of each plot. Species codes: BNS, bluenose; HAP: hapuku; HPB, hapuku and bass; LIN, ling; PTO, Patagonian toothfish; SCH, school shark.

Figure C5b: Southland and Sub-Antarctic (LIN 5\&6) continued. Distribution of Southland and SubAntarctic ling line fishery catch by month for Puysegur (Statistical Area 030) and non-Puysegur for the 1990 to 2017 calendar years. Circle size is proportional to catch; maximum circle size is indicated on the top left hand corner of each plot.

Figure C6: Density plots of Southland and Sub-Antarctic (LIN 5\&6) commercial ling line catches for combined fishing year groups (labelled by year-ending).

Figure C7: Density plots of Southland and Sub-Antarctic (LIN 5\&6) commercial ling line catches for each of the 2014-2017 fishing years (labelled by year-ending).

Figure C8: Southland and Sub-Antarctic (LIN 5\&6) bottom longline fishery; means of effort variables by fishing year for sets targeting ling (Target LIN), or or targeting ling and other target species ling (All).

9. APPENDIX D: DESCRIPTIVE WEST SI (LIN 7WC)

Table D1: West SI (LIN 7 WC) trawl and line catch by target species and fishing method, 1989-90 to 201617. Values have been rounded to the nearest tonne, so ' 0 ' denotes catches from 1 to 499 kg and '-' denotes zero catch.

Year	Trawl fishery				Line fishery	
	Hake	Hoki	Ling	Other	Ling	Other
1989-90	1	1627	59	92	195	2
1990-91	0	1030	58	62	422	6
1991-92	24	659	94	126	666	26
1992-93	43	729	123	142	662	46
1993-94	35	714	16	86	721	40
1994-95	22	1683	21	155	824	68
1995-96	11	1305	16	129	981	13
1996-97	16	1210	31	169	935	28
1997-98	23	1517	7	85	973	35
1998-99	41	1684	4	160	910	62
1999-00	26	1681	13	100	716	68
2000-01	13	2034	-	56	869	48
2001-02	22	1847	8	45	649	10
2002-03	41	1496	21	45	655	31
2003-04	52	1566	31	46	662	21
2004-05	69	1058	79	92	702	26
2005-06	159	1147	70	76	547	15
2006-07	153	544	76	187	711	34
2007-08	226	322	197	112	940	70
2008-09	204	347	164	205	850	37
2009-10	125	554	213	154	838	27
2010-11	209	742	251	155	846	56
2011-12	124	847	173	127	809	39
2012-13	154	1073	110	132	922	35
2013-14	145	1085	107	116	1146	44
2014-15	205	1225	86	72	1133	25
2015-16	99	1335	105	146	1114	35
2016-17	61	1552	159	101	1102	18

Table D2: West SI (LIN 7 WC) ling catch (t) by fishing method and month from 1989-90 to 2016-17. Values have been rounded to the nearest tonne, so ' 0 ' denotes catches from 1 to 499 kg and '-' denotes zero catch.

Trawl

											Month		
Fishing	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1989-90	1	0	0	3	3	13	11	12	269	810	527	131	1780
1990-91	4	2	0	2	1	1	9	5	190	684	150	103	1151
1991-92	12	11	1	1	0	2	13	3	29	490	193	148	903
1992-93	17	11	2	1	5	13	21	7	64	546	231	119	1037
1993-94	10	4	1	3	12	5	8	4	45	509	165	85	851
1994-95	66	2	9	11	4	13	15	5	103	617	245	792	1881
1995-96	28	2	0	26	10	15	11	17	53	754	261	282	1461
1996-97	8	15	7	9	7	8	7	29	173	809	159	196	1426
1997-98	25	32	6	6	0	0	9	11	264	944	263	72	1631
1998-99	56	43	8	12	10	4	10	21	136	900	539	150	1889
1999-00	33	2	6	2	1	3	6	17	165	999	446	140	1820
2000-01	19	4	11	2	2	3	12	18	248	1098	578	109	2104
2001-02	1	3	0	2	1	1	8	6	204	1004	640	53	1922
2002-03	20	4	5	6	3	7	6	25	251	717	426	133	1603
2003-04	16	11	0	3	5	8	11	8	72	846	556	161	1695
2004-05	26	20	7	1	1	4	9	18	108	539	405	161	1298
2005-06	12	8	4	5	9	3	21	17	139	584	576	75	1453
2006-07	4	4	6	14	2	1	25	22	243	254	246	140	960
2007-08	31	9	1	14	8	41	48	38	193	245	171	58	857
2008-09	22	7	5	9	8	22	28	70	185	314	202	48	921
2009-10	24	30	7	10	39	41	20	62	138	395	217	61	1046
2010-11	59	15	35	14	28	31	40	43	188	466	349	92	1358
2011-12	10	24	24	10	10	12	31	60	156	574	259	101	1272
2012-13	15	16	21	7	14	12	26	77	381	406	362	133	1469
2013-14	7	21	7	9	4	7	26	106	287	600	214	165	1453
2014-15	3	4	2	14	13	8	16	95	348	451	435	199	1588
2015-16	5	6	3	6	26	24	21	85	311	444	566	187	1685
2016-17	1	6	6	13	34	45	19	75	369	560	617	128	1874

Line

| | | | | | | | | Month |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Table D3: West SI (LIN 7 WC) catches and effort for vessels $<\mathbf{2 8} \mathbf{m}$ and $\geq 28 \mathrm{~m}$ overall length, by year.

Trawls

$\begin{aligned} & \text { Fishing } \\ & \text { 1989-90 } \end{aligned}$	Catches (t)		Total number of tows		Total duration (hrs)	
	< 28 m	$\geq 28 \mathrm{~m}$	$<28 \mathrm{~m}$	$\geq 28 \mathrm{~m}$	$<28 \mathrm{~m}$	$\geq 28 \mathrm{~m}$
	154	1625	1072	9834	10310	43067
1990-91	151	999	1237	9788	10453	41315
1991-92	195	708	1901	7991	19178	31673
1992-93	237	800	3234	9105	31653	33364
1993-94	114	737	2228	11494	20657	41242
1994-95	118	1763	1961	12078	19091	48477
1995-96	216	1244	2131	8916	20663	37362
1996-97	201	1225	2770	10517	27163	46422
1997-98	157	1474	1740	10142	16012	44013
1998-99	253	1636	2436	9739	24382	39580
1999-00	348	1471	2161	8929	21432	33650
2000-01	250	1854	2296	9780	22679	37127
2001-02	155	1767	1738	8617	15388	32893
2002-03	185	1418	1920	8460	19086	38605
2003-04	123	1572	2032	7000	19998	33350
2004-05	200	1098	2105	5432	22376	26917
2005-06	190	1263	2249	4977	23559	28329
2006-07	135	825	2360	3975	25756	23410
2007-08	246	610	5979	3218	27125	18351
2008-09	286	636	6318	2757	28097	17682
2009-10	317	730	6823	2754	27707	12801
2010-11	364	994	5602	3594	22170	15990
2011-12	346	925	5815	3726	24204	15489
2012-13	341	1128	5773	3768	24088	15550
2013-14	333	1120	6231	4553	26421	19346
2014-15	262	1325	6122	5610	25522	23338
2015-16	351	1334	6409	5204	25914	17852
2016-17	408	1466	6596	5521	27277	23112

Lines

Fishing1989-90	Catches (t)		Total number of days		Total number of sets	
	$<28 \mathrm{~m}$	$\geq 28 \mathrm{~m}$	$<28 \mathrm{~m}$	$\geq 28 \mathrm{~m}$	$<28 \mathrm{~m}$	$\geq 28 \mathrm{~m}$
	197	-	317	-	452	-
1990-91	428	-	509	-	598	-
1991-92	690	2	742	2	845	2
1992-93	708	0	656	1	826	1
1993-94	760	1	709	1	962	1
1994-95	887	4	751	3	921	6
1995-96	974	20	917	7	1063	25
1996-97	953	9	987	8	1207	8
1997-98	924	84	792	62	984	173
1998-99	921	51	930	20	1225	57
1999-00	784	0	826	2	1172	2
2000-01	916	1	868	1	1107	1
2001-02	641	17	629	3	860	5
2002-03	686	-	718	-	977	-
2003-04	680	2	735	2	950	2
2004-05	728	-	867	-	1272	-
2005-06	559	2	744	1	917	1
2006-07	745	-	732	-	1005	-
2007-08	1010	_	820	-	1221	_
2008-09	887	-	763	-	1176	-
2009-10	864	-	663	-	838	-
2010-11	902	-	768	-	1494	-
2011-12	848	-	737	-	1301	-
2012-13	954	2	673	37	1029	149
2013-14	1190	1	788	17	1231	48
2014-15	1157	0	729	19	990	61
2015-16	1147	2	759	11	1020	31
2016-17	1121	0	669	3	969	18

Figure D1: West SI (LIN 7 WC) trawl fishery; distribution of annual catch by statistical area, form type, fishing method (by form type), target species, month, and vessel length. Circle size is proportional to catch; maximum circle size is indicated in the heading of each plot. Species codes: BAR, barracouta; GIZ, giant stargazer; HAK, hake; HOK, hoki; LDO, lookdown dory; LIN, ling; NMP, tarakihi; RCO, red cod; RSO, gemfish; SWA, silver warehou.

Figure D2: Density plots of West SI (LIN 7 WC) commercial ling trawl catches for combined fishing year groups (labelled by year-ending).

Figure D3: Density plots of West SI (LIN 7 WC) commercial ling trawl catches for each of the 2014-2017 fishing years (labelled by year-ending).

Figure D4: West SI (LIN 7WC) trawl fishery; means of effort variables by fishing year for tows targeting hake, hoki, or ling, for all tows (All), bottom tows (BT), and midwater tows (MW).

Figure D5: West SI (LIN 7 WC) line fishery distribution of annual catch by statistical area, form type, fishing method (by form type), target species, month, and vessel length. Circle size is proportional to catch; maximum circle size is indicated in the heading of each plot. Species codes: BNS, bluenose; BSH, seal shark; HAP, hapuku; HPB, hapuku and bass; LIN, ling; SCH, school shark.

Figure D6: Density plots of West SI (LIN 7 WC) commercial ling line fishery catches for combined fishing year groups (labelled by year-ending).

Figure D7: Density plots of West SI (LIN 7 WC) commercial ling line fishery catches for each of the 20142017 fishing years (labelled by year-ending).

Figure D8: West SI (LIN 7WC) bottom longline fishery; means of effort variables by fishing year for sets targeting ling (Target LIN), or or targeting ling and other target species (All).

10. APPENDIX E: SOUTHLAND AND SUB-ANTARCTIC LINE CPUE (LIN 5\&6)

Table E1: Summary of predictors offered in the Southland and Sub-Antarctic CPUE models for the line fisheries.

Variable	Type	Description
Year	Categorical	Calendar year
Month	Categorical	Month of year
Statistical area	Categorical	Statistical area for the set or tow
Vessel	Categorical	Unique vessel identifier
Day of year	Continuous	Julian day, starting at 1 on 1 January
Method	Categorical	Fishing method (bottom longline, trot line, dahn line)
Total hooks	Continuous	Number of hooks set per day in a statistical area
Log(Total hooks)	Continuous	Logarithm of variable Total hooks
Number of sets	Continuous	Number of set per day in a statistical area
Log(Number of sets)	Continuous	Logarithm of variable Number of sets
CPUE	Continuous	Ling catch (kg) per day in a statistical area

Table E2: Percentage of catches, vessel-days, and vessels by vessel type and year groups in the Southland and Sub-Antarctic fishery (LIN 5\&6) line fishery. Vessel type: Always auto, vessel has always been an autolongliner; Auto now, currently an autolongline vessel but no information as to whether it converted from Handbait to autolongline in the past; and Handbait, Handbait longliner. Year defined as SeptemberAugust.

Year	Catches (t)			Number of vessel-days		
	Always auto	Auto now	Handbait	Always auto	Auto now	Handbait
1992-1995	92.8	6.0	1.1	84.6	7.7	7.6
1996-1999	88.4	11.2	0.5	83.2	13.9	3.0
2000-2003	87.7	12.3	-	81.1	18.6	0.3
2004-2007	99.9	0.1	-	98.7	1.3	-
2008-2011	82.5	11.9	5.6	61.8	23.1	15.1
2012-2015	90.9	0.0	9.1	81.5	-	18.5
2016-2017	78.6	3.6	17.8	74.2	5.7	20.0
Total	89.5	8.0	2.5	81.8	11.4	6.9
Year	Number of vessels					
	Always auto	Auto now	Handbait			
1992-1995	25.0	25.0	50.0			
1996-1999	35.3	23.5	41.2			
2000-2003	50.0	37.5	12.5			
2004-2007	80.0	20.0	-			
2008-2011	36.4	18.2	45.5			
2012-2015	25.0	-	75.0			
2016-2017	33.3	11.1	55.6			
Total	24.4	19.5	56.1			

Table E3: CPUE data constraints by area for Southland and Sub-Antarctic line vessels.

	Bottom longline data
Data source	CELR (all catch), LTCER and LCER (ling catch included only if ling is one of the top
	5 species by weight caught in a day's fishing for a vessel/stat area)
Year range	1991-2017
Year definition	September-August
Statistical areas	At least 50 sets: 026, 029, 030, 031, 602-605, 610, 611, 612, 618, 619, 625
Method	BLL
Target	LIN
Vessel type	Always autolongline
Catch	$1-35000$ kg
Total number of hooks	$50-50000$
Core vessel selection	Approx. 89% of catch, ≥ 2 years vessel participation

Table E4: Variables retained in the Southland and Sub-Antarctic (LIN 5\&6) line GLMs order of decreasing explanatory value, for each model lognormal and fishery, with the corresponding deviance explained (Rsquared, \%).
(a) Single line fishery - vessels that have always been autolongline

Variable	R-squared
Year	8.99
Number of hooks	54.27
Statistical area	60.33
Vessel	61.50

(b)Two fishery model - vessels that have always been autolongline

Variable	R-squared
Year	20.21
Number of hooks	60.20
Statistical area	62.12

Table E5: CPUE standardised year lognormal indices for Southland and Sub-Antarctic line fisheries for vessels that have always been autolongline vessels (with CVs). Year defined as September-August for the single model, September-December for the spawning model, and January-August for the non-spawning model.

	Single line fishery			Spawning fishery			Non-spawning fishery		
Year	Index	CI	CV	Index	CI	CV	Index	CI	CV
1992	1.00	0.82-1.21	0.10	1.03	0.80-1.33	0.13	1.15	0.94-1.40	0.10
1993	1.39	1.16-1.66	0.09	1.76	1.47-2.10	0.09	1.16	0.93-1.44	0.11
1994	1.10	0.93-1.31	0.09	1.59	1.29-1.95	0.10	1.02	0.86-1.22	0.09
1995	1.25	1.07-1.46	0.08	1.26	1.08-1.47	0.08	1.44	1.24-1.68	0.08
1996	1.06	0.89-1.26	0.09	1.33	1.06-1.66	0.11	1.05	0.89-1.24	0.08
1997	1.18	1.02-1.37	0.07	1.27	1.07-1.50	0.08	1.30	1.15-1.47	0.06
1998	1.05	0.92-1.20	0.07	1.15	0.99-1.34	0.07	1.10	0.98-1.23	0.06
1999	0.82	0.74-0.91	0.05	1.03	0.87-1.22	0.09	0.74	0.66-0.83	0.06
2000	0.96	0.85-1.08	0.06	1.07	0.89-1.30	0.10	0.86	0.74-0.99	0.07
2001	1.21	1.06-1.38	0.07	1.29	1.10-1.52	0.08	1.03	0.85-1.24	0.09
2002	1.25	1.08-1.45	0.07	1.36	1.15-1.61	0.09	0.99	0.77-1.27	0.13
2003	1.31	1.09-1.57	0.09	1.49	1.21-1.82	0.10	0.64	0.46-0.90	0.17
2004	0.82	0.71-0.94	0.07	0.78	0.63-0.96	0.11	0.71	0.62-0.81	0.07
2005	0.83	0.71-0.97	0.08	1.02	0.86-1.20	0.08	0.71	0.58-0.88	0.11
2006	1.08	0.90-1.29	0.09	1.46	1.16-1.84	0.11	0.78	0.59-1.04	0.14
2007	1.13	0.91-1.41	0.11	1.19	0.96-1.49	0.11	0.76	0.32-1.78	0.45
2008	1.23	1.00-1.51	0.10	1.27	1.05-1.55	0.10	-	-	-
2009	0.95	0.77-1.17	0.11	1.03	0.79-1.36	0.14	0.92	0.66-1.28	0.17
2010	1.30	1.10-1.54	0.09	2.05	1.40-3.00	0.19	1.18	0.98-1.42	0.09
2011	0.75	0.62-0.89	0.09	0.69	0.48-0.99	0.18	0.76	0.62-0.92	0.10
2012	1.01	0.88-1.18	0.07	1.04	0.78-1.37	0.14	0.99	0.84-1.16	0.08
2013	0.99	0.73-1.34	0.15	1.10	0.81-1.49	0.15	-	-	-
2014	0.85	0.73-1.00	0.08	0.87	0.63-1.21	0.16	0.84	0.70-1.00	0.09
2015	0.75	0.63-0.90	0.09	0.65	0.47-0.90	0.16	0.84	0.71-0.99	0.08
2016	0.54	0.46-0.64	0.09	0.58	0.43-0.80	0.16	0.52	0.43-0.64	0.10
2017	0.78	0.66-0.92	0.08	0.64	0.38-1.09	0.27	0.72	0.60-0.86	0.09

Figure E1: Southland and Sub-Antarctic autolongline single fishery fishing effort and catches by year for individual vessels (denoted anonymously by number on the y-axis) in core CPUE analyses. Circle area is proportional to the effort or catch. Year defined as September-August.

Southland and Sub-Antarctic: non-spawning fishery model

Figure E2: Year index from the lognormal model for each Southland and Sub-Antarctic autolongline fishery. Bars indicate 95% confidence intervals. Year defined as September-August for the single model, September-December for the spawning model, and January-August for the non-spawning model.

Figure E3: Addition of variables into the lognormal CPUE model for each Southland and Sub-Antarctic autolongline fishery. Year defined as September-August for the single model, September-December for the spawning model, and January-August for the non-spawning model.

Southland and Sub-Antarctic: spawning autolongline fishery

Southland and Sub-Antarctic: non-spawning autolongline fishery

Figure E4a: CPUE indices for the lognormal model for the Southland and Sub-Antarctic autolongline single and two fishery (spawning and non-spawning fisheries). Year defined as September-August for the single model, September-December for the spawning model, and January-August for the non-spawning model.

Figure E4b: CPUE indices for the lognormal model for the Southland and Sub-Antarctic single fishery (spawning and nonspawning) and two fishery (spawning and non-spawning) models, comparing the current core vessel analysis with the previous analysis. For the current analysis year is defined as SeptemberAugust for the single model, September-December for the spawning model, and January-August for the non-spawning model.

Figure E4c: Comparison of the Southland and Sub-Antarctic CPUE autolongline models to Southland and Sub-Antarctic Tangaroa ling trawl survey biomass indices. Year defined as September-August for the single model, September-December for the spawning model, and January-August for the non-spawning model.

Figure E5: Effect and influence of non-interaction term variables in the Southland and Sub-Antarctic single autolongline lognormal model. Top: relative effect by level of each variable. Bottom left: relative distribution of each variable by fishing year. Bottom right: influence of variable on unstandardised CPUE by year. Year defined as September-August.

Southland and Sub-Antarctic: single fishery model

Southland and Sub-Antarctic: two fishery model

Figure E6: Diagnostic plots for the Southland and Sub-Antarctic single and two fishery lognormal autolongline CPUE models.

11. APPENDIX F: SOUTHLAND AND SUB-ANTARCTIC TRAWL CPUE (LIN 5\&6)

Table F1: Summary of predictors offered in the Southland and Sub-Antarctic CPUE models for the trawl fisheries.

Variable	Type	Description
Year	Categorical	Fishing year, or June-September
Month	Categorical	Month of year
Statistical area	Categorical	Statistical area for the set or tow
Vessel	Categorical	Unique vessel identifier
Day of year	Continuous	Julian day, starting at 1 on 1 January
Method	Categorical	Trawl method (bottom trawl, midwater trawl on bottom, midwater trawl)
Twin trawl	Categorical	Vessel did or did not use a twin trawl
Number of nets	Categorial	Number of nets used in a trawl
Headline height	Continuous	Distance between trawl headline and groundrope (m)
Duration	Continuous	Tow duration, in hours
Start time	Continuous	Start time of tow, 24-hour clock
Mid time	Continuous	Time at the midpoint of the tow, 24-hour clock
Depth bottom	Continuous	Bottom depth (m)
Depth net	Continuous	Depth of groundrope (m)
Speed	Continuous	Towing speed (kts)
Latitude	Continuous	Start latitude of tow
Longitude	Continuous	Start longitude of tow
CPUE	Continuous	Ling catch (kg) per tow
Grid number	Categorical	0.5 degree square based on start latitude and longitude of tow

Table F2: Number of female ling gonads staged by observers from commercial trawl catches by month sampled from each area by the observer programme for fishing years 1990-91 to 2016-17 where data exist. Areas defined in Figure A1. Stages are: 1, resting or immature; 2, ripening; 3, ripe; 4, running ripe and partially spent; 5 , spent.
(a) Southland and Sub-Antarctic (excluding Puysegur)

Stage	Month											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	2611	2647	2647	3486	2842	1816	1411	1733	8370	8817	5347	4246
2	592	357	357	392	392	459	544	930	3369	4256	1709	1342
3	110	14	14	67	16	129	166	138	368	950	457	197
4	17	0	0	9	3	6	21	14	30	125	168	16
5	18	22	22	23	49	11	0	32	259	471	444	106

(b) Puysegur

Stage										Month		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	16	17	14	40	59	106	140	121	321	399	466	81
2	7	4	13	0	7	25	77	127	481	883	201	62
3	5	0	0	0	0	1	34	122	420	786	313	73
4	0	0	0	0	0	0	15	19	36	66	55	2
5	0	0	0	0	1	1	4	10	11	45	34	3

Table F3: CPUE data constraints by area for Southland and Sub-Antarctic trawl vessels.

Data source
Year range
Year definition
Statistical areas
Method
Target
Catch
Bottom depth
Trawl duration Core vessel selection

TCEPR
1991-2017
September-August
At least 100 tows: 026-028, 030, 504, 602-604, 610, 618
BT, headline height $<18 \mathrm{~m}$
HOK, HAK, LIN
< 50 t
150-1000 m

$0.2-15$ hours

Approx. 80% of catch, ≥ 5 years vessel participation, at least 20 tows per vessel-year

Table F4: Summary of data for all vessels and for vessels included in the core Southland and Sub-Antarctic (LIN 5\&6) CPUE standardisation datasets. Data include: number of unique vessels fishing (Vessels), number of tow records for non-zero and zero ling catches for trawl data (Effort), proportion of tows that caught zero catch (Zeros), estimated catch, and unstandardised CPUE from non-zero catches from the tow-by-tow data. Year defined as September-August for the single model, September-December for the spawning model, and January-August for the non-spawning model.
(a) Single trawl fishery

	All vessels					Core vessels				
Year	No. vessels	Catch	Effort	Prop. zeros	CPUE	No. vessels	Catch	Effort	Prop. zeros	CPUE
1991	38	3283.4	3255	0.31	1.01	5	549.4	466	0.36	1.18
1992	45	5169.8	4284	0.37	1.21	11	2086.4	1755	0.29	1.19
1993	40	5728.6	4292	0.26	1.33	11	2680.2	2142	0.18	1.25
1994	28	3203.2	2143	0.14	1.49	7	1769.8	1301	0.13	1.36
1995	26	3840.7	2434	0.21	1.58	12	3059.0	1774	0.21	1.72
1996	31	5239.9	2414	0.25	2.17	14	3871.7	1731	0.22	2.24
1997	40	4862.2	3050	0.24	1.59	22	3978.6	2562	0.26	1.55
1998	43	5840.5	4132	0.17	1.41	24	4964.7	3912	0.17	1.27
1999	35	4058.7	3150	0.16	1.29	22	3713.0	2891	0.13	1.28
2000	31	5596.2	5302	0.16	1.06	24	5579.5	5261	0.16	1.06
2001	34	5558.4	4830	0.17	1.15	25	5390.1	4616	0.17	1.17
2002	35	5852.5	5538	0.11	1.06	25	5632.4	5272	0.11	1.07
2003	37	5919.2	4514	0.11	1.31	26	5744.1	4353	0.11	1.32
2004	27	6289.9	3101	0.11	2.03	17	6044.9	2959	0.11	2.04
2005	27	6187.3	2014	0.07	3.07	16	5958.4	1889	0.07	3.15
2006	24	5384.4	1671	0.12	3.22	16	5077.2	1605	0.12	3.16
2007	22	6316.5	2113	0.07	2.99	17	6188.2	2060	0.07	3
2008	23	6227.4	2086	0.10	2.99	15	5647.6	1923	0.10	2.94
2009	19	3843.7	1674	0.10	2.30	11	3343.2	1518	0.10	2.20
2010	19	3155.2	1559	0.11	2.02	10	3017.4	1474	0.11	2.05
2011	20	3328.6	1606	0.10	2.07	12	3139.5	1534	0.10	2.05
2012	21	3026.2	1519	0.08	1.99	14	2743.4	1442	0.09	1.90
2013	21	5587.8	1923	0.05	2.91	12	5240.3	1853	0.05	2.83
2014	17	4503.2	2248	0.10	2	12	4234.8	2125	0.10	1.99
2015	19	4621.9	2005	0.09	2.31	15	4410.4	1853	0.09	2.38
2016	18	4313.2	1473	0.07	2.93	13	3910.6	1368	0.07	2.86
2017	19	3874.6	1622	0.10	2.39	9	3586.3	1522	0.10	2.36

Table F4: continued.
(b) Spawning trawl fishery

	All vessels								Core vessels	
Year	Vessels	Catch	Effort	Zeros	CPUE	Vessels	Catch	Effort	Zeros	CPUE
1991	4	310.5	160	0.27	1.94	4	310.5	160	0.27	1.94
1992	6	683.5	370	0.46	1.85	6	683.5	370	0.46	1.85
1993	9	1082.5	915	0.17	1.18	9	1082.5	915	0.17	1.18
1994	6	886.9	678	0.13	1.31	6	886.9	678	0.13	1.31
1995	12	2373.1	830	0.19	2.86	12	2373.1	830	0.19	2.86
1996	13	2755.9	924	0.18	2.98	13	2755.9	924	0.18	2.98
1997	15	2516.9	1058	0.23	2.38	15	2516.9	1058	0.23	2.38
1998	19	3242.6	1033	0.25	3.14	19	3242.6	1033	0.25	3.14
1999	17	2550.1	902	0.14	2.83	17	2550.1	902	0.14	2.83
2000	21	3282.8	1294	0.14	2.54	21	3282.8	1294	0.14	2.54
2001	24	3572.1	1712	0.12	2.09	24	3572.1	1712	0.12	2.09
2002	25	2602.5	2043	0.13	1.27	25	2602.5	2043	0.13	1.27
2003	22	3082.5	1726	0.13	1.79	22	3082.5	1726	0.13	1.79
2004	15	4065.3	1432	0.12	2.84	15	4065.3	1432	0.12	2.84
2005	14	4632.9	1223	0.06	3.79	14	4632.9	1223	0.06	3.79
2006	15	4285.7	1068	0.09	4.01	15	4285.7	1068	0.09	4.01
2007	17	4868.0	1396	0.07	3.49	17	4868.0	1396	0.07	3.49
2008	15	4961.0	1577	0.08	3.15	15	4961.0	1577	0.08	3.15
2009	10	2792.0	895	0.10	3.12	10	2792.0	895	0.10	3.12
2010	8	2351.3	732	0.11	3.21	8	2351.3	732	0.11	3.21
2011	12	2449.8	883	0.10	2.77	12	2449.8	883	0.10	2.77
2012	13	2031.5	559	0.11	3.63	13	2031.5	559	0.11	3.63
2013	11	4531.4	1011	0.05	4.48	11	4531.4	1011	0.05	4.48
2014	11	3268.0	1011	0.07	3.23	11	3268.0	1011	0.07	3.23
2015	13	3692.6	920	0.06	4.01	13	3692.6	920	0.06	4.01
2016	12	3447.3	898	0.07	3.84	12	3447.3	898	0.07	3.84
2017	8	3052.8	731	0.04	4.18	8	3052.8	731	0.04	4.18

(c) Non-spawning trawl fishery

	All vessels								Core vessels	
Year	Vessels	Catch	Effort	Zeros	CPUE	Vessels	Catch	Effort	Zeros	CPUE
1991	3	238.9	306	0.40	0.78	3	238.9	306	0.40	0.78
1992	11	1403.0	1385	0.22	1.01	11	1403.0	1385	0.22	1.01
1993	11	1597.8	1227	0.18	1.30	11	1597.8	1227	0.18	1.30
1994	6	882.9	623	0.13	1.42	6	882.9	623	0.13	1.42
1995	10	685.9	944	0.23	0.73	10	685.9	944	0.23	0.73
1996	12	1115.8	807	0.25	1.38	12	1115.8	807	0.25	1.38
1997	22	1461.7	1504	0.28	0.97	22	1461.7	1504	0.28	0.97
1998	22	1722.1	2879	0.14	0.60	22	1722.1	2879	0.14	0.60
1999	22	1162.8	1989	0.13	0.58	22	1162.8	1989	0.13	0.58
2000	24	2296.6	3967	0.16	0.58	24	2296.6	3967	0.16	0.58
2001	23	1818.0	2904	0.20	0.63	23	1818.0	2904	0.20	0.63
2002	25	3029.9	3229	0.10	0.94	25	3029.9	3229	0.10	0.94
2003	24	2661.6	2627	0.09	1.01	24	2661.6	2627	0.09	1.01
2004	17	1979.6	1527	0.11	1.30	17	1979.6	1527	0.11	1.30
2005	11	1325.5	666	0.09	1.99	11	1325.5	666	0.09	1.99
2006	9	791.5	537	0.16	1.47	9	791.5	537	0.16	1.47
2007	14	1320.2	664	0.06	1.99	14	1320.2	664	0.06	1.99
2008	10	686.7	346	0.20	1.98	10	686.7	346	0.20	1.98
2009	10	551.2	623	0.10	0.88	10	551.2	623	0.10	0.88
2010	10	666.0	742	0.12	0.90	10	666.0	742	0.12	0.90
2011	10	689.7	651	0.10	1.06	10	689.7	651	0.10	1.06
2012	10	711.9	883	0.07	0.81	10	711.9	883	0.07	0.81
2013	7	708.9	842	0.06	0.84	7	708.9	842	0.06	0.84
2014	9	966.8	1114	0.13	0.87	9	966.8	1114	0.13	0.87
2015	11	717.8	933	0.12	0.77	11	717.8	933	0.12	0.77
2016	8	463.3	470	0.07	0.99	8	463.3	470	0.07	0.99
2017	8	533.5	791	0.14	0.67	8	533.5	791	0.14	0.67

Table F5: Variables retained in the GLMs order of decreasing explanatory value, for each Southland and Sub-Antarctic (LIN 5\&6) trawl model (lognormal, binomial), with the corresponding deviance explained (R-squared, \%).
(a) Single trawl fishery

	Lognormal		Binomial	
Variable	R-squared			
Year	10.73		Variable	R-squared
Grid number	34.77		Grid number	3.32
Target species	44.71		Vessel	15.22
Mid time of tow	48.34		Depth of bottom	18.03
Vessel	51.12		Target species	19.79
Month	53.44		21.39	
Duration	55.31		Duration	22.43

(b) Two trawl fishery model

	Lognormal		Binomial	
Variable	R-squared			
Year	19.69		Variable	R-squared
Grid number	38.32		Grid number	4.23
Target species	46.00		Vessel	15.87
Vessel	49.74		Depth of bottom	18.65
Mid time of tow	52.01		Target species	20.43
Month	53.95		22.04	
Duration	55.80		Duration	23.09

Table F6: CPUE standardised indices for Southland and Sub-Antarctic trawl fisheries (LIN 5\&6), and binomial, and combined CPUE indices for trawl indices (with CVs). Year defined as September-August for the single model, September-December for the spawning model, and January-August for the nonspawning model.
(a) Single trawl fishery

	Lognormal		Binomial		Delta lognormal	
Year	Index	CV	Index	CV	Index	CV
1991	0.68	0.05	0.84	0.00	0.60	0.05
1992	0.82	0.03	0.92	0.00	0.79	0.03
1993	1.11	0.03	0.98	0.00	1.13	0.03
1994	1.14	0.03	0.98	0.00	1.16	0.03
1995	1.05	0.03	0.93	0.00	1.02	0.03
1996	0.93	0.03	0.87	0.00	0.85	0.03
1997	1.08	0.02	0.87	0.00	0.97	0.02
1998	0.97	0.02	0.92	0.00	0.93	0.02
1999	0.83	0.02	0.93	0.00	0.80	0.02
2000	0.79	0.02	0.91	0.00	0.75	0.02
2001	0.87	0.02	0.88	0.00	0.80	0.02
2002	1.16	0.02	0.99	0.00	1.19	0.02
2003	1.16	0.02	0.95	0.00	1.15	0.02
2004	1.27	0.02	0.96	0.00	1.27	0.02
2005	1.40	0.02	0.98	0.00	1.43	0.02
2006	0.98	0.03	0.87	0.00	0.89	0.03
2007	0.92	0.02	0.95	0.00	0.91	0.02
2008	0.99	0.02	0.91	0.00	0.94	0.02
2009	0.91	0.03	0.95	0.00	0.90	0.03
2010	0.95	0.03	0.96	0.00	0.95	0.03
2011	0.88	0.03	0.97	0.00	0.89	0.03
2012	1.03	0.03	0.98	0.00	1.05	0.03
2013	1.11	0.02	1.00	0.00	1.15	0.02
2014	1.07	0.02	0.99	0.00	1.11	0.02
2015	0.95	0.02	0.98	0.00	0.97	0.02
2016	1.12	0.03	1.00	0.00	1.17	0.03
2017	1.17	0.03	0.99	0.00	1.21	0.03

Table F6: continued.
(b) Spawning trawl fishery

	Lognormal		Binomial		Delta lognormal	
Year	Index	CV	Index	CV	Index	CV
1991	0.63	0.08	0.98	0.00	0.66	0.08
1992	0.60	0.06	0.73	0.00	0.46	0.06
1993	1.25	0.04	0.97	0.00	1.29	0.04
1994	0.94	0.05	0.97	0.00	0.97	0.05
1995	0.99	0.04	0.90	0.00	0.95	0.04
1996	0.72	0.04	0.89	0.00	0.68	0.04
1997	0.99	0.04	0.89	0.00	0.94	0.04
1998	0.83	0.04	0.87	0.00	0.76	0.04
1999	0.96	0.04	0.92	0.00	0.94	0.04
2000	0.84	0.03	0.91	0.00	0.81	0.03
2001	0.90	0.03	0.91	0.00	0.87	0.03
2002	0.99	0.03	0.97	0.00	1.02	0.03
2003	1.03	0.03	0.92	0.00	1.01	0.03
2004	1.18	0.03	0.93	0.00	1.16	0.03
2005	1.32	0.04	0.97	0.00	1.36	0.04
2006	0.94	0.04	0.84	0.00	0.84	0.04
2007	1.00	0.03	0.92	0.00	0.97	0.03
2008	0.96	0.03	0.91	0.00	0.93	0.03
2009	1.04	0.04	0.92	0.00	1.02	0.04
2010	1.00	0.04	0.93	0.00	0.98	0.04
2011	0.90	0.04	0.95	0.00	0.91	0.04
2012	0.95	0.05	0.88	0.00	0.89	0.05
2013	1.32	0.04	0.97	0.00	1.36	0.04
2014	1.04	0.04	0.95	0.00	1.05	0.04
2015	1.13	0.04	0.97	0.00	1.16	0.04
2016	1.16	0.04	0.97	0.00	1.20	0.04
2017	1.11	0.04	0.98	0.00	1.16	0.04

(c) Non-spawning trawl fishery

	Lognormal			Binomial			Delta lognormal	
Year	Index	$\mathbf{C V}$		Index	$\mathbf{C V}$		Index	$\mathbf{C V}$
1991	0.75	0.06		0.74	0.00		0.59	0.06
1992	0.92	0.03		0.95	0.00		0.93	0.03
1993	1.06	0.04		0.95	0.00		1.07	0.04
1994	1.48	0.05		0.92	0.00		1.45	0.05
1995	1.12	0.04		0.91	0.00		1.09	0.04
1996	1.28	0.04		0.79	0.00		1.08	0.04
1997	1.17	0.03		0.80	0.00		0.99	0.03
1998	1.05	0.03		0.91	0.00		1.02	0.03
1999	0.79	0.03		0.90	0.00		0.76	0.03
2000	0.79	0.03		0.87	0.00		0.73	0.03
2001	0.86	0.03		0.83	0.00		0.76	0.03
2002	1.29	0.03		0.97	0.00		1.32	0.03
2003	1.25	0.03		0.93	0.00		1.24	0.03
2004	1.34	0.03		0.95	0.00		1.35	0.03
2005	1.54	0.04		0.95	0.00		1.55	0.04
2006	1.09	0.05		0.85	0.00		0.98	0.05
2007	0.78	0.04		0.95	0.00		0.79	0.04
2008	1.08	0.06		0.81	0.00		0.93	0.06
2009	0.75	0.04		0.94	0.00		0.75	0.04
2010	0.90	0.04		0.95	0.00		0.91	0.04
2011	0.84	0.04		0.96	0.00		0.85	0.04
2012	1.10	0.04		0.99	0.00		1.15	0.04
2013	0.91	0.04		0.98	0.00		0.95	0.04
2014	1.12	0.04		0.98	0.00		1.17	0.04
2015	0.82	0.04		0.96	0.00		0.84	0.04
2016	1.05	0.05		1.00	0.00		1.12	0.05
2017	1.24	0.04		0.97	0.00		1.28	0.04

Figure F1: Gonad stages of female ling sampled by observers from commercial trawl catches, by month and area. Areas defined in Figure A1. Sub-Antarctic gonad stages include "Southland and "Sub-Antarctic" areas (see Figure A2) but excludes "Puysegur". Stages are: 1, resting or immature (yellow); 2, ripening (orange); 3 , ripe (light blue); 4 , running ripe and partially spent (red); 5 , spent (blue).

Figure F2: Density plots (latitude and longitude, and 0.5° grid cells) of commercial ling catches from TCEPR tow-by-tow datasets for target hake, hoki, and ling tows, for all years combined, with the grid cells producing the top five catch totals marked (1: gold cross; 2: orange diamond; 3: red triangle; 4: red cross; 5: purple triangle).

Figure F3: Southland and Sub-Antarctic single trawl fishing effort and catches by year for individual vessels (denoted anonymously by number on the y-axis) in core CPUE analyses in the single trawl fishery. Circle area is proportional to the effort or catch. Year defined as September-August.

Figure F4: Year index from the lognormal model for each Southland and Sub-Antarctic trawl fishery. Bars indicate 95\% confidence intervals. Year defined as September-August for the single model, SeptemberDecember for the spawning model, and January-August for the non-spawning model.

Southland and Sub-Antarctic: single trawl fishery

Southland and Sub-Antarctic: spawning trawl fishery

Figure F5: Effects of the addition of variables into the lognormal CPUE model for each Southland and SubAntarctic trawl fishery. Year defined as September-August for the single model, September-December for the spawning model, and January-August for the non-spawning model.

Figure F6: Southland and Sub-Antarctic indices from the lognormal, binomial and combined model for each fishery. Bars indicate $\mathbf{9 5 \%}$ confidence intervals. Year defined as September-August for the single model, September-December for the spawning model, and January-August for the non-spawning model. The horizontal dotted line shows the mean of the combined series. The probability scale relates to the binomial and raw proportion non-zero series.

Figure F7a: Comparison of CPUE indices for the lognormal model for the Southland and Sub-Antarctic single September-August fishery with the Snares Shelf November-December daytime single fishery model (top), and the Snares Shelf November-December daytime single fishery model with the Southland and SubAntarctic Tangaroa ling trawl survey biomass indices.

Figure F7b: CPUE indices for the combined model for the Southland and Sub-Antarctic single fishery (both spawning and non-spawning) comparing the current core vessel analysis with other cell models. The bottom plot is on a smaller y-axis scale, so trends can be seen, and excludes the top cell indices, but includes the Southland and Sub-Antarctic Tangaroa November-December ling trawl survey biomass indices. Year defined as September-August.

Figure F7c: CPUE indices for the combined model for the Southland and Sub-Antarctic single (two fisheries) and two fishery (spawning and non-spawning) models, comparing the current core vessel analysis with the longline CPUE indices. Year defined as September-August for the single model, SeptemberDecember for the spawning model, and January-August for the non-spawning model.

Southland and Sub-Antarctic: trawl fishery combined models

Figure F7d: CPUE indices for the combined model for the Southland and Sub-Antarctic single fisheries and two fishery (spawning and non-spawning) models, comparing the current core vessel analysis with the Southland and Sub-Antarctic Tangaroa ling trawl survey abundance indices. Year defined as SeptemberAugust for the single model, September-December for the spawning model, and January-August for the non-spawning model.

Figure F8: Effect and influence of non-interaction term variables in the Southland and Sub-Antarctic trawl core vessel lognormal model. Top: relative effect by level of each variable. Bottom left: relative distribution of each variable by year. Year defined as September-August. Bottom right: influence of variable on unstandardised CPUE by fishing year.

Figure F9: Expected variable effects for variables selected into the CPUE binomial model for the SubAntarctic TCEPR tow-by-tow core vessel single fishery, 1991-2017. The 95% confidence intervals are shown as bars for categorical variables and as upper and lower lines for continuous variables. Year defined as September-August.

Southland and Sub-Antarctic: single trawl fishery model

Southland and Sub-Antarctic: two trawl fishery model

Figure F10a: Diagnostic plots for the Southland and Sub-Antarctic single and two fishery lognormal trawl CPUE models.

Southland and Sub-Antarctic: single trawl fishery model

Southland and Sub-Antarctic: two trawl fishery model

Figure F10b: Diagnostic (residual and q-q) plots for the Southland and Sub-Antarctic single and two fishery binomial trawl CPUE models.

