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A B S T R A C T

Resolutions of the United Nations General Assembly (UNGA) require states and competent authorities to protect
vulnerable marine ecosystems (VMEs), ecologically important habitats in the deep sea that are considered to be
especially at risk from anthropogenic disturbances such as fishing. The lack of data concerning the location and
extent of VMEs poses a significant obstacle to their protection. Habitat suitability modeling is increasingly used
in spatial management planning due to its ability to predict the distribution and niche of marine organisms based
on limited input data. We generated broad-scale, medium-resolution (1 km2) ensemble models for ten VME
indicator taxa within the New Zealand Exclusive Economic Zone and a portion of the South Pacific Regional
Fishery Management Organisation (SPRFMO) convention area. Ensemble models were constructed using a
weighted average of three habitat suitability model types: Boosted Regression Trees, Maximum Entropy, and
Random Forest. All models performed well, with area under the curve scores above 0.9, and ensemble models
marginally outperformed any of the individual modeling approaches. Highly suitable habitat for each VME
indicator taxa was predicted to occur in relatively small areas throughout the region, typically associated with
elevated seafloor features with steep slopes. Determining the spatial distribution of VME indicator taxa is critical
for assessing the current and historical extent of bottom trawling impacts on benthic communities, and for
supporting the improved spatial management of fisheries in the South Pacific Ocean. Given the additional threats
of climate change and ocean acidification to VME indicator taxa throughout the deep sea, habitat suitability
modeling is likely to play an increasing role in designing effective, long-term protection measures for cumulative
impacts on VMEs.

1. Introduction

The demand for resources and advances in technology have greatly
accelerated the rate of anthropogenic disturbances to even the remotest
of deep-sea environments (reviewed in Ramirez-Llodra et al., 2011).
Historically, the largest documented disturbances to deep-sea commu-
nities of the seafloor have occurred as the result of fishery activities
(reviewed by Clark et al., 2016). The bulk of impacts have stemmed
from bottom trawling practices (Puig et al., 2012; Pusceddu et al.,
2014), which can cause extensive physical damage to benthic en-
vironments. However, long-line fishing gear has also been observed to
disturb deep-sea habitats (Orejas et al., 2009). Bottom trawls were
found to have severely damaged 30–50% of cold-water coral reef
structures in some regions (Fosså et al., 2002), and have also been
shown to considerably reduce the richness, diversity, and abundance of

deep-sea soft sediment communities (Cryer et al., 2002). In addition to
direct physical damage, bottom trawling resuspends sediments that can
smother benthic filter feeding organisms even outside of the trawled
area (Palanques et al., 2001).

In areas beyond national jurisdictions (the high seas) in the South
Pacific Ocean, bottom trawl fisheries targeting deep-sea species such as
orange roughy (Hoplostethus atlanticus), cardinalfish (Epigonus tele-
scopus), black oreo (Allocyttus niger), and alfonsino (Beryx spp.) occur in
several broad areas. The South Pacific Regional Fisheries Management
Organisation (SPRFMO) is an intergovernmental agency established by
nations obligated under United Nations General Assembly (UNGA) re-
solutions to ensure the sustainability of high seas fisheries and to
safeguard marine ecosystems from adverse impacts. To meet these two
objectives, management approaches have been designed to protect
vulnerable marine ecosystems (VMEs) while simultaneously ensuring
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fishery access to areas suitable for sustainable fishing. VMEs are defined
by their susceptibility to disturbance based on the fragility, functional
significance, rarity, and life history traits of their component commu-
nities, populations, or species (FAO, 2009). Several VME indicator taxa
have been identified for the South Pacific Ocean using these guidelines
(Parker et al., 2009). The United Nations require that states and asso-
ciated regional fisheries management organizations put in place ade-
quate measures to prevent significant adverse impacts on VMEs, which
can include closing areas to fishing (UNGA, 2007). In the SPRFMO
convention area, two main interim management measures have been
implemented for New Zealand- and Australian-flagged vessels to pro-
tect VMEs: a move-on rule that requires vessels to cease bottom
trawling within 5 nautical miles of an encountered VME, and a network
of large (20 min latitude by 20 min longitude) closures in previously
unfished or low-impacted areas (Penney et al., 2009). However, the
Australian and New Zealand implementations of the interim measures
were different and not always complementary, and the efficacy of these
measures has been questioned (Penney and Guinotte, 2013). The
SPRFMO Commission has, therefore, indicated a desire for the interim
measures to be replaced by a consistent and improved measure as soon
as possible, principally through the design and implementation of more
effective spatial closures. The design of spatial management measures
requires information about the distribution or likely distribution of
VME indicator taxa in the South Pacific Ocean.

Habitat suitability modeling (also known as species distribution
modeling) is increasingly used to predict the niche and distribution of
species based on limited data. This statistical approach relates field
observations to environmental predictor variables, yielding predictions
of the abundance or probability of presence of taxa and the underlying
environmental drivers of their geographic distribution. Habitat suit-
ability models are particularly useful for characterizing VMEs in the
deep sea, where field surveys are logistically difficult and expensive and
it is not feasible to directly observe the entire area of interest (Vierod
et al., 2014). In this study, we build on previous habitat suitability
modeling work (Anderson et al., 2016a, 2016b; Rowden et al., 2017),
using an ensemble habitat suitability modeling approach to predict the
niche and distribution of ten VME indicator taxa over an area that
covers the fishing interests of both New Zealand and Australia in the
western South Pacific. The model outputs were designed for use in a
multi-country and multi-stakeholder spatial management planning
process to design and implement new spatial closures in the region, for
eventual adoption by SPRFMO.

2. Materials and methods

2.1. Site description

The study area extends over a 21.6 million km2 area of the South
Pacific Ocean from approximately 24 °S to 58 °S and 143 °E to 146 °W.
This area encompasses the New Zealand EEZ, and a large portion of the
SPRFMO convention area that represents the main fishing areas of New
Zealand and Australian fleets (Fig. 1). We set the spatial resolution of
the models to 1 km2 (see Table 1) to match that of the main sampling
methods for the species presence records; trawls, sleds and dredges –
which had a median tow length of about 0.8 km (Anderson et al.,
2016a).

2.2. Occurrence sampling

Ten VME indicator taxa were selected for modeling. These included
two sponge taxa; glass sponges (Hexactinellida) and demosponges
(Demospongiae), and four species of framework-building scleractinian
corals; Enallopsammia rostrata, Goniocorella dumosa, Madrepora oculata,
and Solenosmilia variabilis. Soft corals (Alcyonacea), sea pens
(Pennatulacea), and black corals (Antipatharia) were modeled as larger
taxonomic groups rather than at the species level. Hydrozoans in the

family Stylasteridae, commonly known as hydrocorals, were modeled
as a single taxonomic group. These taxa have all been identified as VME
indicator taxa based on their vulnerability to trawls (fragility, rareness,
or low productivity), ecological significance (functionally significant
via habitat creation or ecological services), and ability to be readily
identified from trawl collections (Parker et al., 2009). Presence data for
the ten modeled taxa were obtained from New Zealand and Australian
museum/collection records, fisheries research databases, and online
biodiversity databases. Over 24,000 individual records were compiled,
but these were unequally distributed among the taxa with numbers
ranging from 203 (Madrepora oculata) to 5345 (Alcyonacea) (Table 2).
Duplicate occurrences were removed prior to further analyses.

2.3. Background sampling

For the background (or pseudo-absence) data locations used in the
models, we used a combination of the concepts of random selection and
target-group background sampling (Phillips et al., 2009) to generate a
spatially structured set of background points. While commonly not
accounted for in habitat suitability models, spatial bias in the sampling
of occurrence data considerably weakens the performance and inter-
pretability of models (Phillips et al., 2009). However, it is possible to
reduce the effects of sampling bias by selecting or creating a set of
background data that reflect the same bias as the occurrence data
(Phillips et al., 2009). We were unable to construct target-group
background data directly (i.e., from the locations of a broad set of
species presence records based on similar observation methods) due to
the wide range of data sources supplying the presence data. Given the
relatively high sampling bias observable in the observed presences, we
generated a structured sample of background points for each taxon,
based on the distribution of presence records. To preferentially generate
background points in areas with more presence observations, we first
created a two-dimensional kernel density estimate of sampling effort
based on the presence locations for each taxon (e.g., Supplemental Fig.
S1a). This estimate created a probability grid from which 10,000
background points were sampled according to the probability grid
weights (e.g., Supplemental Fig. S1b). Previous studies using a similar
approach to reduce the influence of sampling bias found that model
performance was significantly improved (Elith et al., 2010; Huang
et al., 2011; Fitzpatrick et al., 2013).

2.4. Environmental variables

A suite of environmental variables (Table 1) that may potentially
influence marine benthic organism distributions were generated using a
similar approach to that described by Davies and Guinotte (2011),
based on depth data derived from a recently updated bathymetry grid
for the New Zealand region, which we gridded at a resolution of 1 km2

(Mackay et al., 2015). Additional seafloor terrain metrics were also
derived from this bathymetry using the Benthic Terrain Modeler in
ArcGIS 10.3.1.1 (Wright et al., 2012). Locations were defined as being
on a seamount if they were within the footprint of the deepest complete
depth contour around any of the seamounts recorded in the NIWA
Seamounts database (Rowden et al., 2008) or identified by Yesson et al.
(2011). The percent mud and percent gravel layers for the region were
developed from > 30,000 raw sediment sample data compiled in
dbseabed (Jenkins, 1997), which were then imported into ArcGIS and
interpolated using Inverse Distance Weighting.

Dissolved oxygen (Garcia et al., 2014b), apparent oxygen utilization
(Garcia et al., 2014b), percent oxygen saturation (Garcia et al., 2014b),
temperature (Locarnini et al., 2013), salinity (Zweng et al., 2013), ni-
trate (Garcia et al., 2014a), phosphate (Garcia et al., 2014a), and sili-
cate (Garcia et al., 2014a) data were obtained from the World Ocean
Atlas (version 2, 2013). The saturation states of the aragonite and
calcite polymorphs of calcium carbonate were obtained from Bostock
et al. (2013). Oxygen and nutrient data were originally available at a
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resolution of 1°. Salinity and temperature were available at a resolution
of 0.25°. Carbonate data were available at a resolution of 0.5°. These
variables were obtained as depth-gridded data ranging from 0 to
5,500 m, and were transformed to match the resolution of the bathy-
metry data (1 km2) using an upscaling approach that approximates
conditions at the seafloor (sensu Davies and Guinotte, 2011).

Particulate organic carbon (POC) flux at the seafloor was obtained
from Lutz et al. (2007) at a native resolution of 0.08°. Surface pro-
ductivity data were obtained from the Oregon State Ocean Productivity
site (http://www.science.oregonstate.edu/ocean.productivity) as the
Standard Vertically Generalized Production Model (VGPM; Behrenfeld
and Falkowski, 1997), the Eppley-VGPM (Eppley, 1972), and the up-
dated Carbon-based Production Model (CbPM, Westberry et al., 2008).
All products were derived from NOAA’s Aqua MODIS data ranging from
mid-2002 through 2016, and calculated as the mean, minimum, max-
imum, and standard deviation over that period (Aqua MODIS, 2014).
These layers had a native resolution of 0.167°, and were interpolated to
a slightly higher resolution (0.05°) through kriging and then resampled
to match the extent and resolution of the bathymetry data (1 km2).

2.5. Variable selection

Our aim in selecting variables was to identify a base set of predictors

for use in each model, modified by specific biological requirements of
some taxa, and among which correlations were minimized. The inclu-
sion of correlated environmental variables may inhibit model perfor-
mance and interpretation (e.g., Huang et al., 2011). Therefore, highly
correlated variables were removed based on their relationship with
other variables and on their performance in preliminary random forest
models. First, all variables were placed into ecologically relevant
groupings (see Table 1): seafloor characteristics (terrain metrics and
sediment type), water chemistry (nutrients, carbonate chemistry, tem-
perature, salinity, sigma theta, and oxygen metrics), and productivity
(POC export and surface productivity). Then a random forest model was
constructed for each taxon using the variables in each grouping, and
variable performance was assessed as the mean decrease in accuracy (%
Inc. MSE) scaled to 100% (Supplemental Fig. S2). Among highly cor-
related (> 0.7 Pearson’s Correlation; Supplemental Fig. S3) variables
that clustered together (Supplemental Fig. S4), the variable with the
highest performance across all taxa was retained. If performance was
equivalent (i.e., within approximately 10%) within a group of highly
correlated variables, we also took into account the clustering and cor-
relation of each variable with the remaining variable set, as well as
biological relevance. Equivalent variables were preferentially retained
if they clustered separately and had lower correlations with the re-
maining variable set. Depth was removed prior to these preliminary

Fig. 1. Map of the study area. The red line indicates the extent of the New Zealand Exclusive Economic Zone (EEZ). Hatched lines indicate the extent of the South
Pacific Regional Fisheries Management Organisation (SPRFMO) convention area. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
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model runs due to its lack of biological relevance apart from strong
correlations with other variables. Aragonite saturation state was only
included for taxa that incorporate calcium carbonate in the form of
aragonite into skeletal materials (i.e., Stylasteridae, Enallopsammia
rostrata, Goniocorella dumosa, Madrepora oculata, Pennatulacea, and
Solenosmilia variabilis), and calcite saturation state was only included
for taxa that incorporate calcite (Alcyonacea and Antipatharia). Given
the strong correlation between aragonite and calcite (Pearson’s corre-
lation, r > 0.999, p < 0.001), these variables can be expected to
perform identically in models, but were distinguished among taxa to
make biological interpretations easier. Silicate was included for Hex-
actinellida and Demospongiae because these taxa incorporate silicate
into their skeletons, but was omitted for all other taxa. Temperature

was included in all models due to its biological relevance and high
performance in previous cold-water coral modeling studies (e.g., Davies
and Guinotte, 2011). The correlations and clustering of variables in the
final retained set are shown in Fig. 2 (see Supplemental Table S1 for
Pearson’s correlation coefficient values). Supplemental Fig. S5 shows
the relationship of occurrence points, targeted background points, and
random background points with each environmental variable in the
final set.

2.6. Boosted regression tree models

Boosted Regression Tree (BRT) is a presence-absence (as opposed to
presence-background) data modeling approach, that can also be used to

Table 1
Environmental variables considered for use in habitat suitability models.

Variable Units Native Resolution Reference

Seafloor Characteristics
Depth
Percent gravel
Percent mud
Ruggedness 2

Slope2

Slope SD2

Aspect
Range2

Standard deviation2

Profile curvature
Plan curvature
Curvature
Bathymetric Position Index – fine
Bathymetric Position Index – broad
Seamounts

meters
%
%
–
degrees
–
degrees
–
–
–
–
–
–
–
–

1 km2

–
–
–
–
–
–
–
–
–
–
–
–
–
–

Mackay et al. (2015)
NIWA
NIWA
Derived from bathymetry
Derived from bathymetry
Derived from bathymetry
Derived from bathymetry
Derived from bathymetry
Derived from bathymetry
Derived from bathymetry
Derived from bathymetry
Derived from bathymetry
Derived from bathymetry
Derived from bathymetry
Rowden et al. (2008), Yesson et al. (2011)

Water Chemistry
Apparent oxygen utilization ml l−1 1° Garcia et al. (2014b)
Aragonite saturation state – 0.5° Bostock et al. (2013)
Calcite saturation state – 0.5° Bostock et al. (2013)
Dissolved oxygen ml l−1 1° Garcia et al. (2014b)
Nitrate μmol l−1 1° Garcia et al. (2014a)
Percent oxygen saturation % 1° Garcia et al. (2014b)
Phosphate μmol l−1 1° Garcia et al. (2014a)
Salinity – 0.25° Zweng et al. (2013)
Sigma theta kg m−3 0.25° Derived from temperature and depth
Silicate μmol l−1 1° Garcia et al. (2014a)
Temperature °C 0.25° Locarnini et al. (2013)

Productivity
Particulate organic carbon export mg C m−2 d−1 0.08° Lutz et al. (2007)
Vertically Generalized Production Model1 mg C m−2 d−1 0.167° Oregon State University3

Eppley-VGPM1 mg C m−2 d−1 0.167° Oregon State University3

Carbon-Based Productivity Model-21 mg C m−2 d−1 0.167° Oregon State University3

1-Surface data derived from MODIS–Aqua (NASA) as the mean, minimum, maximum, and standard deviation from mid-2002–2016.
2-Terrain metrics calculated using window sizes of 3, 5, 7, and 15 cells.
3-Data obtained from http://www.science.oregonstate.edu/ocean.productivity.

Table 2
Taxonomic groups modeled, sample size (number of presences), and the suite of environmental variables used to train models for each taxon. BPI
Broad = bathymetric position index calculated at a broad scale. POC = particulate organic carbon flux to the seafloor. RAC = residual autocovariate. Slope
SD = standard deviation of slope. See Table 1 and text for details about each variable.

Taxon Group Sample Size Variable Set

Alcyonacea Soft corals 5345 Calcite, BPI-Broad, Dissolved Oxygen, % Gravel, % Mud, POC, RAC, Ruggedness, Seamounts, Slope SD, Temperature
Antipatharia Black corals 1,505 Calcite, BPI-Broad, Dissolved Oxygen, % Gravel, % Mud, POC, RAC, Ruggedness, Seamounts, Slope SD, Temperature
Demospongiae Demosponges 3,166 Silicate, BPI-Broad, Dissolved Oxygen, % Gravel, % Mud, POC, RAC, Ruggedness, Seamounts, Slope SD, Temperature
E. rostrata Stony corals 236 Aragonite, BPI-Broad, Dissolved Oxygen, % Gravel, % Mud, POC, RAC, Ruggedness, Seamounts, Slope SD, Temperature
G. dumosa Stony corals 464 Aragonite, BPI-Broad, Dissolved Oxygen, % Gravel, % Mud, POC, RAC, Ruggedness, Seamounts, Slope SD, Temperature
Hexactinellida Glass sponges 1,916 Silicate, BPI-Broad, Dissolved Oxygen, % Gravel, % Mud, POC, RAC, Ruggedness, Seamounts, Slope SD, Temperature
M. oculata Stony corals 203 Aragonite, BPI-Broad, Dissolved Oxygen, % Gravel, % Mud, POC, RAC, Ruggedness, Seamounts, Slope SD, Temperature
Pennatulacea Sea pens 695 Aragonite, BPI-Broad, Dissolved Oxygen, % Gravel, % Mud, POC, RAC, Ruggedness, Seamounts, Slope SD, Temperature
S. variabilis Stony corals 463 Aragonite, BPI-Broad, Dissolved Oxygen, % Gravel, % Mud, POC, RAC, Ruggedness, Seamounts, Slope SD, Temperature
Stylasteridae Hydrocorals 1,481 Aragonite, BPI-Broad, Dissolved Oxygen, % Gravel, % Mud, POC, RAC, Ruggedness, Seamounts, Slope SD, Temperature
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model abundance, and is often used to predict distributions of deep-sea
taxa (e.g., Rooper et al., 2017). The model calculates habitat suitability
probabilities by incorporating recursive binary splits within a regres-
sion tree structure to explore the relationship between response and
predictor variables (Elith et al., 2008). We fitted BRT models using a
standard approach, including optimization of the learning rate and
number of trees by internal cross validation (Elith et al., 2008), and
adjustment of the learning rate as necessary to ensure a minimum
number of 1000 trees. Tree-complexity was set to three to allow a
moderate level of interactions between terms. A random selection of
absence records, equal in number to the number of presence records,
was selected from the sampling bias-corrected set of 10,000 background
points generated for each taxon, following the recommendations of
Barbet-Massin et al. (2012). The relative influence of each variable was
determined from the number of times it was selected for splitting,
weighted by the squared improvement to the model as a result of each
split (using in-bag data) (Friedman and Meulman, 2003).

2.7. Maximum entropy models

The Maximum Entropy (Maxent) modeling algorithm (Phillips et al.,
2006) is a machine learning, presence-only model that is based on the
statistical assumption that within known environmental constraints,
maximizing entropy is the optimal method to address remaining un-
certainty in a distribution. Maxent has been shown to outperform other
presence-only models (Elith et al., 2006; Tittensor et al., 2009) and
presence-absence models (Reiss et al., 2011). All Maxent models were
run in an R environment using the ‘dismo’ package (Hijmans et al.,
2015). Models were built using default Maxent settings (convergent
threshold = 10−5, prevalence = 0.5, regularization multiplier = 1)
that have performed well in previous studies (see Phillips and Dudik,
2008). However, the number of maximum iterations was increased to
5000 to ensure model convergence, as preliminary models did not al-
ways converge within the default 500 iterations. In addition, instead of

generating random background points, models were trained using the
sampling bias-corrected set of 10,000 background points. The standard
jackknifing procedure was used to determine the percent contribution
of environmental variables to the model.

2.8. Random forest models

Random forest (RF) modeling (Breiman, 2001) is a classification and
regression tree-based approach similar to boosted regression trees.
However, it chooses a random selection of explanatory values at each
split and employs an internal bootstrapping approach to produce and
combine a large number of individual trees. Models were built using the
‘randomForest’ package (Liaw and Wiener, 2002) in R. In most cases,
the error rate stabilized after approximately 100 trees, however 501
trees were generated for each taxon to ensure stabilization in all model
runs. Optimal values of ‘mtry’, which determines the number of ex-
planatory variables selected at each tree split, were explored using the
‘tuneRF’ function and preliminary models. Ultimately, the default value
(mtry = 3, the square root of the number of explanatory variables) was
used due to its consistent performance across all taxa. Classification
trees are sensitive to imbalances in the response variable (Chen et al.,
2004; Evans et al., 2011) so, as in the BRT models, the number of
background points was set equal to the number of occurrences for each
taxon, randomly selected from the 10,000 set of sampling bias-cor-
rected background points. This sampling approach has been found to
optimize model performance for both BRT and RF models (Barbet-
Massin et al., 2012).

2.9. Spatial autocorrelation

Spatial autocorrelation occurs when there is a relationship between
observations and geographic distance (Legendre, 1993). Environmental
variables are frequently spatially autocorrelated (Lichstein et al., 2002),
and observed species distributions often exhibit strong spatial

Fig. 2. Relationships among environmental variables used to train the habitat suitability models. A) Pearson’s correlation coefficients among the final variable set. B)
Cluster dendrogram showing the conceptual relationships among the final variable set. Not every variable was included in the model for each taxon (see Table 2). See
Supplemental Table S1 for actual Pearson’s correlation coefficient values.
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autocorrelation due to sampling bias or natural processes such as dis-
persal limitations (Lennon, 2000). The majority of spatial analyses do
not account for spatial autocorrelation (Dormann, 2007) despite the
fact that it typically violates the underlying assumptions of many
models (Kühn, 2007) and can considerably affect model performance
and the importance of explanatory variables (Tognelli and Kelt, 2004).

To account for spatial autocorrelation, we calculated a residual
autocovariate (RAC) variable for each taxon (sensu Crase et al., 2012).
The RAC method derives a term representing the spatial autocorrelation
present in the residuals of a preliminary model. This term is then added
as an explanatory variable in subsequent models, accounting for spatial
autocorrelation present in the initial occurrence data. The RAC ap-
proach has been used to correct for spatial autocorrelation in classifi-
cation models including boosted regression trees and random forest
(Crase et al., 2012; Rowden et al., 2017) as well as in Maxent (Václavík
et al., 2012).

To calculate the RAC variable, preliminary models were built using
environmental variables alone, and the model residuals were tested for
spatial autocorrelation using Moran’s I (Moran, 1948). Model residuals
were rasterized at the same resolution of the prediction grids (1 km2).
Next, the autocovariate was calculated based on the focal mean of these
residuals, in which the value for each output cell was the average of the
input cells within the specified window size. The resulting RAC was
then included in models as an explanatory variable. In Maxent models,
RAC was calculated for E. rostrata, Hexactinellida, Pennatulacea, and S.
variabilis using a 5 × 5 focal mean window (indicating the number of
grid cells used to calculate the focal mean) rather than the default 3 × 3
window (Crase et al., 2012), because initial tests revealed highly in-
flated importance (∼80–90%) of the RAC variable in these models.
Increasing the size of the focal mean window reduced the importance of
RAC while still resulting in the reduction of spatial autocorrelation
among model residuals. The same was true for BRT models, where a
3 × 3 window was used for Antipatharia, Hexactinellida, and Penna-
tulacea, a 7 × 7 window was used for E. rostrata and M. oculata, and a
5 × 5 window was used for the remaining taxa. For random forest
models, a 3 × 3 focal window was used for all taxa, as the highest
percent contribution of RAC was relatively low (∼30%) without ad-
justing the window size. In BRT and RF models, the inclusion of the
RAC variable considerably reduced spatial autocorrelation in model
residuals as measured by Moran’s I. In Maxent models, spatial auto-
correlation was originally lower and the RAC variable reduced spatial
autocorrelation to a lesser extent than in BRT and RF models, consistent
with previous studies showing that Maxent is naturally robust to un-
derlying spatial structures in the input data (De Marco et al., 2008;
Václavík et al., 2012).

2.10. Model performance

The BRT, Maxent, and RF models were verified using a ten-fold
cross-validation procedure in which input data were randomly parti-
tioned into training (70%) and testing datasets (30%) for ten model
runs. The area under the curve (AUC) metric was calculated for each
model and averaged across all ten runs. AUC is a threshold-independent
assessment of the ability of the model to correctly rank occurrences
above background locations. A random model has a theoretical AUC of
0.5, while AUC values greater than 0.7 indicate adequate performance,
and values greater than 0.8 indicate excellent performance (Wiley et al.,
2003; Hosmer et al., 2013). Final models were constructed using all
available data. A separate AUC score was calculated for each final
model using the entire training dataset to facilitate direct comparisons
to the ensemble models (see below). As an additional measure to
compare each model to the ensemble model, we also calculated the
correlation between predicted habitat suitability and expected values
based on the entire training dataset.

To ascertain the spatial variation in model uncertainty, we em-
ployed a bootstrap approach to generate coefficient of variation

estimates for every cell within the study area (sensu Anderson et al.,
2016b). For each modeling type, 200 models were run by randomly
sampling occurrences and background points with replacement equal to
the original number of occurrences and background points. The mean
and standard deviation of each cell was calculated from this set of 200
models, and the coefficient of variation was calculated as the mean
divided by standard deviation, reported as a percentage. This approach
yields a spatial estimate of uncertainty based on how sensitive the
models are to changes in the input presence and background data.

2.11. Ensemble modeling

An ensemble of models with fundamentally different approaches to
the same problem is a practical way of avoiding dependence on a single
model type or structural assumption, and enables a more robust char-
acterization of the predicted spatial variation and uncertainties (Robert
et al., 2016). To incorporate the predictions and underlying assump-
tions of BRT, Maxent, and RF into a single output grid, we produced
ensemble models by calculating weighted averages of the three models
(after Oppel et al., 2012; Anderson et al., 2016b; Rowden et al., 2017)
as follows:
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where AUCB, AUCM , and AUCR are the model performance statistics
(average cross-validated AUC values); XB, XM , XR, and XE the model
predictions; and CVB, CVM , CVR, and CVE the bootstrap CVs from the
BRT, Maxent, RF, and ensemble models respectively. The performance
of ensemble models was calculated as AUC scores calculated using the
entire training dataset rather than through a cross-validation procedure
using test data, and as the correlation between expected (observed
presence or assumed absence) and predicted values.

2.12. Model outputs

Model outputs were limited to depths of 300 to 3000 m, approxi-
mately equivalent to the combined bathymetric range of all modeled
taxa, covering a reduced area of 4.5 million km2. For each modeling
type (BRT, Maxent, RF, and ensemble), habitat suitability scores were
calculated across the study area at a resolution of 1 km2. In the context
of our modeling approach, these values represent the relative predicted
suitability for each taxon ranging from 0 to 1, with higher values in-
dicating a more suitable habitat. While these scores are commonly and
at times erroneously referred to as the ‘probability of occurrence’ in the
literature, it is important to note that our habitat suitability scores do
not represent the actual probability of occurrence due to the lack of true
absence data and unknown efficiency of the sampling gear. In the fol-
lowing text, we use the following arbitrary divisions for interpreting
habitat suitability scores: < 0.4=low suitability, 0.4–0.8=moderate
suitability, and > 0.8=high suitability.

3. Results

3.1. Final variable set

Of the 30 variables considered for inclusion in models (Table 1), 13
were ultimately retained by the variable selection process (Fig. 2;
Table 2). Nine of these variables: broad-scale bathymetric position
index (BPI), dissolved oxygen, percent gravel, percent mud, particulate
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organic carbon flux to the seafloor (POC), occurrence on or off sea-
mounts, standard deviation of slope (slope-SD) calculated with a
window size of 15 × 15, temperature, and vector ruggedness measure
(ruggedness) calculated with a window size of 7 × 7 were included in
all models. The saturation states of aragonite and calcite were included
only for coral taxa that incorporate one of these calcium carbonate
polymorphs, and silicate was included only for sponge taxa that in-
corporate silicate into their skeleton (Table 2). In addition, the RAC
variable, although not ecologically interpretable, was included in all
models to reduce the spatial autocorrelation of model residuals.
Therefore, each model was built using a total of 11 variables. The final
set of variables generally had lower correlations than the initial variable
set (see Supplemental Figs S3 and S4), however some of the retained
variables still had correlations greater than 0.7 (Fig. 2; Supplemental
Table S1). Aragonite, calcite, and silicate were all highly correlated.
However, only one of these variables was included in each model in
accordance with its biological relevance for each taxon. Temperature
was highly correlated with aragonite (Pearson’s correlation, r = 0.960,
p < 0.001), calcite (Pearson’s correlation, r = 0.959, p < 0.001), and
silicate (Pearson’s correlation, r=-0.876, p < 0.001), but was retained
in the final set due to its known biological relevance. Dissolved oxygen
and POC were also correlated with other variables including aragonite,
calcite, silicate, and temperature, but were retained because the cor-
relations were lower (< 0.8), and because they not grouped together in
the cluster analysis (Fig. 2).

3.2. Model performance

Cross-validation testing suggested that all models for all taxa had
excellent performance, with AUC scores above 0.9. However, R2 values
were more variable, ranging from 0.14 to 0.64 for the ensemble models
(Table 3). Unlike AUC, R2 is dependent on scale and will tend to be
lower where probabilities are close to zero. Accordingly, R2 values were
higher for taxa with more presence records (e.g., Alcyonacea and An-
tipatharia) than for taxa with fewer presences (e.g. M. oculata and G.
dumosa). AUC scores for BRT models ranged from 0.961 to 0.998, with
a mean of 0.978 ± 0.014 across all taxa. Maxent model AUC scores
were consistently the lowest of the three modeling approaches, ranging
from 0.913 to 0.990 with a mean of 0.964 ± 0.026 across all taxa. RF
model AUC scores ranged from 0.951 to 0.993 with a mean of
0.976 ± 0.014 across all taxa. The worst performing model for an in-
dividual taxon across the three modeling approaches was Pennatulacea,
with a minimum AUC of 0.913 and a mean of 0.948 ± 0.031. Models
for S. variabilis consistently performed the best, with a mean AUC of
0.994 ± 0.004 across the three modeling approaches. The sample size
(number of presences) for each taxon (Table 2) was not significantly
correlated with AUC (Linear regression, R2 = 0.03, p = 0.33).

3.3. Variable contributions

The BRT and RF models had similar percent contributions of pre-
dictor variables, while the Maxent models typically had higher percent
contributions from variables associated with skeletal chemistry (i.e.,
calcite, aragonite, and silicate) (Table 4). Variables describing physical
characteristics of the seafloor, the saturation state of aragonite or cal-
cite, and RAC were typically the most important variables. While sea-
floor characteristics (BPI, seamount, slope SD, and ruggedness) gen-
erally did not contribute a large percentage of information to the
models on their own, their combined contribution when considered
together was substantial, ranging between 8.5% and 51.8%. Rugged-
ness was frequently the best predictor in this group, with percent
contributions as high as 36.3%, followed by BPI with a maximum
contribution of 23.7%. Taxa were generally located in areas with more
complex, steep, and elevated terrain features than expected by chance
(Supplemental Figs. S5, S11–S20). When the saturation state of calcite
and aragonite where included in models, they typically had a large
percent contribution, with species demonstrating a preference for
higher saturation states (Supplemental Figs. S11–S20). Calcite con-
tributed an average of 28.2% and 21.0% in models for Alcyonacea and
Antipatharia, respectively, across all model types. The average percent
contribution of aragonite, when included, ranged from 6.7 to 17.7%
across all model types, and contributed an overall average of 12.0%
across all taxa and model types. Models for the aragonite-forming taxa
that had a relatively low percent contribution from aragonite often had
an elevated percent contribution from temperature. Aragonite and
temperature were highly correlated across the study region (Pearson’s
correlation, r = 0.96, p < 0.001; Fig. 2; Supplemental Table S1),
making it difficult to tease apart their influence in models. Temperature
contributed 4.0–18.3% of total explanatory power when averaged
across all model types, and was most important for G. dumosa, Penna-
tulacea, and S. variabilis. Most taxa occurred predominantly within a
narrower temperature range than expected by chance based on the
available habitat space (Supplemental Fig. S5), with Demospongiae,
Pennatulacea, and Stylasteridae having the largest observed range. For
the two sponge taxa, silicate contributed an average of 19.8% (De-
mospongiae) and 14.0% (Hexactinellida), with both taxa preferentially
located in areas with intermediate concentrations (Supplemental Figs.
S5, S13, S16). However, detection of the real drivers of sponge dis-
tribution may be confounded by the relatively high correlation of sili-
cate with dissolved oxygen (Pearson’s correlation, r=−0.72,
p < 0.001), POC (Pearson’s correlation, r=−0.68, p < 0.001), or
temperature (Pearson’s correlation, r=−88, p < 0.001). Both dis-
solved oxygen and POC generally contributed between 3–7% when
averaged across all model types. However, these variables were some-
what correlated with each other as well as with aragonite, calcite, and
temperature (Fig. 2). In general, taxa occurred in areas with higher POC
concentrations than expected by chance, and at intermediate dissolved
oxygen concentrations (Supplemental Figs. S5, S11–S20). RAC con-
tributed between 9.1–75.2% of information to the models. BRT models
generally had the largest percent contribution of RAC, with a mean of
46.3% across all taxa and the largest percent contribution of 75.2%.
Maxent and RF models both had lower contributions of RAC, with
means of 24.8% and 22.6%, respectively. Substrate type, quantified as
percent gravel and percent mud, generally contributed less than 10% of
information to the models for all taxa. While taxa generally occurred
across all values of these predictors (Supplemental Figs. S5, S11–S20),
there was a general trend towards areas with a lower percentage of mud
and a higher percentage of gravel than expected by chance. Being lo-
cated on or off a seamount generally contributed negligibly to models,
with an average percent contribution of 3.0% across all taxa and model
types. Taxa were most frequently predicted to be distributed on or near
seamounts, although this may partially reflect sampling bias in the
occurrence data.

Table 3
Performance metrics for Boosted Regression Trees (BRT), Maximum Entropy
(Maxent), and Random Forest (RF) for each taxon, assessed by the area under
the curve (AUC) score measured using ten-fold cross-validation on a 30% test
dataset withheld from model creation. Larger AUC scores (closer to 1) indicate
better model performance.

Taxa BRT Maxent RF

Alcyonacea 0.967 0.958 0.970
Antipatharia 0.992 0.984 0.987
Demospongiae 0.974 0.966 0.964
E. rostrata 0.997 0.983 0.990
G. dumosa 0.961 0.944 0.973
Hexactinellida 0.965 0.939 0.951
M. oculata 0.975 0.983 0.989
Pennatulacea 0.971 0.913 0.960
S. variabilis 0.998 0.990 0.993
Stylasteridae 0.984 0.984 0.981
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3.4. Ensemble modeling

A single ensemble model was constructed using a weighted average
of the BRT, Maxent, and RF models for each taxon (Figs. 3–6). The
weighted ensemble models were generally a nearly equal mixture of the
three model types for each taxon, as each approach yielded similar AUC
values for each taxon (Table 3). The ensemble models produced similar
patterns, as the three modeling approaches yielded comparable habitat
suitability predictions, with the Pearson’s correlation between model
types for the same taxon generally being 0.7 or higher (Supplemental
Table S2). In general, the BRT and Maxent models were more highly
correlated with an average correlation of 0.894 across all taxa, and the
RF and Maxent models were less correlated with an average correlation
of 0.812. The three modeling approaches exhibited similar spatial
patterns, with the biggest absolute differences between each approach
typically occurring within areas of predicted high suitability (see Sup-
plemental Fig. S9). However, the model types differed considerably in
the scale of predicted habitat suitability scores (Supplemental Fig. S10).
BRT consistently predicted higher suitability scores across all taxa, with
more extensive areas predicted to have high suitability scores (> 0.8)
than the other models (Fig. 3). Maxent generally predicted the lowest
habitat suitability scores (Fig. 4), and RF frequently predicted a larger
area of intermediate suitability (Fig. 5).

Spatial uncertainty (measured as the coefficient of variation, CV)
differed somewhat among the three modeling approaches (see
Supplemental Figs, S6–S8). While the models generally exhibited a si-
milar spatial pattern in uncertainty (therefore leading to similar patterns
in ensemble models), BRT models typically had the largest CVs, followed
by RF and then Maxent. The ensemble model for each taxon generally
outperformed any of the individual modeling approaches as assessed by
AUC scores calculated using the entire dataset and the correlation be-
tween predicted and expected values. However, the RF models margin-
ally outperformed the ensemble model in some cases (Table 5).

3.5. Spatial distributions

The ensemble models (Fig. 6) predicted that highly suitable
(scores > 0.8) habitat for each taxon occurs in various regions
throughout the New Zealand EEZ as well as in portions of the SPRFMO
convention area that were included in the study area (Fig. 1). For most
taxa, predicted concentrations of highly suitable habitat were located
on areas of the Chatham Rise, Kermadec Ridge, Colville Ridge, South
Tasman Rise, Macquarie Ridge, Norfolk and West Norfolk Ridges, Lord
Howe Rise, Three Kings Ridge, Louisville Seamount Chain, and along
much of the continental shelf edge of Australia and the east coast of
New Zealand’s North Island (Fig. 6). Sea pens (Pennatulacea) had the
largest predicted distribution of highly suitable habitat (Fig. 6h), with
suitability predicted to be above 0.6 in most of these areas, the Cha-
tham Rise in particular. Soft corals (Alcyonacea) and black corals
(Antipatharia) generally exhibited a spatial pattern comparable to sea
pens, but with lower predicted habitat suitability scores (Fig. 6a,b and
Supplemental Fig. S10) and slightly higher CVs (Fig. 7a,b). The two
sponge taxa (Demospongiae and Hexactinellida) had the lowest CVs
across the study area (Fig. 7c,f), with habitat suitability predictions
similar to but not quite as high as the predictions for sea pens (Fig. 6h).
Models for the four species of reef-forming stony corals (E. rostrata, G.
dumosa, M. oculata, and S. variabilis) typically predicted lower habitat
suitability than for other taxa (Supplemental Fig. S10), with highly
suitable habitats clustered on the southeast corner of Chatham Rise,
Kermadec Ridge, Colville Ridge, and West Norfolk Ridge (Fig. 6). On
the Louisville Seamount Chain, stony corals typically had lower habitat
suitability scores than other taxa, with predictions generally showing
that only the upper flanks and tops of seamounts were moderately or
highly suitable (Fig. 8). In addition, the stony coral taxa exhibited the
highest CVs, although model predictions were typically more robust in
areas predicted to be more suitable (Fig. 7). Hydrocorals (Stylasteridae)
followed a similar spatial pattern to the stony corals, but with generally

Table 4
Percent variable contributions for Boosted Regression Trees (BRT), Maximum Entropy (Maxent), and Random Forest (RF) models. A value of ‘na’ indicates that the
variable was not used in the model for that taxon. BPI = broad scale bathymetric position index. POC = particulate organic carbon flux. RAC = residual auto-
covariate. Slope SD = standard deviation of slope.

Taxa Model Arag. BPI Calcite Diss. Oxygen Percent Gravel Percent Mud POC RAC Seamount Silicate Slope SD Temp. Ruggedness

Alcyonacea BRT na 6.3 17.5 3.9 4.1 2.7 5.6 9.1 1.6 na 7.6 5.4 36.3
Maxent na 3.0 58.3 1.5 0.7 0.3 0.9 20.2 0.1 na 2.1 0.9 11.9
RF na 8.7 8.8 10.3 9.1 10.2 8.7 17.3 3.6 na 6.6 6.4 10.2

Antipatharia BRT na 1.8 7.4 2.6 2.0 1.1 4.8 61.1 0.9 na 1.6 9.5 7.4
Maxent na 3.1 47.9 2.1 0.8 0.7 1.4 32.1 1.4 na 1.7 0.8 8.2
RF na 9.4 7.7 8.3 6.9 8.7 7.1 24.7 2.1 na 6.2 5.6 13.3

Demospongiae BRT na 17.9 na 4.7 4.1 4.6 9.6 19.1 5.1 14.3 4.2 4.0 12.3
Maxent na 23.7 na 0.8 0.9 2.7 1.8 23.5 2.3 36.3 2.0 2.0 4.2
RF na 13.0 na 8.4 8.1 7.1 7.4 16.5 4.4 8.7 8.2 8.1 10.2

E. rostrata BRT 4.4 3.0 na 0.6 1.2 1.9 1.5 75.2 2.0 na 1.6 4.7 4.0
Maxent 24.4 4.9 na 2.1 3.4 0.6 5.5 30.6 1.6 na 0.3 14.2 12.5
RF 10.3 9.1 na 8.7 6.6 7.2 7.9 20.4 2.5 na 8.5 9.3 9.5

G. dumosa BRT 13.1 5.5 na 4.6 2.9 4.7 6.3 37.9 0.3 na 2.9 14.8 6.9
Maxent 7.8 6.6 na 1.0 7.7 2.4 0.5 16.0 6.8 na 2.1 31.8 17.1
RF 8.9 9.9 na 8.7 6.7 6.9 7.2 20.7 5.7 na 8.2 8.3 8.8

Hexactinellida BRT na 4.4 na 3.5 2.3 3.6 7.3 44.3 6.3 5.4 2.5 6.9 13.6
Maxent na 0.5 na 1.0 2.9 0.7 2.9 15.6 12.9 29.0 4.9 11.1 18.5
RF na 8.1 na 6.2 6.1 6.8 7.7 30.1 4.4 7.7 6.1 7.9 8.9

M. oculata BRT 12.5 14.1 na 3.8 5.9 2.2 3.5 32.6 1.0 na 4.3 10.4 9.8
Maxent 30.4 10.8 na 3.4 10.2 3.4 2.0 21.6 4.4 na 1.8 0.2 11.7
RF 10.3 9.7 na 6.1 6.1 6.7 7.3 24.2 4.8 na 7.5 7.7 9.6

Pennatulacea BRT 4.1 5.9 na 2.6 1.2 1.8 8.0 68.6 0.1 na 0.9 5.3 1.6
Maxent 7.8 20.6 na 7.3 2.2 2.6 8.4 16.5 1.7 na 2.6 30.0 0.3
RF 8.1 8.8 na 7.1 7.6 7.6 7.5 27.6 4.0 na 6.5 8.7 6.6

S. variabilis BRT 5.3 1.8 na 0.8 4.6 0.9 1.6 72.6 0.0 na 2.4 3.2 6.7
Maxent 6.7 6.7 na 3.1 3.3 0.5 1.8 36.5 0.0 na 7.1 24.0 10.2
RF 9.8 9.3 na 7.5 5.0 5.1 7.2 22.9 3.6 na 9.0 10.6 10.0

Stylasteridae BRT 10.3 14.0 na 2.2 2.0 7.9 3.7 42.8 2.5 na 2.9 4.7 7.0
Maxent 32.9 11.4 na 0.6 1.7 3.7 0.4 35.2 0.4 na 1.8 1.5 10.2
RF 9.2 11.8 na 7.9 7.7 9.1 6.8 21.6 3.3 na 7.4 5.7 9.7
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Fig. 3. Boosted Regression Tree models for each taxonomic group showing predicted habitat suitability. Warmer colors indicate more suitable habitat. The black line
indicates the extent of the SPRFMO convention area. A = Alcyonacea, B = Antipatharia, C = Demospongiae, D=E. rostrata, E=G. dumosa, F=Hexactinellida, G=M.
oculata, H = Pennatulacea, I=S. variabilis, J = Stylasteridae.
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Fig. 4. Maximum Entropy models for each taxonomic group showing predicted habitat suitability. Warmer colors indicate more suitable habitat. The black line
indicates the extent of the SPRFMO convention area. A = Alcyonacea, B = Antipatharia, C = Demospongiae, D=E. rostrata, E=G. dumosa, F=Hexactinellida, G=M.
oculata, H = Pennatulacea, I=S. variabilis, J = Stylasteridae.
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Fig. 5. Random Forest models for each taxonomic group showing predicted habitat suitability. Warmer colors indicate more suitable habitat. The black line indicates
the extent of the SPRFMO convention area. A = Alcyonacea, B = Antipatharia, C = Demospongiae, D=E. rostrata, E=G. dumosa, F=Hexactinellida, G=M. oculata,
H = Pennatulacea, I=S. variabilis, J=Stylasteridae.
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Fig. 6. Ensemble models for each taxonomic group showing the weighted habitat suitability mean calculated using Maximum Entropy, Boosted Regression Trees, and
Random Forest models. Warmer colors indicate more suitable habitat. The black line indicates the extent of the SPRFMO convention area. A = Alcyonacea,
B = Antipatharia, C = Demospongiae, D=E. rostrata, E=G. dumosa, F=Hexactinellida, G=M. oculata, H = Pennatulacea, I=S. variabilis, J = Stylasteridae.
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higher suitability scores (Supplemental Fig. S10), especially along the
Louisville Seamount Chain (Fig. 8j), and lower CVs (Fig. 7j).

4. Discussion

4.1. Spatial distribution patterns and niche space

We produced habitat suitability models for ten VME indicator taxa
in order to inform the spatial management of bottom trawl fisheries in
the SPRFMO convention area. Areas of suitable habitat were predicted
to occur throughout the region for each taxon, but the most highly
suitable habitat was generally clustered in patches covering a relatively
small fraction of the total area studied. The patchy distribution of
suitability predicted for each taxon highlights the difficulties in drawing
broad conclusions from limited field observations over vast areas of
seafloor, and emphasizes the role of modeling to fill in key knowledge
gaps.

While there were variations among the modeled taxa, habitat suit-
ability maps generally predicted high suitability of at least one of the
ten VME indicator taxa across a range of distinct areas, many of which
support important bottom trawl fisheries, distributed across the
SPRFMO convention area and the New Zealand EEZ. These areas in-
cluded the Chatham Rise, Kermadec Ridge, Colville Ridge, South
Tasman Rise, Macquarie Ridge, West Norfolk Ridge, and Louisville
Seamount Chain. Terrain metrics, when considered in concert, gen-
erally contributed considerably to the models for each taxon.
Topographical features have long been known to be important drivers
of cold-water coral and sponge distributions, and many modeling stu-
dies have relied solely on terrain metrics as predictor variables (e.g.,
Dolan et al., 2008; Rengstorf et al., 2012; Tong et al., 2013; Rowden
et al., 2017). As filter feeders, cold-water corals and sponges generally
exhibit strong preferences for complex and elevated seafloor features
that experience locally accelerated currents (Masson et al., 2003; Bryan
and Metaxas, 2006). Amplified current speeds improve habitat quality
by increasing food supply and capture rate (Thiem et al., 2006; Purser
et al., 2010), larval delivery (Piepenburg and Müller, 2004), and the
removal of sediments (Rogers, 1994). The availability of hard bottom
substrate is generally considered critical for the successful recruitment
of many coral species (Gass and Roberts, 2006). Therefore, it is sur-
prising that the substrate variables (percent gravel and percent mud)
were not more important in the models, as has been observed in pre-
vious studies (e.g., Georgian et al., 2014). However, it is possible that
the use of broad scale, interpolated sediment data concealed the con-
fluence of substrate and topographic features at finer scales, for ex-
ample, small carbonate outcrops and boulders that are known to sup-
port cold-water corals (e.g., Baco et al., 2010; Ross and Howell, 2012).
The 1 km2 grid resolution used in our analysis may have also been too
broad to capture small-scale variation in substrate type and

topographical features, even in areas with high sampling intensity.
Particulate organic carbon (POC) export to the seafloor, the sa-

turation state of aragonite and calcite, temperature, and dissolved
oxygen all contributed a small to moderate amount of explanatory
power to the models for each taxon. POC flux to the seafloor serves as a
proxy for the supply of food to cold-water corals and sponges, which are
most frequently found in highly productive waters (Roberts et al., 2009;
Wagner et al., 2011). The saturation states of aragonite and calcite
generally had moderate to high importance when included in models,
particularly for the four species of stony corals, which tended to occur
in areas with higher saturation states. High saturation states make it
energetically easier for organisms to secrete calcium carbonate skeletal
materials, and have been demonstrated to be vital for the growth and
survival of cold-water corals in experimental (Georgian et al., 2016b;
Kurman et al., 2017), field (Lunden et al., 2013; Georgian et al., 2016a),
and modeling (Tittensor et al., 2009; Davies and Guinotte, 2011;
Quattrini et al., 2013) studies. Given that most occurrence records oc-
curred within a relatively narrow temperature range, as has been
commonly observed in other cold-water coral (Roberts et al., 2005;
Cohen et al., 2006; Georgian et al., 2014) and sponge (Leys et al., 2004)
studies, it is not surprising that temperature was also an important
driver of predicted distributions, especially notable in the four
branching coral species. Our models also indicated a general preference
for moderate to high levels of dissolved oxygen, indicating that regions
with low dissolved oxygen concentrations may be untenable for re-
cruitment or long-term survival. Previous studies have also found that
cold-water corals and sponges are generally absent in regions with low
concentrations of dissolved oxygen (Freiwald, 2002; Leys et al., 2004;
Wisshak et al., 2005). Experimental observations confirm that cold-
water corals are sensitive to changes in both temperature and dissolved
oxygen (Dodds et al., 2007; Lunden et al., 2014; Naumann et al., 2014).
However, it is still uncertain to what extent dissolved oxygen structures
their spatial distribution, especially given the extensive cold-water
coral populations that occur in oxygen minimum zones in the Gulf of
Mexico (Georgian et al., 2016a) and the North Pacific (Baco, 2007). It is
important to note however, that due to the relatively high correlations
of each of these variables with each other, as well as with depth, it is
difficult to discern their biological relevance based solely on field ob-
servations and modeling results.

4.2. Previous modeling studies in the region

The models presented here expand and improve on previous efforts
to model VME indicator taxa in the South Pacific Ocean. Global habitat
suitability models have predicted that extensive suitable habitat exists
throughout the New Zealand region for stony corals (Tittensor et al.,
2009; Davies and Guinotte, 2011), black corals (Yesson et al., 2017),
and octocorals (Yesson et al., 2012). On the regional scale, Tracey et al.

Table 5
Performance metrics for Boosted Regression Trees (BRT), Maximum Entropy (Maxent), Random Forest (RF), and ensemble models for each taxon, assessed by the
area under the curve (AUC) score calculated using the entire occurrence and background dataset, and by the correlation (R2) between expected and predicted values.
Larger AUC and R2 values (closer to 1) indicate better model performance.

AUC R2

Taxa BRT Maxent RF Ensemble BRT Maxent RF Ensemble

Alcyonacea 0.967 0.897 0.974 0.972 0.61 0.42 0.67 0.64
Antipatharia 0.947 0.936 0.970 0.959 0.53 0.49 0.57 0.56
Demospongiae 0.958 0.890 0.960 0.962 0.57 0.39 0.59 0.59
E. rostrata 0.941 0.962 0.962 0.961 0.23 0.32 0.17 0.27
G. dumosa 0.924 0.927 0.935 0.942 0.17 0.24 0.15 0.19
Hexactinellida 0.901 0.867 0.910 0.914 0.32 0.29 0.33 0.34
M. oculata 0.954 0.948 0.959 0.963 0.17 0.35 0.11 0.22
Pennatulacea 0.845 0.847 0.884 0.872 0.14 0.11 0.15 0.14
S. variabilis 0.955 0.959 0.959 0.962 0.31 0.44 0.32 0.37
Stylasteridae 0.952 0.932 0.955 0.956 0.52 0.46 0.47 0.51
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Fig. 7. Model uncertainty (coefficient of variation) for the ensemble model of each taxonomic group calculated using Boosted Regression Trees, Maximum Entropy,
and Random Forest models. Warmer colors indicate areas with higher uncertainty. The black line indicates the extent of the SPRFMO convention area.
A = Alcyonacea, B = Antipatharia, C = Demospongiae, D=E. rostrata, E=G. dumosa, F=Hexactinellida, G=M. oculata, H = Pennatulacea, I=S. variabilis,
J = Stylasteridae.
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(2011) used BRT to model the distribution of E. rostrata, G. dumosa, M.
oculata, Oculina virgosa, and S. variabilis on the New Zealand extended
continental shelf. Predicted habitat suitability generally exhibited si-
milar spatial patterns but lower suitability scores than those calculated
in the present study. However, S. variabilis had notably different pre-
dictions, with a much larger distribution of highly suitable habitat oc-
curring on the deeper slopes of the Campbell Plateau. Anderson et al.
(2016a) constructed Maxent and BRT models for four species of stony
corals (E. rostrata, G. dumosa, M. oculata, and S. variabilis combined)
over the entire SPFRMO area and New Zealand EEZ. Their results
showed that suitable habitat for stony corals was generally restricted to
the Kermadec Ridge, Colville Ridge, West Norfolk Ridge, Lord Howe
Rise, Tasman Rise, and Louisville Seamount Chain, a spatial pattern
similar to our results for the same species. The most important pre-
dictors in their models were aragonite saturation state, dissolved
oxygen, particulate organic carbon, and temperature, which also con-
tributed moderate to large amounts of explanatory power to the models
in our study. Interestingly, as also seen in our models, their BRT models
predicted higher suitability scores than the Maxent models, but ex-
hibited similar spatial patterns, suggesting that this may be a trait in-
herent to these modeling types and highlighting the benefits of using an
ensemble modeling approach. However, the authors noted that errors in

the SRTM30 bathymetry data, sampling approach, lack of substrate
data, and spatial bias may have negatively affected their models - as
demonstrated by subsequent field validation efforts. Building from that
study, Anderson et al. (2016b) used BRT and Maxent to model suitable
habitat for a wide range of VME indicator taxa in the New Zealand EEZ
and immediately adjacent areas. Their habitat suitability models gen-
erally show similar spatial patterns as the results in this study for the
same taxa, but typically predicted a much larger area of highly suitable
habitat for most taxa. For example, highly suitable habitats for S. var-
iabilis, E. rostrata, G. dumosa, M. oculata, Stylasteridae, and Antipatharia
were predicted to occur extensively on and around the Campbell and
Bounty plateaus, while in our study suitable habitats in this region were
generally constrained to small patches. Interestingly, Pennatulacea also
exhibited the lowest model performance in their study, while similarly
having the largest predicted distribution of suitable habitat across the
region. Previous studies have found that more generalized species with
large areas of occupancy (in this case, likely driven by the ability of
Pennatulacea to occupy soft bottom substrate on a variety of terrain
features), corresponded to worse model performance (Araújo and
Williams, 2000; Segurado and Araújo, 2004). However, neither
Anderson et al. (2016b) or our study found a significant correlation
between sample size and model performance, indicating that this result

Fig. 8. Ensemble models for the central Louisville Seamount Chain for each taxonomic group showing the weighted habitat suitability mean calculated using Boosted
Regression Trees, Maximum Entropy, and Random Forest models. Warmer colors indicate more suitable habitat. A = Alcyonacea, B = Antipatharia,
C = Demospongiae, D=E. rostrata, E=G. dumosa, F=Hexactinellida, G=M. oculata, H = Pennatulacea, I=S. variabilis, J = Stylasteridae.
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was not simply an artefact of our available data. An important differ-
ence between the two studies (which used a similar set of presence
data) was the use of a much larger set of background/absence records
by Anderson et al. (2016b) (10,000) based on true target-group ob-
servations.

A more recent habitat suitability modeling study focused efforts on
the Louisville Seamount Chain, an area historically and currently sub-
jected to a bottom trawl fishery that largely targets orange roughy.
Based on a camera and bathymetry survey, a suite of high-resolution
(25 m) ensemble models were constructed for S. variabilis and two VME
habitat indicator taxa, Brisingida and Crinoidea, for six of the chain’s
80+ seamounts, using true presence-absence data (Rowden et al.,
2017). The authors predicted that only small, rare patches (< 0.1% of
the total modeled area) on the flanks of seamounts could be char-
acterized as VMEs, based on the density thresholds specified by New
Zealand’s Environmental Protection Agency through domestic regula-
tions (see Penney et al., 2009). The abundance and probability of
presence of S. variabilis was predicted to be low across much of the
seamounts. In contrast, the S. variabilis model produced in our study
predicted extensive suitable habitat throughout the Louisville Sea-
mount Chain, with the most suitable habitat frequently occurring on
both the tops and sides of seamounts. This discrepancy may indicate
that our models generally over-predict VME species occurrence on
smaller scale topographical features and that, in general, habitat suit-
ability values from models using pseudo-absence background data
should be treated as relative rather than absolute quantities. It is also
likely that their use of abundance data and true absence data con-
tributed to an improved ability to classify an appropriate threshold for
VME designation on the seamount scale. Previous models (Anderson
et al., 2016a) also had apparent accuracy issues in the Louisville Sea-
mount Chain based on subsequent field validation surveys, suggested to
have resulted not only from errors in the bathymetry data but also from
the lack of true absences, lack of substrate data, and the unique topo-
graphy of the seamounts compared to the areas that predominantly
influenced model training. In particular, the lack of high quality sub-
strate data may be hampering modeling efforts at the seamount scale, as
may be a lack of precision in upscaled transforms of critical predictor
variables with low native resolutions (e.g., silicate (1°) and carbonate
parameters (0.5°); Table 1). Field surveys have found that seamounts in
the Louisville Seamount Chain frequently have relatively flat tops with
sandy substrate that would not be suitable for larval recruitment of
stony corals (Anderson et al., 2016a). While our models were trained
using substrate data (percent gravel and percent mud), the raw data
were generally concentrated within the New Zealand EEZ and inter-
polated elsewhere. Therefore, we likely failed to accurately depict
substrate at a biologically relevant scale in the Louisville Seamount
Chain. Regardless of the causal mechanism, these results highlight the
importance of pairing broad-scale regional models with high-resolution
models in order to better inform spatial management and produce
protection recommendations that can be implemented at appropriate
scales.

The habitat suitability modeling in this study represents a con-
siderable improvement over previous regional efforts. In particular,
many of the potential sources of error outlined in Anderson et al.
(2016a) have been addressed, and we followed many of their re-
commendations for future studies. Environmental variables were con-
structed using new bathymetry data that is not prone to the errors and
bias found in the SRTM30 data used in previous studies. In addition, we
were able to include variables that characterize substrate, which is
often a critical factor in determining the distribution of cold-water
corals (e.g., Georgian et al., 2014). The modeling techniques used were
also more sophisticated. We used a targeted background sampling ap-
proach designed to eliminate the deleterious influence of spatial bias in
the occurrence datasets. Spatial bias reduces the performance and in-
terpretability of models (Phillips et al., 2009), but can largely be ac-
counted for using our targeted sampling approach (Elith et al., 2010). In

addition, we adopted the residual autocovariate approach to reduce
spatial autocorrelation (sensu Crase et al., 2012), a common feature of
sampling collection that violates the assumption of independent data in
many models and has been shown to increase error rates and make it
difficult to ecologically interpret the influence of environmental vari-
ables (Dormann, 2007; Dormann et al., 2007). Finally, our use of en-
semble models constructed using three algorithms (BRT, Maxent, and
RF models) reduces the risk that structural inadequacies, inappropriate
parameter specifications, or bias in each approach may unduly influ-
ence the final outputs (Robert et al., 2016). While each of the three
individual modeling approaches predicted similar spatial patterns in
habitat suitability, ensemble models are preferred for spatial manage-
ment applications as they typically produce more robust predictions
(Araújo and New, 2007) and can improve model accuracy outside of the
primary training region (Randin et al., 2006). Despite these improve-
ments, future studies in the region would benefit from using true ab-
sence and abundance data, modeling strategically important areas at a
high resolution, and including higher quality substrate data. Further-
more, our models did not account for any uncertainty in the environ-
mental predictor variables, and future modelling efforts should seek to
address this issue.

4.3. The role of habitat suitability models in the conservation and
management of vulnerable marine ecosystems

The predicted areas of suitable habitat for VME indicator taxa
overlap with historically trawled regions or places of current fishery
interest in the South Pacific Ocean (Clark and O’Driscoll, 2003; Clark
et al., 2016; Black and Tilney, 2017; Roux et al., 2017). The apparent
overlap of VMEs and prime fish habitat is unsurprising given the strong
association of many demersal fish species with seamounts and other
elevated seafloor features, and the complex structures that can be cre-
ated by cold-water corals and sponges on such topography (Costello
et al., 2005; Baillon et al., 2012; Kutti et al., 2014). This overlap pre-
sents a significant obstacle to limiting adverse impacts to benthic ha-
bitats while still maintaining sustainable fisheries. However, it is pos-
sible to optimize closures by spatially quantifying the trade-off between
biodiversity protection and fishery catch, including with the combined
use of habitat suitability models and decision-support tools (e.g.,
Leathwick et al., 2008; Penney and Guinotte, 2013; Lagasse et al.,
2015).

Bottom trawling has known detrimental impacts on benthic com-
munities (Watling and Norse, 1998; Fosså et al., 2002; Clark and
Koslow, 2007; Sampaio et al., 2012; Pusceddu et al., 2014). Interim
protection measures for VMEs in the SPRFMO convention area include
the move-on rule that requires vessels to move bottom trawl operations
at least five nautical miles away if a VME taxon is caught as bycatch.
While limiting fishing activity in areas known to contain VMEs is
paramount, move-on rules are increasingly being questioned due to the
risk of expanding the footprint of trawling into new areas and the po-
tential for damage by even a low level of trawling (Williams et al.,
2010). Spatial closures are an important tool for effectively managing
bottom-trawling fisheries and preventing significant adverse impacts to
VMEs in the deep sea. However, designating the location and extent of
closures is challenging because the distribution of VMEs is generally
poorly known, and there is often industry and political opposition to
restricting fishing opportunities. The models presented here will aid in
assessments of the effectiveness of current and historical closures, and
will inform the creation of improved, long-term management plans for
the region. The spatial predictions generated by these models will allow
managers to move beyond the current interim protections by enabling
future selection of closed areas with habitats that are predicted to be
highly suitable for VME indicator taxa. Given the broad range of taxa
modeled, our results will also help protect areas that are predicted to be
highly suitable for a large diversity of associated taxa, both acting to
reduce VME indicator taxa bycatch in trawls and protect key
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biodiversity hotspots. In addition, models can be used to help ensure
that future closures are representative of key seafloor features and
biogeographic areas, ensuring adequate protection for all VME asso-
ciated taxa (Penney et al., 2009).

Habitat suitability models also provide a framework for assessing
and responding to other anthropogenic stressors that threaten VMEs in
addition to bottom trawling. For example, climate change and ocean
acidification are projected to impact the distribution of cold-water
corals around the world (Guinotte et al., 2006; Tittensor et al., 2010).
Cold-water corals in the Pacific Ocean already grow in waters with low
aragonite and calcite saturation states (this study and Thresher et al.,
2011; McCulloch et al., 2012; Jantzen et al., 2013; Baco et al., 2017).
Ocean acidification is projected to significantly reduce aragonite and
calcite saturation states (Feely et al., 2012), making it difficult or im-
possible for corals to continue to calcify and create reef structures
(Turley et al., 2007). In concert with reduced pH, temperatures in the
deep sea are projected to rise due to ongoing global warming (Mora
et al., 2013). As deeper waters acidify and warm, cold-water corals and
sponges may exhibit reduced calcification rates (Lunden et al., 2014;
Georgian et al., 2016b), altered metabolic activity (Dodds et al., 2007),
and changes in gene expression (Carreiro-Silva et al., 2014). Climate
change is also expected to result in the decreased export of POC to the
seafloor and reduced dissolved oxygen levels (Mora et al., 2013), which
may hamper the ability of VME indicator taxa to metabolically com-
pensate for other stressors (Georgian et al., 2016b). Thus, for spatial
management measures to be able to accommodate the cumulative im-
pact of fishing and climate change on VMEs, habitat suitability models
that use environmental variables adjusted for future climate change
scenarios should also be used to inform spatial management processes.

5. Conclusions

Given the likelihood that benthic communities in the deep sea will
be adversely affected by several anthropogenic stressors, it is necessary
to devise effective, science-based management strategies for ensuring
their continued survival. Restoration of deep-sea environments is gen-
erally prohibitively expensive or impossible with current technology,
making preemptive management activities critical for preserving these
vulnerable habitats (Van Dover et al., 2014). While global stressors
stemming from the effects of climate change will be extremely difficult
to mitigate, efforts to reduce perturbations from acute stressors such as
bottom trawling may prove to be both practical and fruitful. Recently,
effort has been put into establishing closed areas for protecting deep-sea
ecosystems from the impacts of trawling, and habitat suitability mod-
eling can and has assisted in the design and evaluation of these con-
servation efforts (e.g., Knudby et al., 2013; Guinotte and Davies, 2014;
Rooper et al., 2014). We recommend that regional and local habitat
suitability models be used in conjunction to identify and characterize
the distribution of VMEs and inform the spatial management planning
of fisheries organizations.
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