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EXECUTIVE SUMMARY 

Bowden, D.A.; Anderson, O.A.; Escobar-Flores, P.; Rowden, A.A.; Clark, M.R. (2019). 
Quantifying benthic biodiversity: using seafloor image data to build single-taxon and community 
distribution models for Chatham Rise, New Zealand. 

 
New Zealand Aquatic Environment and Biodiversity Report No. 235. 65 p. 
 
Understanding the spatial distribution of seabed biodiversity is essential for effective management of the 
effects of human activities including fishing and mining. Distributions of individual species, patterns of 
variability in species richness and abundance, and locations of sensitive or vulnerable habitats are essential 
inputs into marine spatial planning and risk assessment processes. Chatham Rise is an important deep-sea 
fishing region in New Zealand. Lying at the convergence of Sub-Tropical and Sub-Antarctic water masses, 
it has a highly diverse and dynamic physical environment, supporting high levels of biological production 
and encompassing a broad range of benthic habitats and fauna. Existing knowledge about seabed faunal 
distributions on Chatham Rise comes from records of museum specimens, fisheries and research trawl 
bycatch, and increasing from photographic surveys. Data from museum and trawl databases have been used 
to build models that predict species and community distributions in unsampled space but because the 
models are based on presence-only data from disparate sources and do not incorporate population density 
data, their predictions are considered uncertain.  

To reduce uncertainty in predictions, we used a new, spatially extensive, fully quantitative, and 
taxonomically consistent dataset of benthic invertebrate occurrence developed by merging data from five 
seabed photographic surveys, to inform development of improved predictive models at both single-taxon 
and community levels. Two independent modelling methods were used for each level: Boosted Regression 
Trees (BRT) and Random Forests (RF) for single-taxa, and Regions of Common Profile (RCP) and 
Gradient Forests (GF) for communities, enabling ensemble model predictions for single taxa and 
comparison between classification methods for communities. For single-taxon models, the ‘hurdle’ model 
technique was used, combining predictions from presence-absence and abundance models to reduce bias 
associated with zero-inflated data. Sets of explanatory environmental variables (12 for single-taxon models, 
18 for GF, and 9 for RCP) were selected from an initial set of 58 candidate layers and the 354 invertebrate 
taxa identified from the seabed image surveys were condensed into a set of 69 taxa by aggregation to higher 
taxonomic levels and exclusion of rarer and non-benthic taxa. Single-taxon models were produced for 20 
taxa, selected according to their sensitivity or vulnerability to human-induced environmental impacts, while 
all 69 taxa were included in community models. 

Outputs from the single-taxon models are presented as maps showing predicted occurrences as densities 
(individuals 1000 m-2) with associated estimates of model precision (CV) and cross-validation metrics. All 
models performed well by these criteria but a comparison using invertebrate bycatch data from the trawl 
database was inconclusive for most taxa modelled because of inadequate abundance information in the test 
data. While predictions for most of the taxa modelled have clear similarities with those of previous models, 
they also show differences, often driven by inclusion of density data. Outputs from the community models 
are presented as spatial classifications of the study area, analogous to existing spatial classifications such 
as the Marine Environments Classification and derivatives. RCP divided the area into 7 classes, whereas a 
hierarchical clustering method allowed GF results to be assessed at class levels from 7 to 50 classes and 
compared visually against existing classifications.  

These predictions are the best-informed representations of seabed distributions at regional scales in the 
New Zealand Exclusive Economic Zone to date and provide a resource that will have applications in marine 
environmental management and ecosystem research. Potential applications include quantification of 
benthic impacts from bottom-contact fishing gear and other anthropogenic agencies, informing spatial 
management of biodiversity through, for example, the design of marine protected areas, and informing 
research into ecosystem linkages between water-column and seabed processes. A further obvious 
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application and test of the predictions will be to use the modelled relationships developed here to predict 
faunal distributions across seabed areas beyond Chatham Rise.  
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1. INTRODUCTION 

1.1 Background 
In New Zealand, as in other parts of the world, concern about the environmental effects of deep-sea bottom 
trawling is an escalating issue (Clark 2010, Clark et al. 2016, Kaiser et al. 2006). The Marine Stewardship 
Council has identified benthic effects as a concern that is not being addressed adequately for eco-
certification, and public concern about the effects of bottom trawling has been heightened by increasing 
awareness of impacts on iconic seabed habitats such as cold-water corals on seamounts (Clark et al. 2019). 
Key knowledge required to understand and manage the ecosystem impacts of bottom-contact fishing and 
other seabed disturbances is quantitative baseline information about the distribution and abundance of 
benthic species and communities. Because such information represents fundamental knowledge about 
biodiversity, it is also required by government agencies to conform with New Zealand’s Biodiversity 
Strategy (https://www.mfe.govt.nz/publications/biodiversity/new-zealand-biodiversity-strategy) and meet 
commitments under international agreements including the Convention on Biodiversity Aichi Targets 
(https://www.cbd.int/sp/targets/). 

Because detailed quantitative data on benthic distributions are generally sparse in depths beyond the coastal 
zone, there has been increasing interest in the use of habitat suitability models, also known as species 
distribution models (SDM, Reiss et al. 2015, Vierod et al. 2014) in which sophisticated non-linear 
correlations between point-sampled distributions of benthic fauna and grids of environmental variables are 
developed to predict probabilities of suitable habitat occurring in unsampled areas. However, the very 
sparseness of data that has prompted development and use of such models can also result in high levels of 
uncertainty associated with their predictions, especially at broader spatial scales (Araujo & Guisan 2006). 
This uncertainty has limited the usefulness of modelled distribution data in environmental management, 
and in some cases in New Zealand has contributed to potentially over-cautious management decisions in 
relation to proposed seabed activities (e.g., EPA 2015). 

 
1.2 Habitat suitability modelling 
Several methods have been developed to model spatial distributions by defining relationships between 
point-sampled faunal data and environmental gradients. These methods can be broadly separated into those 
that model individual taxa (referred to here as ‘single-taxon models’) and those that model the entire 
sampled assemblage or community simultaneously (referred to here as ‘community models’). Established 
single-taxon modelling methods include Boosted Regression Trees (BRT, De'ath 2007), Maximum 
Entropy (MaxEnt, Elith et al. 2011), Random Forests (RF, Breiman 2001), and Generalized Additive 
Models (GAM), while community modelling methods include Generalised Dissimilarity Modelling 
(GDM, Ferrier et al. 2007), Gradient Forests (GF, Ellis et al. 2012), and Regions of Common Profile (RCP, 
Foster et al. 2013). The field is in constant development, however, and no one method has been 
demonstrated to have clear superiority (Robinson et al. 2017). 

For single-taxon models in this study, we selected two classification/regression decision-tree methods in 
common usage for ecological data: RF and BRT. These are among a number of methods that use a machine-
learning (ML) algorithm to learn the relationship between the response and its predictors, rather than relying 
on the more prescriptive approaches based on statistical methods, and both have been shown to perform 
well in comparative studies (e.g., Martinez-Rincon et al. 2012, Valle et al. 2013). We also considered how 
best to work with the type of taxon density data produced from analysis of photographic transects, which 
are typical of point-sampled ecological data sets in being highly over-dispersed, strongly skewed 
distributions with an excess of zeros. Parametric models such as Generalized Linear Models (GLMs) can 
allow for the response variable to have a non-normal error distribution such as quasi-Poisson, while other 
model types allow for negative binomial and zero-inflated Poisson distributions. A more intuitive approach 
to dealing with zero-inflated data, however, and one that has been shown in at least one study to outperform 
such models (Potts & Elith 2006), is the use of ‘hurdle’ models (Cragg 1971). A hurdle model consists of 
two component models, a binary model predicting probability of presence using the entire data set, and a 
regression model predicting counts or density using only data from presence locations; the outputs of the 
two parts are then combined to produce final predictions. We used the hurdle model approach to predict 
abundance for all single-taxon models. 
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While individual taxa can be modelled using common habitat suitability or species distribution modelling 
methods, it is often important for management and conservation initiatives to be able to map spatial 
variability in overall community composition. Until recently, it was only possible to model whole-
community variability (e.g., for bio-regionalisation), by summarising differences among sites as a matrix 
of similarities or dissimilarities and then clustering these based on relative similarities. The resulting 
clusters of sites with self-similar communities could then be plotted in geographic space to visualise 
distributions, or related to continuous environmental variable data to enable prediction in unsampled areas. 
The most sophisticated method developed using this approach is GDM, which first defines relative 
similarities among communities at sample sites (using Bray-Curtis similarity), then develops a generalised 
linear model to identify transformations of environmental variables that correlate best with the community 
similarity matrix. In New Zealand, GDM was used to develop the original Marine Environment 
Classification (MEC, Snelder et al. 2007) and subsequent Benthic-Optimised Marine Environment 
Classification (BOMEC, Leathwick et al. 2012). However, the reliance of such methods on reducing the 
full detail of the sampled community data to a matrix of pairwise distances among sites has drawbacks in 
that the results cannot readily be interpreted in terms of how individual taxa respond to environmental 
gradients, and that there is no robust method to quantify uncertainty in the resulting classifications.  

More sophisticated techniques have been developed recently that use novel statistical approaches to model 
multiple species simultaneously in relation to environmental variables. Of these, we chose for this study 
two that have become established as accessible methods for community modelling of this type: RCP and 
GF. GF develops RF analyses for each taxon in the community dataset, describing relationships between 
the sampled distribution of that taxon and a set of available environmental layers. Results from these 
individual analyses are then aggregated and used to develop transformations for each environmental 
predictor that maximise their correspondence with overall community variability, or beta diversity. Outputs 
from GF are similar in form to those from GDM in that each cell in the spatial grid of the study area is 
associated with transformed values for each of the environmental predictor variables. This approach 
enables mapping of the area at different spatial resolutions; from a map at grid-resolution representing 
gradients in taxon turnover, to hard-boundary classifications developed using appropriate clustering 
algorithms to group grid cells based on their transformed environmental values (Compton et al. 2013, 
Pitcher et al. 2012, Stephenson et al. 2018). GF has advantages over GDM in that the contributions of 
individual taxa can be quantified explicitly, resulting in less uncertainty in understanding of what the output 
classifications represent in terms of taxa likely to be encountered in different regions. RCP attempts to 
achieve the same result as GDM and GF; classification of space into distinct regions within which 
community composition is similar but uses a more statistically robust single-stage modelling approach, 
which enables explicit quantification of uncertainty. Its outputs are in the form of probabilities for each grid 
cell that a given community type will be present. These probabilities can then be condensed into a hard-
boundary spatial classification by assigning each cell to a community type based on a threshold probability 
value (Foster et al. 2017, Hill et al. 2017). 

 

1.3 Project objectives 
The current project has the overall aim of reducing uncertainty in our understanding of the distributions of 
benthic fauna across Chatham Rise, a key deep-sea fisheries area. It is structured around four research 
objectives: (1) a dedicated research voyage using cameras and sediment corers to collect new data on seabed 
habitats and fauna across Chatham Rise; (2)  development of a comprehensive dataset of benthic fauna 
derived from all seabed photographic surveys on Chatham Rise; (3) assessment of the usefulness of existing 
predictive models, using the new dataset as an independent test set, and (4) development of updated 
predictive distribution models of benthic fauna and habitats based on all available data. 

The results of Objective 1, the voyage to collect new data, are described by Bowden et al. (2017), the dataset 
of benthic faunal distributions developed from multiple photographic surveys for Objective 2 is described 
by Bowden et al. (2019), and the assessment of existing predictive models is described by Anderson et al. 
(2019). Here, we present work under Objective 4, in which we use the dataset developed under Objective 
2 to inform development of new single-taxon and community habitat suitability models for Chatham Rise. 
The work presented here consisted of four main phases: (i) review and selection of available environmental 
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predictor variables; (ii) selection and development of modelling methods, (iii) construction of models, and 
(iv) where possible, testing of the models against independent data. 

2. Methods 

2.1 Study area 
Chatham Rise is a continental rise extending eastwards from the South Island of New Zealand for 
approximately 1000 km, with Mernoo Bank at its western end and the Chatham Islands at the eastern end 
(Figure 1). The Sub-Tropical Front coincides with, and is partially constrained by the rise, and because of 
this it is the most biologically productive fisheries region in New Zealand’s Exclusive Economic Zone 
(EEZ) (Clark et al. 2000, Marchal et al. 2009, McClatchie et al. 1997), with intense phytoplankton blooms 
propagating from west to east along its length (Chiswell 2001, Nodder et al. 2012, Nodder et al. 2007). 
Commercially important bottom trawl fisheries exploit populations of scampi, hoki (Macruronus 
novaezelandiae), orange roughy (Hoplostethus atlanticus), and oreos (Pseudocyttus maculatus, Neocyttus 
rhomboidalis and others). Recent summaries of bottom-contact trawl history across Chatham Rise (Baird 
et al. 2011, Black & Tilney 2015, Black et al. 2013) show highest trawling intensity, primarily from the 
hoki fishery, at 450–700 m depth west of Mernoo Bank and on the southern and northern central flanks of 
Chatham Rise. At present, initiatives to protect benthic habitats and fauna are limited to closures, since 
2000, of fisheries on some seamounts in the ‘Graveyard’ and ‘Andes’ regions on the northwest flank and 
southeast flanks of the rise, respectively (Clark & Dunn 2012), and establishment in 2007 of two Benthic 
Protection Areas (BPAs); the Mid Chatham Rise BPA and the East Chatham Rise BPA (Helson et al. 
2010). 

 

 
 
Figure 1: Chatham Rise. Isobaths show 250, 500, 1000, and 1500 metre depths and red polygons show Benthic 
Protection Areas (BPAs). The three main bank features are named, together with the locations of the 
Graveyard and Andes seamounts. Inset map shows location of the study area in relation to New Zealand and 
the 1000 m isobath. 
 
 
2.2 Benthic faunal data 
 
Faunal sample data for all models were from photographic surveys of Chatham Rise. A comprehensive 
account of the photographic transect surveys conducted on the Chatham Rise, the image data they collected, 
and the auditing procedures used to create a combined dataset of faunal densities, is provided by Bowden 
et al. (2019). For this analysis we selected data from five surveys (Figure 2): a core set of four biodiversity 
surveys that provided wide spatial coverage of the study area, used the same high-quality imaging system 
(NIWA’s Deep Towed Imaging System, DTIS, Hill 2009), and used consistent methods for logging 
navigational and observational data, plus one commercial ROV survey of the central Chatham Rise crest 
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(Rowden et al. 2013), which was designed by NIWA researchers to provide data comparable in extent and 
quality to the DTIS surveys. 
 

 
 
Figure 2: Chatham Rise showing the location of photographic transect stations (colour-coded dots, see legend) 
for the five voyages examined from which data were used to develop the models. Isobaths show 250, 500, 1000, 
and 1500 metres, red polygons show Benthic Protection Areas. 
 
Voyages TAN0705 and TAN1701 were broad-scale biodiversity surveys of the Chatham Rise, following 
stratified random designs. Voyage TAN1306 was designed primarily to survey biodiversity across 
gradients of fishing intensity, and voyage TAN1503 was focussed on seamounts in the Graveyard and 
Andes seamount groups on the central northern and eastern flanks of the rise, respectively. Voyage 
CRP2012 focussed on the phosphorite-rich sediments on the crest of the central portion of the Chatham 
Rise. 

The final data set consisted of 125 658 records of individual benthic organisms from analyses of 358 seabed 
photographic transects across the five surveys, with 109 161 records from analyses of video, and 15 795 
from still images. Data spanned the full extent of Chatham Rise from 172° 50´ E to 173° 53´ W and 42° 
29´ S to 45° 5´ S and from 40 m to 1850 m depth. Density estimates for each taxon in the dataset were 
derived from full counts of individuals throughout each photographic transect (video surveys) or for all 
analysed image frames (still image surveys), standardised to numbers of individuals 1000 m-2 (see Bowden 
et al. 2019).  

 
2.3 Selection of environmental predictor variables  
 
A set of environmental variables that potentially influence marine organism distributions was generated 
from regional or global datasets upscaled to a finer resolution based on depth data from a 250 m bathymetry 
grid for the New Zealand region by Georgian et al. (2019) following the method of Davies & Guinotte 
(2011). Additional seafloor terrain metrics including measures of depth variability (range, standard 
deviation, ‘ruggedness’), slope (angle, standard deviation), and curvature (convexity or concavity in plan 
view, profile view, and composite) were derived from this bathymetry grid using Benthic Terrain Modeler 
in ArcGIS 10.3.1.1 (Table 1). Several other potentially important variables used in earlier modelling 
studies, including temperature-depth residuals, sediment composition, seamounts, and cumulative trawl 
intensity were subsequently added to this set.  

Temperature residuals were obtained from the residuals of a regression of temperature versus depth, 
resulting in a variable that provides information about temperature in a form that is uncorrelated with depth 
and represents deviations from the expected temperature for a given depth. Sample sites were designated 
as being on a seamount if they were within the footprint of the deepest complete depth contour around any 
of the seamounts recorded in the NIWA Seamounts database (Rowden et al. 2008). The percent mud and 
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percent gravel layers for the region were developed from more than 30 000 raw sediment sample datapoints 
compiled in dbseabed (Jenkins 2010), which were then imported into ArcGIS and interpolated using 
Inverse Distance Weighting. Trawl footprint data were provided by Fisheries New Zealand (FNZ) (Baird 
& Wood 2018), and trawl intensity calculated for each grid cell as the total cumulative area impacted by 
bottom trawling between 1 October 1989 and 30 September 2006 (i.e., all records up to the end of the last 
complete fishing year prior to the first of the camera surveys). 

In total, 58 variables were considered, many of which were strongly correlated (particularly the terrain 
window-size variants) and all were of unknown ecological influence. Because of the wide range of taxa to 
be included in the models, each of which potentially responds to different characteristics of the physical 
environment at different scales, we reduced the number of variables by a conservative four-stage selection 
process. First, variables were grouped by four categories known to influence distributions of seabed fauna: 
Seafloor Characteristics; Water Chemistry; Water Physics, and Productivity. Second, each variable was 
examined visually (in GIS) and any with obvious processing artefacts were excluded. Third, correlations 
were calculated for all pairwise combinations of the remaining variables and graphical representations and 
cluster dendrograms were used to exclude the most highly correlated variables while also ensuring 
representation of each of the four high-level categories (i.e., seafloor characteristics, water chemistry, water 
physics, and productivity). Finally, the ecological influence of the environmental variables within each 
category was assessed through a set of initial exploratory BRT models for representative taxa (a 
combination of those most commonly recorded and those recorded to a high taxonomic resolution). This 
process resulted in a reduced set of 23 environmental variables. 

 
Table 1: The thirty-nine environmental variables considered for community and habitat suitability models. 
Variables are grouped by four categories: Seafloor Characteristics; Water Chemistry; Water Physics, and 
Productivity. Seabed topography variables were each initially generated at a range of focal mean sizes (3 × 3 
cells, 7 × 7 cells, and 15 × 15 cells), which expanded the total number of variables considered to 58. 
 
Variable Name Units Native 

Resolution 
Reference 

Seafloor Characteristics     
DepthG bathy meters 1 km2 NIWA bathymetry 
Percent gravelG grav % – NIWA 
Percent mudG mud % – NIWA 
Ruggedness 2G Ruggedness – – Derived from bathymetry 
SlopeG slope degrees – Derived from bathymetry 
Slope standard deviation2G slopeSD – – Derived from bathymetry 
AspectG aspect degrees – Derived from bathymetry 
Depth range2G range m – Derived from bathymetry 
Depth standard deviation2G std – – Derived from bathymetry 
Profile curvatureG profcurv – – Derived from bathymetry 
Plan curvatureG plancurv – – Derived from bathymetry 
CurvatureG curv – – Derived from bathymetry 
Bathymetric Position Index – 
fineG 

bpi_fine – – Derived from bathymetry 

Bathymetric Position Index – 
fine: standard deviation G 

bpi_fine_SD – – Derived from bathymetry 

Bathymetric Position Index – 
broadG 

bpi_broad – – Derived from bathymetry 

Bathymetric Position Index – 
broad: standard deviationG 

bpi_broad_SD – – Derived from bathymetry 

SeamountsG seamounts – – Rowden et al. (2008); Yesson et al. 
(2011) 

     
Trawl intensity trawl m2 5 km2 Baird & Wood 2018 
     
Water Chemistry     
Apparent oxygen utilizationG appox ml l-1 1° Garcia et al. (2014a) 
Aragonite saturation stateG arag - 0.5° Bostock et al. (2013) 
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Variable Name Units Native 
Resolution 

Reference 

Calcite saturation stateG calcite - 0.5° Bostock et al. (2013) 
Dissolved oxygenG dissox ml l-1 1° Garcia et al. (2014a) 
NitrateG nitrate µmol l-1 1° Garcia et al. (2014b)  
Percent oxygen saturationG percentox % 1° Garcia et al. (2014a) 
PhosphateG phosphate µmol l-1 1° Garcia et al. (2014b) 
SilicateG silicate µmol l-1 1° Garcia et al. (2014b) 
SalinityG salinity - 0.25° Zweng et al. (2013) 
     
Water Physics     
Sigma thetaG sigma kg m-3 0.25° Derived from temperature and depth
TemperatureG temp °C 0.25° Locarnini et al. (2013) 
Temperature residuals tempres °C 0.25° Derived from temperature and depth
Dynamic topography dynoc m 0.25° http://www.aviso.oceanobs.com 
Tidal current speed tidalcurr ms-1 1 km2 

 
NIWA 

Sea surface temperature gradient sstgrad oC km-1 
 

1 km2 
 

Uddstrom & Oien (1999) 

     
Productivity     
Particulate organic carbon 
exportG 

poc mg C m-2 d-1 0.08° Lutz et al. (2007) 

Vertically Generalized 
Production Model14G 

vgpm mg C m-2 d-1 0.167° Oregon State University3 

Eppley-VGPM14G epp mg C m-2 d-1 0.167° Oregon State University3 
Carbon-Based Productivity 
Model-214G 

cbpm mg C m-2 d-1 0.167° Oregon State University3 

Dissolved organic matter dom aDOM 
(443) m–1 

1 km2 NIWA 

     
1-Surface data derived from MODIS –Aqua (NASA) as the mean, minimum, maximum, and standard deviation from mid-2002–2016. 
2-Terrain metrics calculated using window sizes of 3, 5, 7, and 15 cells. 
3-Data obtained from http://www.science.oregonstate.edu/ocean.productivity 
4-Calculated as the mean, minimum, maximum, and standard deviation, for the period 2002 to 2016 
G-Upscaled to 250 m bathymetry (Georgian et al. 2019) 
 

 
These 23 variables were then offered as explanatory variables to an initial GF model. GF is robust to large 
sets of correlated explanatory variables but a smaller set of variables was required for RCP and the single-
taxon RF and BRT models to avoid overfitting, especially with the relatively modest sample size (357 
records). To achieve this reduction, firstly the ranked variable importance from the GF models was used to 
identify a sub-set of 18 variables on which to base the final GF models and as a starting point for the single-
taxon models. Variables excluded in this process were either spatial scale variants (e.g., choice of the 
standard deviation of depth calculated using a 15 × 15 grid cell window rather than 3 × 3), one of a 
complementary pair (e.g., choice of percent gravel rather than percent mud), or strongly correlated with 
other more ecologically interpretable variables (e.g., choice of silicate rather than nitrate). 

The 18 predictor variables used in the final GF model were then further reduced to a set of 12 on which to 
base the BRT and RF single-taxon models, by examining the R2 weighted importance calculated for each 
variable in the final GF model and excluding the 6 least important. All 12 variables were offered to initial 
BRT and RF models for each taxon, and their ranked importance calculated. Only the 6 most important 
variables in each of these initial models were used in the final models for each taxon. Reducing the number 
of redundant or non-independent variables in the models increases the robustness of models and minimises 
the effects of multicollinearity that reduce their predictive power (Yoo et al. 2014). Although this procedure 
means that there is a different set of explanatory variables in each model, and variable influence cannot be 
consistently compared among all taxa for all variables, it ensures that the variables most relevant to each 
taxon were used in each model. 
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2.4 Selection of taxa 
 
Bowden et al. (2019) condensed the 354 invertebrate taxa identified from the five photographic transect 
surveys into a set of 79 ‘aggregated’ taxa. This set ranges in taxonomic resolution from species-level for 
distinctive taxa readily identified from imagery (e.g., Metanephrops challengeri and Dermechinus 
horridus), to family (e.g., Primnoidae and Stylasteridae), order (e.g., Ceriantharia and Brisingida), class 
(e.g., Asteroidea and Holothuroidea), or phylum (e.g., Brachiopoda). Some finer taxonomic detail is 
masked in this aggregation approach but it ensures that consistency of identifications is maintained across 
the entire data set and that distinctions likely to be relevant to management of benthic impacts, such as 
differentiation of brisingid seastars in the class Asteroidea and Dermechinus horridus in the class 
Echinoidea, are retained. For model development here, we excluded taxa that were present at fewer than 5 
sites, resulting in a final set of 69 taxa available to model. 

For single-taxon models, we prioritised the selection of taxa according to their relevance as indicators of a 
community/habitat/ecosystem that is sensitive or vulnerable to human-induced environmental impacts 
(e.g., fishing, seabed mining, climate change) as defined for New Zealand (MacDiarmid et al. 2013), the 
southwest Pacific (Parker et al. 2009), and the Antarctic (Agnew et al. 2009, Parker & Bowden 2010). The 
20 taxa selected (Table 2, bold type) were present at between 57 and 302 of the 357 sample sites and ranged 
in taxonomic resolution from individual species (e.g., the branching coral Goniocorella dumosa and 
scampi, Metanephrops challengeri) to the Phylum level (e.g., Bryozoa). Notably, there were insufficient 
records to model three of the four reef-forming scleractinian corals found on the Chatham Rise, therefore 
observations of Enallopsammia rostrata, Madrepora oculata, and Solenosmilia variabilis were combined 
with those of Goniocorella dumosa to produce an overall model for “Coral Reef”. Sea pens (Pennatulacea) 
were modelled as a group, combining all species except for Kophobolemnon sp., which is much smaller 
than most other species recorded in the group, can be readily distinguished from other genera and occurred 
in locally extremely high densities, which distorted the overall distribution for the group. Similarly, models 
for Asteroidea included all starfish taxa except for brisingids (Order Brisingida) as these are known to have 
different habits (obligate suspension-feeders) and are readily distinguished from other genera. Models for 
echinoids were separated into the Subclass Euechinoidea (all non-cidaroid regular echinoids) and the Order 
Spatangoida (burrowing heart urchins), as these are also readily distinguished. No further restrictions were 
imposed on the remaining combined groupings, and all taxa listed in Table 2 (except for Coral reef, as 
noted above) were considered for the community models. 

Table 2: Taxa used in the models, membership status with respect to recognised lists of sensitive habitats 
(MacDiarmid et al. (2013), Vulnerable Marine Ecosystem (VME) indicator taxa (Agnew et al. 2009, Parker et 
al. 2009, Parker & Bowden 2010), and the number of Chatham Rise sites at which they were observed (non-
zero records). Bold type indicates those taxa for which single-taxon habitat suitability models were built; all 
listed taxa (except for Coral reef, a combination of the four branching coral species listed separately) were 
considered for the community models. Code = abbreviations used in this study (based on the Fisheries New 
Zealand 3-letter taxon codes, where applicable).  

Taxon Common name Code
Sensitive 

Habitat
VME 

indicator 
Non-zero 

records
Goniocorella dumosa Branching stony coral GDU Yes yes 66
Coral Reef  REEF Yes yes 106
Pennatulacea Sea pens PTU Yes yes 163
Demospongiae Common sponges DEM Yes yes 238
Hexactinellida Glass sponges HEX Yes yes 104
Xenophyophoroidea Giant forams ZFR Yes  62
Brachiopoda Lamp shells BPD Yes yes 69
Bryozoa Lace corals COZ Yes yes 207
Hydrozoa Hydroids HDR Yes yes 219
Stylasteridae Hydrocorals COR yes 95
Metanephrops challengeri Scampi SCI  102
Hyalinoecia sp. Quill worms HTU  134

Euechinoidea 
Non-cidaroid 
echinoids 

EUE
 166

Spatangoida Heart urchins SPT  166
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Taxon Common name Code
Sensitive 

Habitat
VME 

indicator 
Non-zero 

records
Buccinidae Whelks BUCC  201
Volutidae Volutes VOL  151
Paguridae Hermit crabs PAG  302
Cidaroidea Pencil urchins CID yes 197
Holothuroidea Sea cucumbers HTH  215
Asteroidea Sea stars ASR  335
Alcyonacea Soft corals  73
Anemones   316
Anthomastus sp   108
Antipatharia Black corals  42
Ascidiacea Sea squirts  129
Barnacles   9
Bivalvia Bivalves  29
Brachyura True crabs  153
Brisingida Brisingid sea stars yes 100
Caridea Caridean shrimps  255
Caryophylliidae Cup corals  94
Ceriantharia sp Tube anemone  188
Cladorhizidae Carnivorous sponges  30
Corallimorpharia   36
Crinoidea (motile) Feather stars yes 73
Crinoidea (stalked) Sea lilies yes 10
Crustacean (lobster) Projasus parkeri  11
Dermechinus horridus Orange sea urchins  23
Echinothurioida Leather urchins  146
Echiura Spoon worms  13
Enallopsammia rostrata Branching coral yes yes 7

Enypniastes eximia 
Swimming 
holothurian  18

Epizoanthidae   30
Flabellum sp.   195
Galatheidae/Chirostylidae Squat lobsters  231
Gastropoda Sea snails  280
Gorgonacea Gorgonian corals  100
Gorgonocephalidae Basket stars  13
Hyalascus sp. Quill worms yes yes 33
Isididae Bamboo corals  41
Kophobelemnon sp  yes yes 22
Lithodidae Stone crabs  10
Madrepora oculata Branching coral yes yes 8
Nudibranchia Nudibranchs  29
Octopoda Octopuses  67
Ophiuroidea Brittle stars  166
Paragorgiidae Bubblegum corals  7
Polychaeta   107
Primnoidae Sea fans  57
Psolidae   27
Pycnogonida Sea spiders  32
Radicipes sp   74
Scaphopoda Tusk shells  27
Serolidae Brucerolis sp.  84
Solenosmillia variabilis Branching coral yes yes 9
Stephanocyathus sp Cup coral  24
Taiaroa tauhou   101
Telesto sp   42
Worm (indet.)   67
Zoanthidea   43
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2.5 Single-taxon models  
 
Spatial autocorrelation 

Before modelling, we calculated Moran’s I index (via spdep in R) to assess spatial autocorrelation in the 
input presence-absence and abundance data. This index measures the correlation between observations as 
a function of the distance separating them; values can range from -1 (highly dispersed) to 1 (highly 
clustered), with a value of 0 indicating perfect spatial randomness. Where significant spatial autocorrelation 
exists, this can be accounted for by constructing an additional variable from the residuals of an initial model 
(Crase et al. 2012). The distance-based nearest neighbour analysis function dnearneigh was used to identify 
neighbouring data points for each record, setting the upper distance bound to a high level to avoid any no-
neighbour entities. Moran’s I test was then applied, using species presence values and residuals of the initial 
models, with weights calculated for the identified neighbours at each location. 

Random Forest models 

RF modelling is a non-parametric approach which builds classification or regression trees using random 
subsets of the input data (Breiman 2001). The RF models were built using randomForest in R. All models 
were tuned using the train function in the R package caret to select optimal values for complexity 
parameters mtry (the number of variables used in each tree node), maxnodes (the maximum number of 
terminal nodes in each trees), and ntree (the number of trees to grow). The RF approach to habitat suitability 
modelling has also been successfully applied in the past to benthic invertebrate data in the New Zealand 
region (Georgian et al. 2019, Rowden et al. 2017). 

Boosted Regression Tree models 

BRT modelling is an advanced form of additive regression based on decision trees, where the individual 
terms of the regression are simple trees, fitted in a stage-wise manner. Simple (short) trees are formed by 
relating a response to recursive binary splits of the data, then combined (boosted) to improve predictive 
power by focussing each successive tree on model residuals. Tree-based methods such as BRT and RF 
have the advantage over traditional methods that they can easily handle missing data, outliers, categorical 
as well as continuous variables, and automatically handle interactions between predictors (Elith et al. 2008). 
The BRT method has been widely used in ecological applications and has performed well in previous 
studies of deep-water invertebrate and fish distributions in New Zealand (e.g., Compton et al. 2013, 
Georgian et al. 2019, Leathwick et al. 2006, Rowden et al. 2017, Tracey et al. 2011). 

The BRT models were run with the tree-complexity (number of splits) set to 5, thus allowing for a high 
level of variable interaction, and the learning rate (which determines the weight given to each successive 
tree in the model) adjusted so that the number of trees in the final models exceeded 1000, following 
guidelines in Elith et al. (2008). Stochasticity is incorporated into BRT models by selecting at random only 
a portion (the bag-fraction) of the data to use at each step in the model. We used the default value of 0.5 in 
all models. BRT models were built in the R statistical computing environment (R Core Team, 2018) using 
libraries (gbm) and functions described in Elith et al. (2008), Leathwick et al. (2006), and Elith & Leathwick 
(2011). 

Hurdle models and uncertainty 

The two components of the hurdle models were 1) a presence/absence model based on a binary logistic 
regression, which predicts probability of presence and 2) a regression model based only on the positive (i.e. 
non-zero) observations of species abundance, which predicts abundance at locations of species presence. 
For the regression model component, abundances were log10 transformed to provide a near-normal 
distribution of the response. Final estimates of abundance were made by multiplying the probabilities from 
the first component by the abundances from the second component.  

To assess the relative confidence in predictions across the model extent, we used a bootstrap technique to 
produce spatially explicit uncertainty measures, after Anderson et al. (2016) and Georgian et al. (2019). 
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Random samples of the input data were drawn with replacement and sets of presence-absence, abundance, 
and hurdle models constructed using the same settings as the original. Predictions of abundance were then 
made for each cell of the model extent. This process was repeated 500 times for each model type (BRT and 
RF) resulting in 500 estimates of abundance for each taxon in each cell. Model uncertainties were then 
calculated as the coefficient of variation (CV) of the bootstrap output. 

Model performance 

Performance of the separate components of the hurdle models was assessed for each taxon by a process of 
cross-validation. The model input data was partitioned randomly to create 70% training 30% test data sets. 
Training data were used to construct a preliminary model to apply to test data to measure performance. For 
the presence/absence models, performance was evaluated using AUC (area under the Receiver Operating 
Characteristic Curve), defined in these models as the area under a plot of the fraction of true positives versus 
the fraction of true negatives. In general, AUC values over 0.5 indicate better than random performance, 
values over 0.7 indicate adequate performance, and values over 0.8 indicate excellent performance (Hosmer 
et al. 2013). Abundance model performance was evaluated as the correlation (R2) between predicted and 
observed values for the test data. This process was repeated 10 times for each model type, and average 
AUC and R2 values calculated to represent overall performance.  

Overall performance of the hurdle models was also measured by cross-validation. Here the model input 
data was split into ten groups to create ten grids of predicted abundance from hurdle models trained on all 
but one group, in turn. The correlation between the observed and predicted abundance at the locations of 
each test group was then calculated and the mean of these ten values used to represent overall hurdle model 
performance. 
 
Ensemble models 

We produced an ensemble model for each taxon, incorporating the predictions and underlying assumptions 
and modelling strategies of both the BRT and RF hurdle models. This approach limits dependence on a 
single model type or structural assumption and enables a more robust characterization of the predicted 
spatial variation and uncertainties (Robert et al. 2016). Ensemble models were constructed by taking 
weighted averages of the predictions of the two hurdle models, using methods adapted from Oppel et al. 
(2012), Anderson et al. (2016), Rowden et al. (2017), and Georgian et al. (2019). This adapted procedure 
derives a two-part weighting for the BRT and RF components of the ensemble model, taking equal 
contributions from the overall model performance and the uncertainty measure (CV) in each cell, as 
follows, 

 

𝑊ோ்ଵ ൌ
ெௌಳೃ

ெௌಳೃାெௌೃಷ
  and  𝑊ோிଵ ൌ

ெௌೃಷ

ெௌಳೃାெௌೃಷ
     

 

𝑊ோ்ଶ ൌ 1 െ
ಳೃ

ಳೃାೃಷ
  and  𝑊ோிଶ ൌ 1 െ

ೃಷ

ಳೃାೃಷ
   

 

𝑊ோ் ൌ
ௐಳೃభାௐಳೃమ

ଶ
  and 𝑊ோி ൌ

ௐೃಷభାௐೃಷమ

ଶ
   

 
𝑋ாேௌ ൌ 𝑋ோ் ∗ 𝑊ோ்   𝑋ோி ∗ 𝑊ோி  
 

𝐶𝑉ாேௌ ൌ ට
ሺಳೃ∗ ಳೃሻమ∗ ௐಳೃ

మ ାሺೃಷ∗ ೃಷሻమ∗ ௐೃಷ
మ

ಶಿೄ
మ   

 
where 𝑀𝑃𝑆ோ் and 𝑀𝑃𝑆ோி  are the hurdle model performance statistics; 𝑋ோ் and 𝑋ோி are the model 
predictions; and 𝐶𝑉ோ் and 𝐶𝑉ோி  are the bootstrap CVs; and 𝑋ாேௌ and 𝐶𝑉ாேௌ are the weighted ensemble 
predictions and weighted CVs, respectively, from which maps of predicted species distribution and model 
uncertainty were produced. 
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Single-taxon model evaluation 

For model validation, a set of independent taxon abundance data was compiled from the Fisheries New 
Zealand research trawl database trawl. The trawl database includes about 20 000 records of trawl catches 
from the Chatham Rise, although the number of specimens caught is not always recorded. These data are 
used with several caveats that impact on the recorded counts for each record: 1) the samples were collected 
using a variety of gear configurations, therefore catchability will vary to an unknown degree among records; 
2) a count for colonial species such as bryozoans and Goniocorella dumosa is difficult to assign to a sample 
and may not match well to the counts from the image data; 3) some taxa are too rarely caught (e.g., buccinid 
whelks), or so fragile that they are nearly always destroyed on capture (e.g., xenophyophores) for sufficient 
material to be available for any comparison with the image data; and 3) whereas the models were built 
using biological records from no earlier than 2007, the research trawl data was compiled from all available 
records, going back to the 1960s, and therefore may be influenced by variable taxonomic resolution of 
recording and changes in faunal distributions resulting from population shifts or continued trawling 
disturbance (Bowden et al. 2015). For validation, predicted abundances from the ensemble models at 
sampled locations of each taxon in trawl were compared against the number of specimens recorded in 
trawl, using Spearman's rank-order correlation. 

 

2.6 Community models 
 
Regions of Common Profile 

RCP is a multi-species, model-based approach to the delineation and mapping of species assemblages. A 
multivariate adaptation of a mixture-of-experts model is used to group sites based on their species profile 
(presence/absence or abundance) in relation to environmental conditions, thereby simultaneously grouping 
species and modelling the environmental variables which determine those groupings. These groupings can 
then be predicted at unsampled sites, based on the environmental conditions. The output of the model 
process does not produce a hard classification for the regions identified, instead providing the probability 
of each RCP occurring at a prediction location. The location can then be assigned to an RCP based on the 
RCP with the highest probability at that site. This approach has previously been used to classify 
assemblages of land-based vegetation types and marine fish (Foster et al. 2017, Hill et al. 2017) but 
application to marine benthic invertebrate communities is apparently yet to be attempted. This is partly 
because the RCP method is still in development and with existing code libraries some operations, such as 
extracting data about the characteristic fauna associated with each RCP, are not straightforward (Scott 
Foster, CSIRO, Hobart, pers. comm.).  

The RCP model was based on abundance (numbers 1000 m-2) of the 69-taxon data set and incorporated a 
negative binomial distribution to help compensate for overdispersion in the data, with a log-link function. 
Unlike GF, the RCP procedure is sensitive to overfitting. To avoid this issue the number of environmental 
predictors was limited to 9 by excluding the most correlated of those used for the single-taxon models. In 
addition, to counter the effect of correlation and assist with model convergence, each predictor was 
converted to an orthogonal polynomial. 

The number of RCP groups must be specified when running the model. To determine the optimal number 
of groups, trial model runs were performed with numbers of groups ranging from 2 to 10. The model run 
with the lowest value of the Bayesian Information Criterion (BIC), after any “mis-fit” models based on a 
small number of sites were removed, was used as the basis for specifying the number of RCP groups. To 
avoid models based on local likelihood maxima, 500 model optimisations were performed, with random 
starting values. Predictions were made into unsampled space by applying the (transformed) grids of 
environmental variables to the RCP model, and a matrix of RCP-membership probabilities at the location 
of each grid cell was produced by running 500 Bayesian bootstraps. Each RCP can be examined separately, 
by plotting the gridded probabilities, but to produce a regional classification we assigned each grid cell to 
the RCP with the highest probability. By using this approach, a grid of model uncertainties was easily 
formed, empirically, from the estimated probabilities of the assigned RCP in each cell. 

We considered the available data for validation of the RCP analysis, using methods described by Hill et al. 
(2017). To follow their approach would require an independent set of seafloor image data, collected and 
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analysed in a similar manner to that used for training the model. Unfortunately, such a dataset does not 
exist for the Chatham Rise. We considered using the data available from the trawl database, as used in the 
validation of the single-taxon models. However, these data are unsuitable because firstly, there are too few 
records of invertebrates with reliable density information (i.e., number caught), and secondly, the trawl 
catchability is likely to be highly variable across the 69 taxa used in the community models and would bias 
any comparison with the camera data. 

Gradient Forests 

GF is a method for modelling beta diversity (taxon turnover) based on relationships between sampled multi-
species density data and environmental gradients (Ellis et al. 2012, Pitcher et al. 2011). GF builds an 
aggregation of RF models, each describing the environmental relationships of an individual taxon. The 
information from these individual models is then used to develop a set of transformations of the 
environmental layers, such that the correspondence between each layer and the faunal occurrence data is 
maximised (Compton et al. 2013, Pitcher et al. 2012, Stephenson et al. 2018). These transformed 
environmental layers can then be used to generate gridded maps of predicted taxon turnover across 
unsampled areas. Furthermore, the resulting maps can be used with statistical clustering techniques to 
define spatial classifications of the study area at a range of class levels defining areas likely to have similar 
community composition. In the context of planning for spatial management or conservation in general, and 
this study in particular, it is of note that GF differs from the other community modelling method used here, 
RCP, in that the optimal number of classes generated is not determined by a statistical goodness of fit test. 
Rather, the hierarchical classifications developed can be generated at any level of detail appropriate to the 
question being addressed. The drawback to this flexibility is that statistical uncertainty is not propagated 
through to the classification stage, so there is no formal test for the reliability of the resulting classifications. 

GF is robust to the inclusion of correlated predictor variables (Ellis et al. 2012) and initial model runs to 
assess the effect of using different sets of environmental variables suggested that inclusion of correlated 
variables had little effect on model outcomes. However, because many correlated variables had no 
measurable effect on the results, a set of 18 variables (Table 3) was selected for inclusion in the final model 
runs, based on their ranked influence in the trial models and representation of the four categories of 
variables defined earlier (see Table 1). Trawl intensity was included because bottom trawling has been 
active over much of Chatham Rise for more than 30 years and thus is likely to have affected the observed 
distributions of some taxa. However, this layer differs from the others in that it represents an anthropogenic 
disturbance that is spatially correlated with seabed type, productivity, and potentially other parameters and 
can be highly variable among years and across a wide range of spatial scales (Baird & Wood 2018). The 
aim in this project is to generate the most accurate maps of benthic community distributions achievable. 
Because the trawl intensity layer made an apparently significant contribution to the GF model and because 
the methods used are correlative (i.e., with no assumption of causality), we decided to retain this variable 
in analyses but run two models in parallel: the first using the 18 base environmental layers including trawl 
intensity, and the second excluding trawl intensity. 

GF models were run using function gradientForest in R, with subsequent classification steps following 
Stephenson et al. (2018). Input data consisted of the subset of the full taxon data set developed by Bowden 
et al. (2019), consisting of density measurements for 69 taxa at 358 sample sites across Chatham Rise (see 
Section 2.4), and the set of either 17 (excluding trawl history) or 18 (including trawl history) environmental 
predictor layers. A log10(1+x)  transformation was applied to the taxon density data to down-weight the 
influence of highly abundant taxa, enable a broader range of taxa to influence outcomes, and reduce the 
potential for artefacts arising from differences in density estimates derived from still image and video 
survey data. Models were run with 500 trees per taxon, the compact function set to false, and the correlation 
threshold for applying conditional permutation to allow for co-linear predictor variables set to 0.5. Model 
outputs include R2 values for all taxa having correlations with environmental variables of greater than zero, 
ranking of predictor variables in terms of their contributions to both mean accuracy of the model and mean 
importance weighted by the taxon R2 values, and plots showing: the density of RF kernel splits in relation 
to each of the environmental gradients; cumulative change in the abundances of individual taxa along each 
of the environmental gradients, and where changes in community  composition occur along each of the 
environmental gradients. To visualise GF outputs in terms of taxon-turnover, principal components analysis 
(PCA) was used to summarise variations in the transformed environmental variables across the study area 
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at grid-cell resolution (1 × 1 km). Values from the first three dimensions of the PCA were used to define 
red, green, and blue colour values as input to a map representing generalised relationships between taxon 
turnover and environmental space.  

Hard-boundary classifications were developed from the GF environmental transforms using methods 
developed for the MEC and BOMEC (Leathwick et al. 2012, Snelder et al. 2007), and most recently applied 
to a GF analysis of demersal fish species in the New Zealand EEZ (Stephenson et al. 2018). The full grid 
of transformed environmental predictor values (378 540 grid cells) was classified in two stages. First, non-
hierarchical k-medoids clustering (using clara in R) was used to assign cells to 300 classes. Second, 
hierarchical agglomerative flexible UPGMA clustering with the Manhattan distance metric (using agnes in 
R) was used to summarise the 300 clara classes at 7, 15, 25, and 50-class levels, from which maps were 
developed in a geographic information system (QGIS). The 50-class level was chosen to approximate to 
the number of strata (n=36) used in the 2016 Chatham Rise research trawl survey (our mapped study 
domain extends beyond the limits of the trawl survey and the 50-class classification yields approximately 
35 classes within the trawl survey strata domain), and the number of classes of the MEC and BOMEC 
classifications at 70-class level (see Snelder et al. 2007 for justification) that are represented in our study 
domain. The 7-class level was chosen for comparison with outputs from the RCP analysis (see below), and 
the two intermediate levels to assess how incremental increases in class-level affect class boundaries. 

Community model evaluation 

While there is apparently no robust way to evaluate the performance of the GF models at different class 
levels without an independent data set (Pitcher et al. 2012, Snelder et al. 2007, Stephenson et al. 2018), we 
used two approaches to compare classifications.  

First, for the GF model only, we assessed the ability of transformed environmental variables to describe 
community composition at each classification level by comparing biological similarities among classes 
against environmental distances among classes in non-parametric RELATE matrix correlation tests (Clarke 
& Warwick 2001, Somerfield et al. 2002). Sample sites were overlaid on each GF classification and tagged 
with the corresponding class labels, enabling average density per taxon per class to be calculated for all 
classes in which there were at least three sample points. These data were log10(1+x) transformed and used 
to calculate matrices of Bray-Curtis similarities among classes for each class-level. Environmental distance 
matrices were calculated using the Manhattan distance metric based on mean values of the GF-transformed 
variables for each class in the relevant classification. RELATE tests used weighted Spearman’s rank 
correlation, with probability (p) computed by 999 permutations of the community data matrix. 

Second, we assessed the degree to which different class levels and different classification methods 
separated the faunal data into distinct groupings, using ANOSIM (analysis of similarities, Clarke & 
Warwick 2001). One-way ANOSIM tests using Bray-Curtis dissimilarity and weighted Spearman rank 
correlations were run for each classification, with ‘class’ as the factor and taking the Global-R statistic as a 
measure of relative ability to group the faunal data. The R statistic ranges from 1, where all within-group 
similarities are greater than among-group similarities, to 0, where there is no difference between within-
group and among-group similarities. Thus, a higher Global-R score indicates more effective separation of 
the faunal data by the classification boundaries. Because this test does not depend on the transformed 
environmental variables (which are different for each classification method), we were able to apply it not 
only to the two classifications developed here (RCP and GF) but also the MEC, the BOMEC, and the 
survey strata developed for the trawl survey strata. 

3. Results 

3.1 Environmental predictor variables 
 
The 18 predictor variables used in the final GF model, as selected through analysis of correlation patterns, 
categorised-variable BRT models for key species, and initial GF model runs (Section 2.3), are shown in 
Table 3 along with the subset of 12 on which the BRT and RF single-taxon models were based. The 6 
variables excluded (those with the lowest R2 weighted importance in the final GF model (see Figure 30)) 
were bpi_broad, grav, std15, silicate, dom, and poc. 
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Table 3: Reduced set of 18 environmental variables derived from elimination of correlated variables and 
assessment of relative influence in initial BRT and GF runs, showing which were used in each model type (see 
Table 1 for more detailed descriptions of the variables). 
 

Variable 

Single-
taxon 
models 

Community 
models 

Seafloor Characteristics   
    bathy y y 
    profcurv y y 
    trawl y y 
    bpi_broad n y 
    grav n y 
    std15 n y 
   
Water Chemistry   
    salinity y y 
    dissox y y 
    silicate n y 
   
Water Physics   
    tempres y y 
    dynoc y y 
    sstgrad y y 
    tidalcurr y y 
   
Productivity   
    epp_mean y y 
    epp_min y y 
    cbpm_mean y y 
    dom n y 
    poc n y 
 
 
3.2 Single-taxon models 
Tests for assessing spatial autocorrelation (Moran’s I test) in the abundance data and on the residuals for 
each taxon typically produced near-zero values, indicating minimal or no clustering at the scale used for 
identification of nearest neighbours (0–150 km). Although a level of spatial autocorrelation is expected to 
be present in virtually all ecological data (Lennon 2000) the statistical modelling techniques we used can 
effectively account for some degree of spatial autocorrelation (Crase et al. 2012). In addition, sources of 
spatial autocorrelation are also likely to be partially explained by the explanatory variables, as they are not 
limited to endogenous factors such as dispersal limitations and breeding aggregations. The Moran’s I tests 
showed that any remaining spatial autocorrelation in the model residuals was negligible, therefore they 
were deemed independent and identically distributed. This finding fulfils one of the key assumptions in 
statistical modelling (Dormann et al. 2007), the violation of which reduces the predictive power of the 
models and increases the chances of type I error in hypothesis testing (Lennon 2000, Doorman et al. 2007). 
For these reasons, we did not specifically include spatial autocorrelation in the modelling framework (e.g., 
by creating an additional variable to account for the spatial structure in the model residuals following Crase 
et al. 2012). 

Variable selection and influence 

The variables most frequently selected for the final 6-variable presence-absence models, for both BRT and 
RF, were bathy and tidalcurr (Appendix 1 - Table A-1, Table A-2). These variables were both selected in 
15 of the 20 RF models as well as in 14 (bathy) and 12 (tidalcurr) of the BRT models. In 19 of the 40 
models, combined, bathy was ranked either the first or second most important variable. Other variables 
frequently selected were dynoc, dissox, and tempres in the RF models, and dissox, cbpm_mean, and 
epp_mean in the BRT models. 
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The influence of bathy in the 6-variable models for abundance was less pronounced, present in 11 of the 
RF models and 10 of the BRT models. dynoc (15/20) was the most important variable overall in the RF 
models but less so in the BRT models (9/15). However, the most influential variable overall in the 
abundance models was profcurv, which was ranked as the first or second most important variable in 5 of 
the RF models and 6 of the BRT models. Other variables frequently selected included tempres in both 
models and trawl in the BRT models (see Table A-1, Table A-2). 

The taxa examined each have their preferred depth range, which are expected to be wider for taxa 
comprising more species. Predictor influence plots (not shown) for the abundance and presence-absence 
models tend to reflect these ranges, showing distinct peaks at the most favoured depth for individual species 
such as Goniocorella dumosa and Hyalinoecia sp., and less defined depth ranges for e.g., Asteroidea and 
Demospongiae. Predicted abundance and presence tended to increase with increasing tidal current 
(tidalcurr) and higher values of dynamic topography (dynoc) for most species, although for some the 
pattern was less clear, reflecting the higher food supply associated with stronger tidal flows and ocean 
currents. Profile curvature (profcurv) of the seabed affects acceleration and deceleration of water flow and 
therefore food supply; profile curvature values were low at most sites but small increases tended to be 
associated with higher predicted abundance and presence. Values of dissolved oxygen (dissox) lower than 
6.0 mg/l are considered sub-optimal (Garcia et al. 2014a); high abundance and presence values were also 
often associated with higher levels of dissolved oxygen, increasing strongly as levels approached 6.0 mg/l, 
a level not exceeded over much of the Chatham Rise. For most models in which trawl intensity (trawl) was 
selected as a predictor there were indications of increasing (e.g., Buccinidae, Paguridae, Volutidae, 
Hyalinoecia sp.) or decreasing (Goniocorella dumosa) abundance with increasing cumulative area trawled. 

Model performance 

Cross-validated performance metrics were similar for the Random Forest and Boosted Regression Tree 
presence/absence models, and generally indicated “adequate” to “excellent” fits to test data. Mean AUC 
values from the cross validation ranged from a low of 0.64–0.65 for Bryozoa to a high of 0.90–0.91 for 
Brachiopoda (Table 4). Performance metrics for the abundance models were also similar between the two 
methods, although correlation measures were higher for Random Forests than for Boosted Regression 
Trees for all but two taxa (Pennatulacea and Bryozoa). Mean correlations were variable among taxa, 
ranging from 0.31 (Holothuroidea) to 0.72 (Stylasteridae) for RF models to 0.29 (Volutidae) to 0.63 
(Hyalinoecia sp.) for BRT models; and were 0.5 or greater for all but four taxa for the RF models, and all 
but 6 of the BRT models.  

For the hurdle models, cross-validated correlation values (calculated in a slightly different way to those of 
the abundance models, see Section 2.5) were less similar between model types than those of the abundance 
models and overall a little less variable, particularly for the RF models. Performance statistics for the BRT 
hurdle models were lower overall than for the RF models, although for several taxa the values were quite 
similar and for Goniocorella dumosa and Hyalinoecia sp. the BRT model correlated slightly better with 
the test data than did the RF model. Overall, these values indicate a generally good level of agreement 
between the observed and predicted abundance at the independent test locations and allow a high level of 
confidence in the models.   

The higher values of the performance statistics of the RF compared with the BRT models have the effect 
that (apart from Goniocorella dumosa and Hyalinoecia sp.) the RF models are more influential in the 
ensemble models, due to the higher weighting. The greatest differences in performance statistics are for 
Asteroidea and Holothuroidea where the RF models have about twice the weight of the BRT models in the 
final ensemble models; for other taxa, e.g., Goniocorella dumosa and scampi (Metanephrops challengeri), 
the contribution from each model type is close to equal. 
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Table 4: Model performance metrics for the presence/absence and abundance components of the BRT and RF 
habitat suitability hurdle models created for each taxon. 
 

Taxon  
Presence/absence 

(AUC)
Abundance 

(Correlation)
Hurdle 

(Correlation)
 RF BRT RF BRT RF BRT
Goniocorella dumosa 0.86 0.89 0.61 0.60 0.53 0.60
Coral Reef 0.84 0.83 0.52 0.50 0.65 0.53
Pennatulacea 0.76 0.78 0.53 0.56 0.59 0.40
Demospongiae 0.78 0.77 0.62 0.56 0.65 0.55
Hexactinellida 0.75 0.71 0.58 0.50 0.49 0.42
Xenophyophoroidea 0.83 0.84 0.50 0.35 0.54 0.34
Brachiopoda 0.90 0.91 0.63 0.61 0.59 0.47
Bryozoa 0.64 0.65 0.51 0.57 0.47 0.40
Hydrozoa 0.76 0.78 0.58 0.54 0.63 0.51
Stylasteridae 0.88 0.88 0.72 0.52 0.60 0.43
Metanephrops challengeri 0.85 0.88 0.50 0.46 0.66 0.59
Hyalinoecia sp. 0.78 0.77 0.65 0.63 0.60 0.67
Euechinoidea 0.76 0.78 0.65 0.60 0.68 0.52
Spatangoida 0.87 0.85 0.63 0.55 0.73 0.57
Buccinidae 0.71 0.73 0.65 0.55 0.62 0.53
Volutidae 0.79 0.80 0.39 0.29 0.63 0.38
Paguridae 0.76 0.76 0.61 0.59 0.75 0.57
Cidaroidea 0.79 0.78 0.34 0.30 0.61 0.40
Holothuroidea 0.81 0.81 0.31 0.30 0.66 0.33
Asteroidea 0.81 0.87 0.44 0.41 0.77 0.46
 

Model predictions 

Predictions of abundance from the ensemble models were limited to the region from which the sample data 
was collected, i.e. the Chatham Rise and a small part of the adjacent coastlines of the North and South 
Islands. Predicted abundance from the models is presented in the same units as the input data, i.e., 
individuals 1000 m-2. 

Predictions from both the abundance and presence-absence components of the RF and BRT models were 
generally similar across the Chatham Rise region for most of the taxa modelled. A typical example is shown 
for the predatory gastropod mollusc family Volutidae in Figure 3. Both model types show regions of high 
abundance around the Chatham Islands, the shallow banks towards the west of the Rise, and some parts of 
the extreme west and southwest. Some differences can be seen however along the northern edge of the Rise 
where BRT tends to predict higher abundance. The presence-absence models are also in close agreement, 
with high probability of presence predicted for a large portion of the western end of the Rise and a strip 
along the southern flanks of the Rise. The areas with the lowest probability of presence, notably in deeper 
water in the south, central shallower regions, and the far east, are similar for both models. Not surprisingly 
then, the general patterns shown when the abundance and presence-absence models are combined into 
hurdle models are also similar between model types. 
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Figure 3: Volutidae. Predictions of abundance (individuals 1000 m-2) from the separate components of the 
hurdle models using Random Forests (left) and Boosted Regression Trees (right). Top, abundance models; 
middle, presence-absence models; bottom, combined hurdle models. Note, the abundance models and hurdle 
models are plotted on a log scale to allow better discrimination of the variation in the predicted response. 
 
Maps showing predicted and observed abundance from the ensemble models for each of the 20 taxa, along 
with estimated model precision, are shown in Figure 4 to Figure 23. Expanding circles are shown on the 
maps with areas proportional to observed abundance at the transect sample sites, with the scale set so that 
the maximum circle area in each plot is the same. 

The 20 taxa show a high degree of variation in distributional patterns, with some showing a clear association 
with depth (e.g., Xenophyophoroidea in relatively deep water in all parts of the Rise (Figure 7), and 
Brachiopoda mostly in shallow water along the crest of the Rise (Figure 8)), and others showing a 
preference for certain regions of the Rise (e.g., Hyalinoecia sp. (Figure 12) and Buccinidae (Figure 14) in 
the southeast, Euechinoidea (Figure 13) along the south Rise, and Coral Reef mostly on the central crest of 
the Rise (Figure 19)). Visually, the agreement between predicted and observed abundance is excellent for 
most if not all taxa, although the relationship is less clear for some of the modelled taxa that are widespread 
or comprised of many species, such as Demospongiae and Cidaroida. 

Transects from the Graveyard and Andes seamounts (TAN1503) often had high abundance values and 
dominated the abundance data for some taxa (e.g., Hexactinellidae (Figure 6) and Demospongiae (Figure 
5) sponges, bryozoans (Figure 9), and stylasterid corals (Figure 11)) with conditions in these locations 
likely to have strongly influenced predictions in unsampled space. 
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Figure 4: Goniocorella dumosa. Ensemble model predictions of abundance (individuals 1000 m-2) on a log scale 
(top), with observed abundance from the camera survey stations represented by red circles (scaled to have a 
constant maximum radius in this and each of the following plots), and estimated uncertainty (CV) (bottom) 
from bootstrapping.  

 
 
Figure 5: Demospongiae. See Figure 4 for details. 
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Figure 6: Hexactinellida. See Figure 4 for further details. 
 

 
 
Figure 7: Xenophyophoroidea. See Figure 4 for details. 
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Figure 8: Brachiopoda. See Figure 4 for details. 
 

 
 
Figure 9: Bryozoa. See Figure 4 for details. 
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Figure 10: Hydrozoa. See Figure 4 for details. 
 

 
 
Figure 11: Stylasteridae. See Figure 4 for details. 
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Figure 12: Hyalinoecia sp. See Figure 4 for details. 
 

 
 
Figure 13: Euechinoidea. See Figure 4 for details. 
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Figure 14: Buccinidae. See Figure 4 for details. 
 

 
 
Figure 15: Paguridae. See Figure 4 for details. 
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Figure 16: Cidaroidea. See Figure 4 for details. 
 

 
 
Figure 17: Holothuroidea. See Figure 4 for details. 
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Figure 18: Asteroidea. See Figure 4 for details. 
 

 
 
Figure 19: Coral Reef. See Figure 4 for details. 
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Figure 20: Scampi (Metanephrops challengeri). See Figure 4 for details. 
 

 
 
Figure 21: Pennatulacea. See Figure 4 for details. 
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Figure 22: Spatangoida. See Figure 4 for details. 
 

 
 
Figure 23: Volutidae. See Figure 4 for details. 
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3.3 Community models 
 
Regions of Common Profile 

To avoid potential over-fitting, a reduced set of 9 predictors, including the trawl layer, was chosen from 
the 12 used as a basis for the individual taxon models. Although showing moderate correlations with some 
of the other variables, bathy was retained due to its likely relationship with other, unavailable, 
environmental parameters that may have an influence on community composition, the relatively high 
confidence with which it is measured, and an expectation that its inclusion may help to more clearly 
delineate boundaries of predicted regions. However, the variable tidalcurr was excluded due to a high 
correlation with depth (89%); cbpm_mean was excluded due to high correlation (over 80%) with dynoc; 
and epp_min was excluded due to the combination of a high correlation with epp_mean and a lower rank 
in initial GF models. 

The best model (taken to be the one with the lowest BIC value) classified the data into 7 RCP classes 
(Figure 24). Analysis of diagnostic plots describing normality and homogeneity of variance in model 
residuals revealed a small amount of deviation from normality at the extremes of the data but otherwise did 
not reveal any major inadequacies in the model. 

 

 
Figure 24. Bayesian Information Criterion (BIC) for the best model (from 500 model optimisations) for each 
trial number of RCP groups (nRCP). 
 
The RCP classification showed some fragmentation into smaller, isolated, patches at fine spatial scales but 
differentiated northern and southern regions of the crest and shallow flanks of the Rise, the two shallowest 
regions (on Mernoo Bank and around the Chatham Islands), and the slope regions in depths of about 400–
800 m on the western and southern slopes (Figure 25). In deeper depths, classes extended around most of 
the Rise, with no differentiation between northern, southern, and eastern flanks. RCP 1 is predicted to occur 
in middle depths on the western and southern flanks of the Rise, where the water is relatively cool for the 
depth and less saline (see APPENDIX 2 – Regions of Common Profile). RCP 4 and RCP 7 are located on 
the shallow crest of the Rise, with RCP 4 located on the central southern crest in relatively cool water and 
RCP 7 mostly northern and eastern in relatively warmer and more saline water. RCP 5 and RCP 6 lie in 
distinct bands that circle the Rise, RCP 5 centred around a depth of about 800–1100 m and RCP 6 mostly 
deeper than 1000 m. RCP 3 represents by far the smallest region and is restricted mainly to the Graveyard 
seamounts on the central north flank of the Rise. RCP 2 has an anomalous bimodal depth distribution, with 
predicted occurrence both in shallow waters around the Chatham Islands and the Mernoo Bank and in the 
deepest water on the eastern and southern flanks of the Rise.  
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Figure 25: Regions of Common Profile (RCP). Spatial distribution of the seven RCP regions on Chatham Rise 
predicted to have similar seabed environments and fauna. 
 

Model uncertainty was highly variable among the seven RCPs, with the probability associated with 
assigned RCPs in individual cells ranging from 0.22 (where several other RCPs were relatively likely) to 
0.99 (where RCP membership is strongly supported). Overall, model uncertainty was greatest for RCP 3 
(primarily on the Graveyard hills), and least for RCP 1 (in middle depths on the western and southern flanks 
of the Rise). RCP  2 had very low uncertainty in shallow depths on Mernoo Bank and around the Chatham 
Islands but high uncertainty in the apparently anomalous deeper areas in the eastern and southern Rise 
(Figure 26). Mapping the underlying probabilities for each RCP demonstrates the detail in the underlying 
model output and how this has been compressed to generate the 7-class, hard-boundary classification 
(Figure 27).  

The RCP method is still in development (Scott Foster, CSIRO, Hobart, pers. comm.) and with existing 
code libraries it was not possible, within the resources of the current project, to extract detailed summaries 
of the taxa and environmental parameters characterising each RCP.  

 

 
 
Figure 26: Regions of Common Profile (RCP) model certainty. For each cell, colour indicates the probability 
associated with the assigned RCP as plotted in Figure 25, based on 500 bootstrap samples. 
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Figure 27: Regions of Common Profile (RCP). Mapped probabilities of occurrence for each of the seven RCP 
groupings defined by the model. 
 
Gradient Forests 

Of the 69 taxa available in the faunal data set, 54 were adequately represented in the GF models (R2 greater 
than 0), with R2 values per taxon ranging from 0.67 for squat lobsters (Galatheidae/Chirostylidae), to less 
than 0.01 for bamboo corals (Isididae), bivalve molluscs (Bivalvia), and the swimming holothuroid 
(Enypniastes eximia). Inclusion of trawl intensity as a predictive variable increased R2 values for some taxa 
and reduced for others but had a minor effect overall, mean R2 values across all modelled taxa being 0.361 
and 0.359 for models excluding and including trawling, respectively (Figure 28). Diagnostic plots from GF 
(Figure 29 and Appendix 3), when viewed in the context of sampled distributions and the trawl intensity 
layer, indicated that the taxa with distributions inversely correlated with the occurrence of trawling were 
the stony coral Goniocorella dumosa, lamp shells (Brachiopoda), and burrowing urchins (Spatangoida), 
with positive correlations for a range of taxa including serolid isopods (Serolidae), hermit crabs 
(Paguridae), the small seapen Kophobelemnon sp., the solitary burrowing soft-coral Taiaroa tauhou, and 
the quill worm Hyalinoecia sp. In classifications, the main effect of including trawl intensity was to 
delineate small-scale classes associated with areas of particularly high cumulative trawl footprint at higher 
class-levels (Figure 33). Although the model excluding trawl intensity yielded a marginally higher mean 
taxon R2 value, trawl intensity ranked as the second most influential variable in terms of both model 
accuracy and overall R2 when included in the model (Figure 30 C). Because of this, we consider results 
both excluding and including the trawl intensity variable (Figure 31 and Figure 32).  
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Figure 28: Gradient Forests. Correlations (R2) between sampled distributions of individual taxa and the suite 
of transformed environmental variables, showing values including (black) and excluding (grey) trawl 
intensity as an environmental variable. 
 

Predicted taxon turnover at base grid resolution (Figure 30 A) indicated well-defined gradients in 
community composition between the northern and southern flanks of the rise, and from Mernoo Gap 
(between Mernoo Bank and the South Island) in the west to beyond the Chatham Islands in the east. Sample 
coverage of the study area in relation to the range of the environmental predictor variables was good (Figure 
30 B), suggesting that these predictions should be reliable, and classifications derived from the GF-
transformed environmental variables had clear boundaries, without excessive fragmentation into small 
polygons or disparate instances of the same class, except at higher class-levels when trawl intensity was 
included, as noted above (Figure 31 and Figure 32). RELATE tests of correlations between matrices 
representing dissimilarities between GF classes in terms of transformed environmental space (average 
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values per class) and sampled faunal composition (average log-transformed densities of benthic taxa from 
sample sites within each class) were significant for all four class-levels examined (P<0.05) but varied 
widely in strength. Correlations were strongest for the 15-class (r=0.558) and 25-class (0.538) levels, lower 
for the 7-class level (0.321), and substantially lower for the 50-class level (0.020). 

The taxa and environmental conditions associated with each of the GF classes in the 50-class classification 
excluding trawl intensity are listed in Tables A-3 and A-4, respectively (Appendix 3). By cross-referencing 
with class numbers labelled in the 50-class map in Figure 31 (top panel), the characteristic fauna associated 
with each class can be determined. For example, Class 30 to the southwest of Mernoo Bank is associated 
with quill worms (Hyalinoecia sp.), hermit crabs (Paguridae), polychaetes, Flabellum sp. solitary corals, 
bryozoans, Anthomastus sp. soft corals, predatory gastropods (Buccinidae), burrowing urchins 
(Spatangoida), the unitary burrowing soft coral Taiaroa tauhou, and others, while Class 2, extending 
northeast from Mernoo Bank, is associated with burrowing urchins (Spatangoida), seapens (Pennatulacea), 
holothuroids, spiral whip gorgonians (Radicipes sp.), Munida gracilis (Galatheidae/Chirostylidae), and 
prawns (Caridea). Of the other classes corresponding to areas of highest cumulative trawl intensity (Figure 
33), Class 37 on the southern flank of the rise, east of Veryan Bank, was associated with high densities of 
Taiaroa tauhou, hermit crabs, the quill worm Hyalinoecia sp., anemones, the small seapen Kophobelemnon 
sp., and the galatheid crustacean Munida gracilis (Galatheidae/Chirostylidae), while Class 38 and Class 42 
were dominated by high densities of Hyalinoecia sp. quill worms. On the central crest of the rise, 
encompassing much of the Mid-Chatham Rise Benthic Protection Area, Class 31 was associated with 
burrowing urchins, the stony coral Goniocorella dumosa, brachiopods, Munida gracilis, and other taxa. 

 
 

Figure 29: Importance of the trawl intensity variable (cumulative trawled area) in Gradient Forest functions 
(cumulative importance) predicting taxon occurrence on Chatham Rise. Labels identify taxa with the strongest 
correlations (positive or negative) with the trawl intensity. 
 
 



 

Fisheries New Zealand Quantifying benthic biodiversity  35 

 
Figure 30: Gradient Forests. Map of benthic taxon turnover across Chatham Rise (A). Changes in community 
composition are represented by colour gradients (red, green, blue) based on scores from the first three axes 
from a Principal Components Analysis (B) of a suite of 18 environmental variables transformed to correlate 
with sampled taxon distributions. The relative importance (R2) of each predictor variable in the full model is 
shown in (C). These results are from the model including trawl intensity as a predictor variable. White circles 
in (B) indicate the distribution of faunal sample sites in relation to the full range of environmental space across 
the study area. 
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Figure 31: Gradient Forest. Classification of 17 transformed environmental variables, excluding trawl 
intensity, representing spatial areas predicted to differ in benthic community composition. Classification was 
via a two-stage procedure (non-hierarchical k-medoids ‘clara’ to yield 300 groups, then hierarchical ‘agnes’ to 
enable visualisation at multiple class levels). Plots show the hierarchical classification at 7, 15, 25, and 50 class 
levels. Classes in each level are labelled by number to enable reference to underlying data but both numbers 
and colours differentiate classes only within panels (class-levels) and have no relationship between panels. 
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Figure 32: Gradient Forests. Classification of 18 transformed environmental variables, including trawl 
intensity as cumulative swept area for the period 1989 to 2006. Details as for preceding figure. 
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Figure 33: Effect of including trawl intensity as an environmental predictor in the Gradient Forests (GF) 
classification at 50-class level. GF classification excluding trawl intensity (top); trawl intensity as cumulative 
trawled seabed area per 5 × 5 km cell for the period 1989–2006 (middle); GF classification including trawl 
intensity (lower). Number labels indicate classes corresponding to areas of high cumulative trawl intensity. 
 
Community model evaluation 

Visual comparison of the RCP and GF outputs at 7-class level shows distinct differences between the two 
(Figure 34). While both classifications differentiate the shallow areas on Mernoo Bank and around the 
Chatham Islands, RCP resolves more class-structure on the crest of the rise and on the southern flank in 
middle depths, with Veryan Bank and the southern-central part of the crest separating out as a distinct class. 
At greater depths, by contrast, CR differentiates between the northern and southern flanks, whereas RCP 
shows continuous classes around the entire rise. Classifications at this class-level are necessarily 
simplification of reality but some aspects in both RCP and GF clearly do not match with what we know of 
taxon distributions from single-taxon models. For instance, RCP, as noted earlier, shows the same class 
occurring in the shallowest and deepest areas of the study area, while GF includes the whole of the crest, 
the southern flank to about 1000 m depth, Veryan Bank, and much of Mernoo Gap in a single class. Overall, 
however, the RCP appears to be a potentially more useful representation of benthic faunal distributions 
than GF at this class level because of its more nuanced representation of distributions in fishing depths.  
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This impression is supported by ANOSIM analyses (Table 5) quantifying the degree to which each 
classification divides the underlying faunal data into distinct groups; RCP scoring more highly than CR 
(R=0.524 and R=0.412, respectively). Extending the ANOSIM comparison to all available classifications 
(GF and RCP from this study, the MEC, the BOMEC, and the research trawl survey strata, see Figure 35) 
shows that GF at 50-classes scores highest (R=0.524) but that the RCP 7-class is comparable (0.524). R 
values for the MEC, BOMEC, and the two intermediate GF class levels (15 and 25 class) were all less than 
0.4 but the survey strata developed for the research trawl time-series yielded the third highest value, at 
0.498.  
 

 
Figure 34. Comparison of RCP and GF classifications at 7-class level 
 
Table 5. ANOSIM: results of analyses quantifying how well each classification separates the underlying fauna 
sample data into distinct groups. The R statistic ranges from 1, where all groups are distinct from each other, 
to 0, where there is no group structure. The table shows the classification name (see text for details), the total 
class-level (class-levels for MEC and BOMEC were selected to yield approximately 50 classes across the 
Chatham Rise study area), the number of classes useable in the analyses (classes containing at least three data 
points), and the ANOSIM Global R statistic. All analyses were significant at p<0.01. 
 
Classification Class-level Classes used Global R 
GF 50 24 0.542 
RCP 7 7 0.524 
Trawl strata 36 33 0.498 
GF 7 6 0.412 
MEC 70 15 0.397 
BOMEC 70 8 0.382 
GF 15 10 0.375 
GF 25 15 0.353 
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Figure 35: Environmental classifications for Chatham Rise: GF benthic classification developed in this study 
(GF 50-class): the New Zealand Marine Environment Classification (MEC) at 70-class level; the Benthic 
Optimised MEC (BOMEC) at 70-class level, and the survey strata used for routine research trawl surveys of 
Chatham Rise (2016 iteration). Colours are arbitrary, intended to clarify distinctions between classes, and are 
not comparable between panels. Black polygons show the two Benthic Protection Areas (BPAs) on Chatham 
Rise. 
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3.4 Assessing research trawl survey catch records as test-data 
 
Validation of predictive models requires independent sample data and for quantitative, abundance-based 
models, the independent data also need to be abundance, rather than presence-absence (Anderson et al. 
2019). For Chatham Rise, the research trawl survey time series (O'Driscoll et al. 2011) is an obvious 
candidate data set for testing predictions from models developed here. However, while many of the benthic 
invertebrate taxa in our study are frequently reported from research trawl catches, catchability of benthic 
taxa is unquantified and their abundance in catches is not recorded consistently, resulting in only a limited 
amount of relative abundance data available for comparison with model predictions. There is also an 
element of circularity in the use of these data to assess models developed from benthic survey data: the 
new, image-based, models were developed because of concerns about the level of uncertainty associated 
with earlier models based on physical catch records, so using data that went into the older models to assess 
the new ones is less than ideal.  
 
The number of records in the trawl time series with abundance values ranged from 10 or less for 
Goniocorella dumosa and Coral Reef to over 100 for Asteroidea and Metanephrops challengeri (Table 6). 
Given the issues with catchability and inconsistency of abundance data, analysis here was limited to simple 
counts, rather than standardised densities per unit area, and to the single-taxon ensemble model outputs 
only. Correlations between ensemble model predictions of abundance and specimen counts recorded in the 
research trawl database were highly variable, ranging from -0.20 for Cidaroida to 0.80 for Demospongiae. 
Most comparisons showed a moderately positive correlation, however, with values below 0.20 for only 4 
taxa, and correlations of about 0.5 or higher for 5 taxa. 
 
Table 6: Calculated correlation (Spearman's rank-order correlation) between predicted abundance 
(numbers/1000 m2) from ensemble models and numbers caught in research trawls at the same location (within 
the same grid cell).  
 
  Trawl
Taxon Correlation Records
Goniocorella dumosa 0.36 8
Coral Reef 0.12 10
Pennatulacea 0.37 26
Demospongiae 0.80 13
Hexactinellida 0.39 12
Xenophyophoroidea  –
Brachiopoda  –
Bryozoa  –
Hydrozoa  –
Stylasteridae  –
Metanephrops challengeri 0.49 101
Hyalinoecia sp. 0.47 17
Euechinoidea 0.78 38
Spatangoida 0.13 27
Buccinidae  –
Volutidae  –
Paguridae 0.35 50
Cidaroidea -0.20 31
Holothuroidea 0.47 91
Asteroidea 0.18 151
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4. DISCUSSION 

In this project (ZBD201611), we have advanced knowledge of benthic faunal distributions across Chatham 
Rise by: greatly expanding the seabed area surveyed using dedicated photographic surveys (Objective 1, 
Bowden et al. 2017); developing a spatially extensive and internally consistent quantitative dataset of 
benthic faunal distributions combining data from five previously disparate surveys (Objective 2, Bowden 
et al. 2019); and here generating new spatial predictions of habitat suitability for a wide range of individual 
benthic taxa and overall benthic taxon turnover, and developing new seabed faunal-habitat classification 
maps specific to Chatham Rise (Objective 4). Although formal validation of the distribution probabilities 
and spatial classifications generated here would require dedicated field sampling, which is beyond the scope 
of this project, internal model performance metrics, correspondence with research trawl bycatch data, and 
intuitive evaluation of predicted patterns and classes against the input dataset suggest that the outputs 
generated here are likely to be more reliable, and more consistent among taxa, than are those from earlier 
modelling initiatives (see Anderson et al. 2019).  

The key high-level aim of the project was to reduce uncertainty in predictions of benthic distributions across 
Chatham Rise. To achieve this aim, we first used only data generated by consistent, auditable, photographic 
methods, rather than downloads from existing trawl bycatch or museum databases. While there are 
substantial quantities of potentially useful data available in such databases, their use in broad-scale 
biodiversity initiatives such as this can be problematic because there are intractable problems associated 
with inconsistencies in taxonomic identification level, sampling methods, spatial bias in the sampling 
locations, and the fact that only abundance is recorded (see e.g., Elith & Leathwick 2007, O'Driscoll et al. 
2011). By using only photographic seabed surveys, by contrast, we were able to run spot audits of 
questionable identifications or counts in existing analysis data, and to quantify sampled seabed area, by 
direct reference to the original imagery. While there are almost certainly residual inconsistencies or biases 
in the final dataset, particularly due to the merging of abundance estimates generated from still images with 
those from video because of differences in the size of the sampling ‘units’ (Andrew & Mapstone 1987), 
these will be minor in comparison with existing data from bycatch and museum sources. 

We also used techniques that enabled us to minimise the influence of biases associated with any one 
modelling method for single-taxon models. By using hurdle models, we minimised the potential for 
artefacts arising from zero-inflated, over-dispersed data, and by using two independent methods to model 
each taxon and combining their outputs in ensemble models, we ensured more conservative predictions 
and more robust characterisation of uncertainty. Furthermore, while all previous models predicting single-
taxon distributions across Chatham Rise have been based on presence-absence or presence-background 
data, here we were able to use quantitative population density data, enabling more nuanced predictions. 
Spatial community classifications derived from habitat-suitability methods are more problematic to assess 
objectively but by using two entirely different contemporary approaches in parallel, we are at least able to 
comment on their similarities, and to demonstrate that while such classifications are necessarily 
simplifications of actual patterns, they may be useful as input to spatial planning initiatives.  

It is difficult to quantitatively assess believability in single-taxon models without appropriate independent 
test data. The dataset used to build the current models was an ideal independent test set for assessing 
existing published models (Anderson et al. 2019) but available museum records and trawl survey bycatch 
records are less useful for testing the new models because their abundance information is inadequate and 
the catchability of benthic taxa by trawls is unquantified. The generally good agreement of the new model 
predictions with trawl survey data is encouraging, but for most taxa there were insufficient records with 
count data available to be able to derive meaningful results. Conventional, internally-generated, metrics of 
model performance are also not reliable for comparisons with existing models because model performance 
statistics are not calculated in a consistent manner across studies. There are also questions regarding the 
value of the commonly-used AUC statistic for comparing model performance between studies. In our 
study, AUC values were relatively low for many of the presence-absence models produced but this statistic 
has been shown to be inflated both by use of arbitrary background data to represent absences, rather than 
true absence data as used here, and by modelling larger spatial extents that encompass high proportions of 
clearly unsuitable habitat (Vierod et al. 2014). Thus, while two of the major steps taken to refine models 
here - the use of quantitative data with true absences and focussing at smaller spatial scales - are intuitively 



 

Fisheries New Zealand Quantifying benthic biodiversity  43 

logical ways to improve understanding of distributions, the resulting improvements may not be represented 
fully by simple, internally-referencing criteria such as AUC. Despite this, some general, qualitative 
comparisons can be made with the models presented here.  
 
In their assessment of existing predictive distribution models on Chatham Rise using the faunal data set 
described here as independent test data, Anderson et al. (2019) identified the models of Compton et al. 
(2013) as the most reliable, which is perhaps unsurprising because these models were developed 
specifically for the Chatham Rise-Challenger Plateau region using photographic and physical sample data 
from voyage TAN0705. Compton et al. (2013) produced models for a range of benthic taxa, including 
scampi, Hyalinoecia sp., Paguridae, Spatangoida, and Volutidae, that can be compared directly with our 
results to illustrate how the additional data and refinements in method employed here change our perception 
of distribution probabilities. For instance: predictions of suitable habitat for scampi now extend further to 
the east on the shallow crest of the Rise; for Volutidae, a strong preference for suitable habitat to be on the 
south flank of the Rise is not as evident in the new model; for burrowing urchins (Spatangoida), predicted 
distribution is now strongly focussed on the shallow central and eastern areas of the Rise (an area that was 
largely unsampled by TAN0705 but targeted in CRP2012, TAN1306, and TAN1701 surveys); for hermit 
crabs (Paguridae) incorporation of abundance data here had a strong influence, with much higher suitability 
of habitat predicted in middle depths on the southern flank of the Rise, and for quill worms (Hyalinoecia 
sp.) high suitability on a large section of the shallow central crest of the Rise in the earlier model is no 
longer supported.  

Coral taxa are of particular interest for issues associated with the conservation and management of sensitive 
marine habitats, with Goniocorella dumosa being of particular interest in relation to crestal areas of 
Chatham Rise (EPA 2015, Rowden et al. 2014), and other thicket-forming stony corals, including 
Solenosmilia variabilis, Enallopsammia rostrata, and Madrepora oculata, in relation to the effects of trawl 
fisheries on seamounts in the region (Clark et al. 2016, Clark et al. 2019, Williams et al. 2010). Habitat 
suitability models for G. dumosa tend to be broadly similar across existing studies (Anderson et al. 2016, 
Anderson et al. 2015, Anderson et al. 2014, Georgian et al. 2019) in that they show highest probabilities of 
suitable habitat across central crestal areas of the Rise extending from Mernoo Bank in the west, to the 
Chatham Islands in the east. Our predictions indicate a more constrained distribution, with well-defined 
areas of high probability occurring patchily from the area between Mernoo and Veryan Banks in the west, 
to the Andes seamounts in the east (Figure 4).  

An apparent anomaly in predictions of G. dumosa habitat occurs in a fine-scale model of the central crest 
area of the Rise produced by Rowden et al. (2014), which predicted that an area of high habitat-suitability 
north of the western end of the mid-Chatham Rise BPA, centred between 178° E and 179° E at 
approximately 43° S. This prediction is not well-supported by other existing models but in our ensemble 
model here there is a band of relatively high predicted occurrence that corresponds closely with that in the 
Rowden et al. (2014) model, albeit with much lower strength of prediction (Figure 4). Examination of the 
environmental predictor layers used suggests that this prediction is driven primarily by correlation between 
G. dumosa presence sites and areas where there are steep gradients in the sea-surface temperature layer 
(sstgrad, an indicator of oceanic frontal features). Rowden et al. (2014) used camera data from three of the 
five surveys used for the current models (TAN0705, CRP2012, and TAN1306), and a similar set of 
environmental layers, so similarity with our model is to be expected, but it is likely that the restricted spatial 
extent of the model domain used by Rowden et al. (2014), with consequently smaller ranges for 
environmental gradients and numbers of sampled sites, will have contributed to exaggerating predictions 
in this area. It is also of note here that G. dumosa was not recorded at any sites in the combined dataset used 
here that fall within the band of higher predicted habitat suitability identified in the Rowden et al. (2014) 
model and here.  

For thicket-forming stony corals, a category that combines S. variabilis, E. rostrata, M. oculata, and G. 
dumosa, spatial predictions tend to be dominated by G. dumosa records. This situation is because 
occurrence of the other three taxa is highly concentrated on a relatively few seamount features 
(predominantly the Graveyard and Andes hills) and thus yield few presence sites, with consequently low 
influence in correlative models. When compared with existing models, our predictions for the occurrence 
of thicket-forming corals show distributions that are similar to those of Baird et al. (2013) and Anderson et 
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al. (2015) but, as with the G. dumosa model, areas of high predicted occurrence are more spatially 
constrained, particularly along the northeastern and southern flanks of the Rise. Given the relatively small 
number of presence records for thicket forming corals other than G. dumosa here, it would be interesting 
to see if predictions of coral presence would expand if faunal data were available from more seamount 
sites. In addition to features in the Graveyard and Andes complexes, our current image-based dataset 
includes sites on ‘Smith City’ seamount at the northeastern extremity of the Rise and a number of smaller 
features on the southeastern flanks. However, hill features on the southwestern flanks, where our models 
also indicate relatively high probability of occurrence, have not been sampled using dedicated benthic gear 
and might serve as useful model validation sites in future surveys. 
 
Anderson et al. (2016) and Georgian et al. (2019) also produced habitat suitability models for four other 
taxa modelled here: Stylasteridae; Hexactinellida; Demospongiae, and Pennatulacea, using a similar 
approach but covering different spatial extents and not incorporating density data. Models for Stylasteridae 
agree with ours, showing highest habitat suitability on the southeastern flank of the Rise, encompassing the 
Andes seamounts. The agreement between these models is interesting because these earlier studies did not 
have access to data from the 2015 photographic survey of the Andes (TAN1503), which recorded very high 
densities of stylasterid corals on some features, yet still predicted correctly to the area. Models for the broad 
taxonomic grouping Demospongiae also match moderately well with our predictions, but our model for 
Pennatulacea (seapens) differs strongly, with much higher densities predicted along the northern flanks 
than the southern. This contrast in predicted occurrences highlights the value of being able to include 
reliable population density data in models. Seapens occur in a high proportion of seabed transects all over 
the Rise but the pattern of higher densities along the northern flank that is clear in seabed imagery and is 
captured by the abundance models here, is not evident in presence-absence models of occurrence 
probability. 
 
This study was not designed to assess the influence of trawl disturbance on benthic communities and 
incorporation of the full range of seabed habitats in the study area complicates any attempts to draw 
conclusions from the model outputs because seabed type is confounded with trawl effort. However, 
correlations between trawl disturbance and faunal distributions here align with findings from previous 
studies in New Zealand (Bowden & Leduc 2017, Lundquist et al. 2018) and other parts of the world (Clark 
et al. 2016, Collie et al. 2000, de Juan et al. 2007, Kenchington et al. 2007) into the effects of disturbance 
from bottom trawling on different functional groups of the benthos. Abundances of small mobile predators 
and scavengers, primarily whelks (Buccinidae and Volutidae), hermit crabs (Paguridae), and quill worms 
(Hyalinoecia sp.) were highest in areas greater trawl disturbance, whereas emergent sessile filter and 
suspension-feeding taxa, including sponges (Demospongiae and Hexactinellidae) and corals (G. dumosa 
and the REEF grouping) were at lower abundances or absent in the most trawled areas. Given these patterns, 
the data set assembled under the present project, and model predictions developed from it here, might 
usefully be used in a more focussed study to extend the single-habitat analyses of Bowden & Leduc (2017) 
into the effects of trawl disturbance. 
 
In contrast to the two single-taxon modelling methods used here (BRT and RF), which both yielded similar 
results, the two community modelling approaches, RCP and GF, yielded somewhat different spatial 
classifications. While RCP is considered to be the more statistically rigorous method of the two, the small 
number of RCPs or classes indicated (seven) and some aspects of their spatial boundaries (fragmentation 
of classes and the bimodal depth distribution of RCP2) raise questions about the utility of the resulting 
classification by comparison with the various class-level outputs that can be produced from the GF model. 
The RCP classification does, however, capture some aspects of benthic community distributions across the 
Rise that are apparent from the underlying data and the single-taxon models. RCP1, in particular, matches 
with the modelled distributions of quill worms (Hyalinoecia sp.), whelks (Buccinidae), and hermit crabs 
(Paguridae). When compared to the GF classification at the same class-level (Figure 34), there are obvious 
differences in the spatial distribution of classes, with the GF classification showing stronger differentiation 
between northern and southern flanks of the Rise at depth but capturing none of the variability on the crest 
and western flanks that is evident in the single-taxon models and the RCP classification. At the 50-class 
level, by contrast, the GF model of taxon turnover summarises many of the major spatial changes in faunal 
composition apparent in the underlying faunal dataset and the single-taxon models. This 50-level class 
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output shows clear differentiation between the west and east sectors and the north and south flanks of the 
rise, with finer-scale differentiation primarily representing changes in depth. Whether the trawl intensity 
variable was included or not in this model, two areas associated with high trawl intensity are delineated in 
the classification: on the northwest flank east of Mernoo Bank in approximately 400–800 m depth, and on 
the southwest flank north and east of Veryan Bank in the same depth range.  

The difference in outputs between RCP and GF in our study might be related to the state of development 
of each method and the level of experience we have with each. GF has been used in several New Zealand 
studies to date, and methods for classifying and interpreting the output data have been refined, primarily by 
John Leathwick and colleagues, since their early use for the original MEC. RCP, by contrast, is less well-
understood and in recent communications with the author of RCP (Scott Foster at CSIRO) about our results 
it became clear that the RCP code currently available is still in development and that use of the BIC criterion 
for selection of the optimal class level is not necessarily the most effective or useful way of interpreting the 
model results for management applications. Given this, it might be instructive in future to use the model 
probabilities from the RCP analysis to generate output classifications over a much wider range of class-
levels than was attempted here and, thus, be able to compare directly with GF outputs at higher class-levels. 

The issue of how to assess classifications objectively, whether in terms of deciding between classification 
types, or selecting an optimal class-level of a given model, is highlighted by the apparently contradictory 
results of the Mantel tests and ANOSIM R analyses, here. For the GF classification, RELATE tests 
indicated that correlation strength between the transformed environmental variables and the faunal 
distributions was strongest at the 15 to 25 class level, suggesting that this level of detail may be more 
appropriate than the 50-class, whereas ANOSIM R values were highest for the 50-class interpretation, 
suggesting that the faunal data are better predicted at this level. While the indication of lower class-level 
for the GF is more in line with the 7-class indication from the RCP analysis, the ANOSIM approach is, 
arguably, the more useful of the two evaluation methods here: firstly because it provides a direct measure 
of how effectively a classification partitions the underlying faunal data that we are interested in and, 
secondly, it can be used to compare among classifications rather than just among class-levels of a single 
classification. This is because it does not reference the transformed variables generated by the modelling 
process and thus can be applied to any classification.  

The ANOSIM analysis indicated that the 50-class GF classification and the RCP 7-class classification 
developed here are the most useful summaries of benthic distributions across Chatham Rise (highest Global 
R value), both classifications scoring considerably higher than the MEC and BOMEC. It is particularly 
interesting that the RCP scored this highly, given the relatively low class-level, the reduced number of 
environmental variables used, and the relative lack of development of the method, suggesting that this 
approach is worthy of further investigation. Gauged only against the MEC and BOMEC, the higher scoring 
of the GF and RCP models might be attributed to their being tested here against the data that was used to 
build them. The performance of the trawl survey strata renders this unlikely, however, because this schema 
was developed from entirely independent trawl catch records yet still scored substantially more highly than 
did the two older classifications. 

Indeed, similarities of pattern between the new classifications informed by benthic imagery and the research 
trawl survey strata (if allowance is made for the hard meridional boundaries of the trawl strata) adds 
confidence to the new predictions because it demonstrates convergence on common ecological boundaries 
via two completely independent data sets, both based on knowledge of the ecosystem accumulated over 
many years. Similarly, while it scored less highly in tests against the image data, the original MEC, when 
viewed at class-levels appropriate to the region of interest, can be seen to be a useful summary of the spatial 
distribution of seabed habitats and fauna. This observation is encouraging for future initiatives based on 
these modelling approaches because the MEC was developed using remarkably little benthic faunal data, 
and at the spatial scale of the entire New Zealand EEZ rather than a single, well-sampled, target region as 
here. Overall, the broad similarity amongst classification schemes developed under initiatives over recent 
years suggests that we are converging on a more convincing description of benthic faunal distributions on 
Chatham Rise, which might be used with greater confidence to address questions associated with spatial 
management of seabed habitats and resources.  
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Future directions 

Although the models developed here are the best-informed and thus likely to be the most reliable 
representations of benthic faunal distributions across Chatham Rise to date, there are clearly areas in which 
improvements might be made in future. The accuracy, consistency, and spatial resolution of environmental 
predictor layers are the most obvious areas in which such improvements might be made. Perhaps the most 
pressing of these in relation to mapping seabed habitats and fauna is the lack of consistent fine-scale 
information about the physical composition and topography of the seabed. Distributions of benthic fauna 
are highly patchy at scales from centimetres to kilometres and much of this patchiness is driven by 
availability of habitat at fine spatial scales, whether it be soft sediments for mobile burrowing and deposit 
feeding taxa or hard substrata for sessile fauna, including the corals, sponges, and other habitat-forming 
fauna that are commonly associated with sensitive seabed habitats.  

The faunal occurrence data derived from seabed video and still imagery here was recorded natively at scales 
of less than 1 m, potentially enabling characterisation of patch structure at very fine spatial scales. For 
models at the scale of Chatham Rise, however, we are constrained to working at a grid size of 1 × 1 km 
because environmental variables, including seabed topography metrics, are not yet available at finer 
resolution. Multibeam echosounder (MBES) data can resolve seabed topography at scales of 25 × 25 m but 
the resolution varies with depth, and survey coverage for most regions of the New Zealand Exclusive 
Economic Zone (EEZ), including Chatham Rise, is patchy and incomplete. Similarly, while sediment core 
samples can provide fine-scale information on sediment composition, they result in point-sampled data 
with incomplete spatial coverage, strong bias towards soft-sediment seabed (because corers do not work 
on hard substrata), and highly skewed distributions (e.g., Bostock et al. 2019, Jenkins 2010). Thus, such 
data have inherently the same properties as the faunal datasets we are trying to predict from and are only 
coerced into continuous gridded data layers by spatial interpolation, which introduces artefacts and 
unquantified uncertainties. As such, these substrate data layers are, at best, not yet informative enough to 
be useful for inclusion in predictive models of benthic faunal distributions (e.g., Anderson et al. 2016). 
Oceanographic variables are derived either from algorithms applied to satellite image data, or from bio-
physical circulation models, or combinations of these. With on-going refinements of satellite imaging 
technology and understanding of oceanographic processes, it is likely that the spatial resolution and 
accuracy of such predictor layers will continue to increase, and this is perhaps the most likely short-term 
route by which models such as those developed here will be improved. 

Another aspect of these analyses that may have an influence on the reliability of the resulting predictions 
is the implicit assumption that the distributions of benthic fauna do not change appreciably over time. This 
assumption is introduced because, to generate sufficient density of data to enable effective predictions, we 
have merged data from surveys that collectively span a decade. While this assumption is unlikely to be 
wholly true at smaller scales and for more ephemeral taxa, there is some evidence to support it for sessile 
and common motile fauna. Such evidence includes the similarity between the outputs of habitat suitability 
models built by different studies using disparate data sources, as detailed above and, within the dataset 
developed here, from strong community similarity between neighbouring sites that were sampled 
independently on two or more of the surveys but separated by up to 10 years (site similarity cluster data, 
not shown here). For the Graveyard seamounts, Clark et al. (2019) use data from repeat photographic 
surveys to demonstrate that there has been no quantifiable shift in benthic community structure over a 
period of 15 years.  

The essence of the correlative modelling techniques used here is to be able to predict distributions into 
unsampled space reliably. Thus, while a near-perfect ‘model’ of seabed distributions within a restricted 
area might be generated by exhaustive sampling of the target area, the real value of these methods lies in 
being able to predict distributions in un-surveyed areas with some level of confidence. An obvious next 
stage for exploring the potential of the models developed here will be to predict to neighbouring seabed 
regions; most obviously Challenger Plateau and Campbell Plateau but potentially to the entire New Zealand 
EEZ. Such expansion of the modelled predictions would depend on the availability of the same 
environmental predictor layers at appropriate resolution and would come with the caveat that predictions 
into regions where environmental conditions are outside of the range sampled on the Rise are likely to be 
less reliable. In addition, for modelled taxa that represent multiple species (e.g., Asteroidea and 
Holothuroidea) the reliability of predictions may be affected by changes in taxonomic composition of these 
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groups with increasing distance away from Chatham Rise. Models developed using data from Chatham 
Rise may have potential to yield useful predictions more broadly across New Zealand regional seas, 
however, because the Rise coincides with, and partially constrains, the intersection between the two major 
oceanic realms that influence New Zealand’s seabed: Sub-Tropical and Sub-Antarctic (Nodder et al. 2012). 
This situation means that our models encompass a broader range of environmental conditions than would 
have been the case with similar models based on other areas of the EEZ. The range of environments and 
associated fauna is evident in model results here, which show distinct differences between faunal 
distributions on the northern and southern slopes of the Rise, with the documented change from warmer 
sub-tropical waters to cooler sub-Antarctic waters (Chiswell 2002, McKnight & Probert 1997, Nodder et 
al. 2003), and from west to east with gradients of decreasing primary production (Nodder et al. 2007).  

 
Conclusions 

In conclusion, through this project (ZBD201611) we have advanced knowledge of the seabed distributions 
of invertebrate fauna on Chatham Rise by developing a new dataset of photographic survey data and then 
using a variety of contemporary modelling methods to develop new predictions of how individual taxa and 
overall community composition vary spatially across the Rise. These predictions are the best-informed 
representations of seabed distributions in the New Zealand region at these scales and provide a resource 
that will have applications in marine environmental management and ecosystem research. Potential 
applications include quantification of benthic impacts from bottom-contact fishing gear and other 
anthropogenic agencies, informing spatial management of biodiversity through the design of marine 
protected areas, and informing research into ecosystem linkages between water-column and seabed 
processes. A further obvious application will be to use the modelled relationships with environmental 
gradients developed here to predict distributions beyond Chatham Rise. However, although these are 
currently the best available representations of seabed distributions, like all model outputs they have 
limitations and will inevitably incorporate some degree of inaccuracy. Thus, as new sample data and 
improved predictor variable layers become available, it will be important to review the process undertaken 
in this project; using new sample data, potentially from other parts of the EEZ, to test the validity of the 
most recent predictions, then refining the models by incorporating the new data. 
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7. APPENDIX 1 – Single-taxon models 

Table A-1: Random Forest models for individual taxa. Variable contribution ranks for presence/absence and 
abundance models. Numbers below each taxon code (see Table 2 for scientific names) indicate the relative rank-
importance of the six variables selected for each model. Count = number of models in which the variable is 
used; Average = the average variable rank, when used. Variables are ordered by Count, then Average. 
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Count Average
bathy 1 1 – 3 2 – – 2 2 2 – 1 – 1 1 4 1 2 4 3 15 2.0
tidalcurr 4 2 – 2 3 – – 4 3 5 2 2 – 4 2 5 2 3 – 2 15 3.0
dynoc 2 – 4 – 5 – 2 – 6 – 6 4 5 – 3 3 5 4 2 6 14 4.1
dissox 3 – – 6 – 3 – 6 – 4 – 3 – 3 4 – 4 1 3 1 12 3.4
tempres 5 – 1 4 – 6 1 3 – 3 – 6 6 – 5 – – 6 – – 11 4.2
cbpm_mean 6 5 3 – 6 5 – – 4 – 4 5 1 – – – 3 – – 5 11 4.3
salinity – 4 2 1 – 4 4 1 – 1 – – – – – – 6 – 5 4 10 3.2
profcurv – 6 – – 1 1 5 – 5 – 1 – – – – 1 – – 6 – 8 3.3
sstgrad – – – 5 – – 6 5 – – 5 – 3 6 – 6 – 5 – – 8 5.1
trawl – 3 – – 4 – 3 – 1 6 – – 4 – – 2 – – – – 7 3.3
epp_mean – – 6 – – – – – – – 3 – 2 2 6 – – – 1 – 6 3.3
epp_min – – 5 – – 2 – – – – – – – 5 – – – – – – 3 4.0

          
         
Abundance models         
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dynoc 3 – – – 4 2 5 1 5 1 3 4 5 – – 3 3 2 3 1 15 3.0
profcurv 6 4 – 4 6 6 1 – 3 2 1 1 – – – 2 – – – 5 12 3.4
bathy 2 5 – 1 – – 4 2 – – – – 4 3 3 – 6 5 2 – 11 3.4
tempres 4 – – 5 2 4 – 5 – – – 6 – 4 1 – 4 4 – 6 11 4.1
tidalcurr – 3 – 6 – – 6 6 4 4 – 5 – – 5 5 – 6 5 – 11 5.0
salinity 1 – – – – – – 3 2 – – 3 2 2 4 – 1 1 1 – 10 2.0
sstgrad – 2 3 2 5 – 2 – 1 – – 2 – – 2 6 – – – 4 10 2.9
dissox – – 4 3 3 3 – – – – 5 – 3 5 – – 2 – – 3 9 3.4
epp_mean 5 – 2 – – 5 – 4 6 3 – – – 6 – 4 5 – – – 9 4.4
cbpm_mean – 6 5 – 1 – – – – – 4 – 1 – – 1 – – 4 2 8 3.0
trawl – – 1 – – – 3 – – 6 2 – 6 1 – – – 3 6 – 8 3.5
epp_min – 1 6 – – 1 – – – 5 6 – – – 6 – – – – – 6 4.2
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Table A-2: Boosted Regression Tree models for individual taxa. Variable contribution ranks for 
presence/absence and abundance models. Numbers below each species code (see Table 2 for the taxa 
represented) indicate the relative importance of the six variables selected for each model. Count = number of 
models in which the variable is used; Average = the average variable rank, when used. Variables are ordered 
by Count, then Average. 
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Bathy 4 1 – 2 2 – – 5 2 3 – 1 6 1 1 6 1 2 4 3 16 2.8
Tidal-Curr – 2 5 5 3 4 – 3 4 – 2 3 – – 2 – 3 6 – 1 13 3.3
Salinity 6 – 4 1 – 3 4 1 – 2 – – – 3 5 – – – 2 – 10 3.1
Dissox 1 – – 3 – 5 6 – – 5 – 2 – – 4 5 – 1 3 2 11 3.4
CBPM-mean – 5 2 – 5 6 – – – 1 5 – 1 – – – 2 – – 4 9 3.4
EPP-mean – 6 3 – – – – 6 – – 3 4 4 2 – – 6 – 1 – 9 3.9
Tempres 2 – 1 – – – 1 2 – – – 6 2 – – – – 5 5 – 8 3.0
Prof-curv – 4 – 6 1 2 3 – 3 – 1 – – 6 – 2 – – 6 – 10 3.4
Footprint – 3 – – 4 – 2 – 1 4 6 – 3 – – 1 – – – 6 9 3.3
Dynamic-topog 3 – 6 – – – 5 – – – – 5 – – 3 3 – 3 – 5 8 4.1
EPP-min 5 – – 4 6 1 – – 6 6 – – – 4 – 5 – – – 8 4.6
SST-Grad – – – – – – – 4 5 – 4 – 5 5 6 4 4 4 – – 9 4.6
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Prof-curv 6 1 – 5 1 1 1 – 2 2 1 5 – 6 – 1 4 – – 5 14 2.9
Footprint – 6 1 4 6 – 2 – – 6 3 – 6 4 – – 5 1 – 1 12 3.8
Bathy 1 – – 1 – – 4 2 – – – 4 4 1 2 – – 3 5 – 10 2.7
Tempres 5 – – 3 2 6 – 4 3 – – – 5 3 1 6 6 4 – – 12 4.0
SST-Grad – – 6 2 3 5 3 – 1 – 5 3 – – 3 – – 5 – 4 11 3.6
Salinity – – 3 – – – – 3 4 – – 1 2 5 5 – 2 2 – 6 10 3.3
Dynamic-topog 2 – – – 5 3 5 1 – 3 4 2 – – – – – – 6 – 9 3.4
EPP-min 4 4 4 6 – 2 – – 6 1 – – – 2 6 3 – – – – 10 3.8
Dissox – 5 5 – 4 – – – – – 6 – 3 – – – 1 – 3 3 8 3.8
EPP-mean 3 – 2 – – – – 5 – – 2 – – – – 5 3 6 4 – 8 3.8
Tidal-Curr – 4 – – – 4 – 6 5 4 – 6 – – 4 4 – – 1 – 9 4.2
CBPM-mean – 2 – – – – 6 – – 5 – – 1 – – 2 – – 2 2 7 2.9
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8. APPENDIX 2 – Regions of Common Profile 

 
Figure A-1. Response of each RCP to the environmental predictors bathy, tempres, dynoc, epp_mean, and 
salinity, based on predicting RCP membership for each site based only on the environmental covariates. 
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Figure A-2. Response of each RCP to the environmental predictors dissox, profcurv, sstgrad, and trawl, based 
on predicting RCP membership for each site based only on the environmental covariates.  
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9. APPENDIX 3 – Gradient Forests 

 
 
Figure A-3: Summary plots of functions fitted by the final Gradient Forest model, including trawl history, 
indicating the relative rate of taxon turnover along each of the 18 environmental gradients used as predictors; 
steeper curves represent greater taxon turnover. Cumulative importance measured as R2.  
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Figure A-4: Gradient Forests splits-density plot, showing the density of Random Forest splits along each of the 
18 environmental predictor gradients as an indication of where changes in the abundances of multiple taxa 
occur. Bars show binned split importance and location on each gradient; black lines show kernel density of 
splits; red lines show density of observations; blue lines show the ratio of splits density to observation density, 
and dashed lines show ratio of 1. 
 

 
 
Figure A-5: Gradient Forests cumulative change in assemblage composition in relation to the 18 environmental 
gradients; coloured plots represent changes in individual taxa. The five most strongly responding taxa for each 
variable are labelled in the plot legends.  
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Table A-3: Gradient Forests. Taxon table, showing mean density of benthic taxa within each class of the 50-
class classification developed using 17 predictor variables (i.e., excluding trawl history). Densities are numbers 
of individuals 1000 m-2 back-transformed from log10(1+x) sample data used in the GF model. Cut-off for 
inclusion here is 3 inds.1000 m-2. 

Class Taxon Density Class Taxon Density 
2 Spatangoida 23.10 17 Spatangoida 89.54 
 Pennatulacea 18.77  Asteroidea 33.87 
 Holothuroidea 14.95  Anthomastus sp. 26.91 
 Radicipes sp. 13.64  Enypniastes eximia 16.70 
 Galatheidae/Chirostylidae 13.33  Holothuroidea 7.89 
 Caridea 10.24  Caridea 3.72 
 Brachyura 9.02    
 Metanephrops challengeri 8.98 18 Bryozoa 518.02 
 Taiaroa tauhou 6.59  Crinoidea (motile) 249.67 
 Asteroidea 5.06  Zoanthidea 245.69 
 Anemones 4.53  Primnoidae 136.11 
    Ascidiacea 109.83 
3 Demospongiae 67.86  Paguridae 78.90 
 Bryozoa 26.70  Demospongiae 61.26 
 Anemones 17.62  Anthomastus sp. 56.39 
 Ascidiacea 15.42  Euechinoidea 46.17 
 Taiaroa tauhou 14.98  Anemones 36.90 
 Stylasteridae 12.13  Ophiuroidea 30.51 
 Hydrozoa 10.62  Hexactinellida 24.36 
 Galatheidae/Chirostylidae 10.03  Caridea 24.34 
 Pennatulacea 7.52  Hydrozoa 20.08 
 Hexactinellida 5.23  Galatheidae/Chirostylidae 16.29 
 Paguridae 5.14  Stylasteridae 15.06 
 Polychaeta 4.87  Pennatulacea 13.92 
 Brachyura 3.87  Caryophylliidae 12.52 
    Enallopsammia sp. 12.11 
4 Caridea 27.32  Xenophyophoroidea 11.92 
 Pennatulacea 21.74  Asteroidea 10.03 
 Paguridae 20.27  Gastropoda 7.74 
 Anemones 7.64  Gorgonacea 7.56 
 Asteroidea 6.76  Madrepora sp. 6.50 
 Kophobelemnon sp. 4.99  Alcyonacea 5.24 
 Galatheidae/Chirostylidae 3.82  Holothuroidea 3.91 
 Brachyura 3.82  Polychaeta 3.62 
 Echinothurioida 3.82    
      
16 Euechinoidea 281.24    
 Asteroidea 17.82    
 Paguridae 8.32    
 Bryozoa 7.72    
 Demospongiae 6.59    
 Anthomastus sp. 5.97    
 Radicipes sp. 5.66    
 Caridea 3.90    
 Flabellum 3.40    
      
20 Bryozoa 1495.97 24 Bryozoa 426.16 
 Crinoidea (motile) 979.01  Crinoidea (motile) 170.69 
 Ascidiacea 425.35  Stylasteridae 97.11 
 Zoanthidea 301.39  Demospongiae 71.90 
 Polychaeta 225.03  Solenosmillia variabilis 62.99 
 Demospongiae 210.70  Hexactinellida 49.63 
 Paguridae 181.94  Paguridae 46.89 
 Hexactinellida 135.24  Caridea 44.61 
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Class Taxon Density Class Taxon Density 
 Ophiuroidea 125.34  Primnoidae 43.93 
 Anemones 123.31  Anemones 31.41 
 Hydrozoa 102.32  Hydrozoa 30.88 
 Solenosmillia variabilis 88.34  Ophiuroidea 21.36 
 Galatheidae/Chirostylidae 60.99  Ascidiacea 19.70 
 Caridea 58.24  Xenophyophoroidea 18.13 
 Alcyonacea 41.58  Polychaeta 16.48 
 Xenophyophoroidea 36.44  Galatheidae/Chirostylidae 14.78 
 Primnoidae 31.69  Gorgonacea 13.50 
 Gorgonacea 30.12  Isididae 9.85 
 Anthomastus sp. 23.72  Buccinidae 8.75 
 Gastropoda 18.03  Antipatharia 8.39 
 Asteroidea 14.12  Gastropoda 7.66 
 Caryophylliidae 13.90  Anthomastus sp. 7.62 
 Isididae 12.22  Caryophylliidae 6.74 
 Enypniastes eximia 9.50  Alcyonacea 6.58 
 Euechinoidea 7.60  Cidaroida 6.47 
 Ceriantharia sp. 6.78  Pennatulacea 4.22 
 Worm indet. 6.35  Asteroidea 4.04 
 Echiura 5.67  Hyalinoecia sp. 3.87 
 Stylasteridae 5.51    
 Madrepora sp. 3.49 26 Spatangoida 31.46 
 Cidaroida 3.21  Bryozoa 26.08 
    Hyalinoecia sp. 23.03 
22 Radicipes sp. 264.56  Pennatulacea 20.05 
 Hyalinoecia sp. 37.17  Radicipes sp. 14.01 
 Cidaroida 24.03  Hydrozoa 11.95 
 Pennatulacea 17.43  Caridea 10.56 
 Euechinoidea 11.01  Paguridae 8.44 
 Primnoidae 10.21  Holothuroidea 8.05 
 Caridea 9.99  Ceriantharia sp. 7.82 
 Asteroidea 6.40  Asteroidea 6.91 
 Paguridae 5.57  Stylasteridae 6.04 
 Gastropoda 4.70  Anemones 5.40 
 Brachyura 4.19  Demospongiae 4.60 
 Buccinidae 3.52  Taiaroa tauhou 4.20 
 Ophiuroidea 3.45    
 Ceriantharia sp. 3.22    
      
23 Enypniastes eximia 57.36    
 Xenophyophoroidea 26.90    
 Cidaroida 15.37    
 Asteroidea 5.62    
 Holothuroidea 4.73    
 Spatangoida 3.25    
      
      
      
27 Stylasteridae 88.59 30 Hyalinoecia sp. 63.58 
 Demospongiae 69.29  Paguridae 35.91 
 Crinoidea (motile) 25.49  Polychaeta 35.70 
 Bryozoa 24.62  Flabellum 31.86 
 Ophiuroidea 22.88  Bryozoa 28.24 
 Caridea 19.83  Anthomastus sp. 26.14 
 Ascidiacea 19.22  Buccinidae 25.87 
 Paguridae 13.46  Spatangoida 25.69 
 Goniocorella dumosa 12.68  Taiaroa tauhou 23.05 
 Gorgonacea 11.41  Galatheidae/Chirostylidae 21.45 
 Caryophylliidae 8.59  Anemones 19.22 
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Class Taxon Density Class Taxon Density 
 Cidaroida 8.11  Demospongiae 13.68 
 Holothuroidea 8.06  Asteroidea 12.89 
 Anemones 6.33  Hydrozoa 11.75 
 Euechinoidea 6.22  Hexactinellida 9.83 
 Antipatharia 6.13  Holothuroidea 9.57 
 Hydrozoa 5.42  Stylasteridae 9.39 
 Asteroidea 5.21  Pennatulacea 8.85 
 Gastropoda 4.39  Radicipes sp. 8.66 
 Primnoidae 3.38  Worm indet. 8.60 
    Cidaroida 8.56 
28 Spatangoida 70.96  Gastropoda 8.48 
 Pennatulacea 32.99  Euechinoidea 7.94 
 Radicipes sp. 23.60  Telesto sp. 7.44 
 Hydrozoa 11.17  Ascidiacea 7.36 
 Galatheidae/Chirostylidae 9.76  Psolidae 6.49 
 Asteroidea 8.30  Echinothurioida 4.78 
 Holothuroidea 7.86  Caryophylliidae 3.95 
 Anemones 5.45  Caridea 3.18 
 Metanephrops challengeri 4.14  Alcyonacea 3.14 
 Goniocorella dumosa 3.51    
   31 Spatangoida 91.21 
29 Stylasteridae 1634.04  Goniocorella dumosa 72.69 
 Hexactinellida 375.22  Brachiopoda 49.54 
 Demospongiae 66.60  Galatheidae/Chirostylidae 35.70 
 Enallopsammia sp. 62.14  Hydrozoa 35.11 
 Primnoidae 51.28  Taiaroa tauhou 17.87 
 Anemones 46.69  Demospongiae 16.10 
 Antipatharia 30.05  Cidaroida 13.02 
 Paguridae 28.33  Ascidiacea 12.87 
 Goniocorella dumosa 26.44  Paguridae 10.33 
 Zoanthidea 25.16  Asteroidea 9.82 
 Crinoidea (motile) 19.03  Caryophylliidae 9.35 
 Echinothurioida 16.77  Polychaeta 7.77 
 Caridea 16.74  Anemones 7.40 
 Anthomastus sp. 12.14  Bryozoa 5.93 
 Caryophylliidae 11.99  Stylasteridae 5.42 
 Bryozoa 10.85  Caridea 5.12 
 Radicipes sp. 10.52  Brisingidae 3.20 
 Hydrozoa 9.59    
 Xenophyophoroidea 8.70    
 Crinoidea (stalked) 8.17    
 Asteroidea 7.34    
 Gastropoda 7.32    
 Pennatulacea 3.17    
      
32 Asteroidea 36.53 36 Kophobelemnon sp. 100.16 
 Paguridae 28.72  Spatangoida 66.80 
 Anemones 27.73  Galatheidae/Chirostylidae 53.00 
 Demospongiae 23.11  Paguridae 42.26 
 Brachiopoda 19.76  Demospongiae 28.10 
 Stylasteridae 17.01  Taiaroa tauhou 27.98 
 Crinoidea (motile) 15.03  Anemones 27.48 
 Spatangoida 13.00  Caridea 25.01 
 Hydrozoa 9.74  Polychaeta 23.55 
 Scaphopoda 7.91  Goniocorella dumosa 19.90 
 Alcyonacea 6.22  Euechinoidea 15.60 
 Brachyura 5.19  Cidaroida 13.58 
 Bryozoa 4.47  Bryozoa 12.72 
 Gorgonocephalidae 3.60  Asteroidea 10.79 
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Class Taxon Density Class Taxon Density 
 Holothuroidea 3.11  Hydrozoa 9.44 
    Ascidiacea 8.91 
33 Galatheidae/Chirostylidae 48.06  Stylasteridae 8.24 
 Spatangoida 42.65  Hyalinoecia sp. 7.95 
 Demospongiae 14.75  Crinoidea (motile) 7.71 
 Bryozoa 13.09  Echinothurioida 6.90 
 Brachyura 12.40  Worm indet. 5.53 
 Paguridae 9.97  Flabellum 5.02 
 Asteroidea 8.55  Cladorhizidae 4.96 
 Anemones 8.02  Primnoidae 4.75 
 Echinothurioida 5.68  Caryophylliidae 4.31 
 Cidaroida 4.54  Gorgonacea 3.96 
 Hydrozoa 3.14  Buccinidae 3.50 
      
34 Demospongiae 271.58 37 Taiaroa tauhou 319.42 
 Brachiopoda 205.38  Paguridae 50.97 
 Bryozoa 106.47  Hyalinoecia sp. 43.39 
 Stylasteridae 85.66  Anemones 35.50 
 Antipatharia 38.64  Kophobelemnon sp. 25.48 
 Hydrozoa 37.29  Galatheidae/Chirostylidae 21.33 
 Ophiuroidea 32.70  Flabellum 17.58 
 Ascidiacea 27.56  Anthomastus sp. 17.50 
 Brachyura 14.05  Polychaeta 15.82 
 Gastropoda 9.73  Worm indet. 15.73 
 Hexactinellida 9.19  Asteroidea 14.69 
 Holothuroidea 5.67  Stylasteridae 9.67 
    Hydrozoa 9.35 
38 Hyalinoecia sp. 1108.69  Cidaroida 8.53 
 Cidaroida 172.10  Caridea 8.41 
 Anemones 8.95  Buccinidae 7.50 
 Paguridae 7.28  Bryozoa 7.46 
 Gastropoda 7.28  Goniocorella dumosa 6.79 
 Taiaroa tauhou 3.08  Demospongiae 5.82 
 Ceriantharia sp. 3.08  Telesto sp. 5.75 
 Buccinidae 3.08  Ceriantharia sp. 4.36 
    Gastropoda 3.40 
      
      
      
      
      
      
39 Stylasteridae 69.35 42 Hyalinoecia sp. 198.76 
 Demospongiae 45.21  Cidaroida 64.06 
 Anemones 42.34  Paguridae 55.03 
 Cidaroida 34.97  Anemones 31.21 
 Brachiopoda 27.07  Hydrozoa 11.77 
 Galatheidae/Chirostylidae 22.57  Holothuroidea 3.56 
 Asteroidea 21.59    
 Corallimorpharia 18.34 44 Demospongiae 118.43 
 Polychaeta 16.40  Anemones 93.22 
 Spatangoida 16.34  Brachiopoda 51.44 
 Bryozoa 13.71  Galatheidae/Chirostylidae 51.26 
 Paguridae 11.28  Bryozoa 44.58 
 Buccinidae 10.61  Stylasteridae 44.45 
 Euechinoidea 10.60  Cidaroida 37.50 
 Crinoidea (motile) 10.15  Polychaeta 32.51 
 Brachyura 9.90  Asteroidea 28.39 
 Caryophylliidae 7.33  Worm indet. 26.16 
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Class Taxon Density Class Taxon Density 
 Gastropoda 4.57  Bivalvia 22.98 
 Goniocorella dumosa 4.51  Caryophylliidae 19.44 
 Primnoidae 4.41  Caridea 12.28 
 Antipatharia 3.69  Hexactinellida 11.78 
 Gorgonacea 3.27  Goniocorella dumosa 9.79 
    Holothuroidea 6.77 
40 Xenophyophoroidea 59.00  Flabellum 6.61 
 Hyalinoecia sp. 51.31  Hydrozoa 5.91 
 Euechinoidea 42.50  Crinoidea (motile) 5.73 
 Stylasteridae 36.99  Gorgonacea 5.03 
 Demospongiae 18.50  Paguridae 4.30 
 Alcyonacea 17.80  Euechinoidea 3.99 
 Asteroidea 15.72  Ceriantharia sp. 3.58 
 Paguridae 15.27  Gastropoda 3.56 
 Gastropoda 9.88  Alcyonacea 3.41 
 Cidaroida 9.60  Spatangoida 3.12 
 Caridea 8.78  Ophiuroidea 3.08 
 Holothuroidea 8.49    
 Gorgonacea 8.43 45 Demospongiae 211.44 
 Anemones 5.73  Hyalinoecia sp. 107.78 
 Hydrozoa 4.99  Xenophyophoroidea 82.56 
 Flabellum 4.42  Gastropoda 63.38 
 Bryozoa 4.04  Paguridae 58.80 
 Primnoidae 3.49  Anemones 25.68 
 Volutidae 3.41  Asteroidea 23.75 
 Echinothurioida 3.35  Cidaroida 20.87 
    Flabellum 15.32 
41 Ophiuroidea 1812.74  Euechinoidea 14.81 
 Euechinoidea 191.38  Primnoidae 12.90 
 Taiaroa tauhou 38.00  Galatheidae/Chirostylidae 10.79 
 Primnoidae 24.30  Crinoidea (motile) 6.29 
 Caridea 19.96  Ophiuroidea 5.66 
 Paguridae 12.48  Hexactinellida 5.34 
 Asteroidea 11.64  Alcyonacea 5.05 
 Gastropoda 7.90  Buccinidae 4.94 
 Cidaroida 7.17  Anthomastus sp. 4.50 
 Demospongiae 5.48  Holothuroidea 4.40 
 Buccinidae 3.45  Stylasteridae 3.93 
 Madrepora sp. 3.15    
46 Ophiuroidea 6011.77 49 Euechinoidea 108.90 
 Xenophyophoroidea 47.42  Demospongiae 29.50 
 Demospongiae 43.76  Asteroidea 22.25 
 Holothuroidea 9.66  Ophiuroidea 17.88 
 Asteroidea 6.05  Caridea 4.48 
 Ceriantharia sp. 5.00    
 Echinothurioida 4.83    
 Anemones 3.69    
 Cidaroida 3.29    
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Table A-4: Gradient Forests. Raw mean values of environmental variables for each class in the 50-class classification including trawl history. For variable descriptions, 
units, and sources, see Table 1. 
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Grp_1 -4.41E-05 175 -139 0.909 0.446 762.8 343.5 234.3 0.016 34.86 5.545 0.402 0.096 568.40 34.48 116.7 4.55 14.60 

Grp_2 -5.84E-04 2023 -408 0.401 0.476 700.4 200.1 233.9 0.025 34.69 5.166 0.302 0.082 583.37 25.69 243.4 7.67 7.14 

Grp_3 3.30E-06 484 -439 0.103 0.478 555.6 367.9 152.6 0.032 34.64 5.295 0.247 0.063 619.54 27.11 42.2 8.56 6.37 

Grp_4 8.14E-04 175 -852 0.173 0.463 696.9 209.9 217.8 0.025 34.50 4.795 0.170 0.078 145.81 25.62 342.5 23.88 3.40 

Grp_5 2.72E-03 160 -458 0.025 0.426 797.8 376.0 232.6 0.012 34.62 5.358 0.079 0.116 64.34 21.37 350.7 10.29 15.23 

Grp_6 3.35E-03 67 -1584 0.109 0.465 677.9 313.0 185.3 0.022 34.56 4.146 0.084 0.079 -433.48 15.65 364.8 74.93 4.62 

Grp_7 8.62E-05 5 -1637 0.154 0.541 504.8 354.1 144.6 0.023 34.57 3.790 0.093 0.053 -10.56 9.35 198.7 88.21 7.09 

Grp_8 1.25E-05 74 -1184 -0.083 0.515 535.3 394.4 148.4 0.025 34.47 4.211 0.130 0.057 259.45 13.23 130.1 44.95 4.91 

Grp_9 4.76E-05 4 -1738 0.296 0.541 387.2 291.0 118.8 0.011 34.58 3.800 0.089 0.041 311.48 7.32 76.7 88.42 3.06 

Grp_10 7.37E-05 234 -213 0.365 0.421 576.0 450.9 153.0 0.013 34.73 5.688 0.497 0.064 576.01 32.55 49.1 4.98 15.74 

Grp_11 1.87E-06 286 -174 -0.247 0.402 752.2 505.4 189.0 0.020 34.61 5.857 0.270 0.093 187.75 36.66 105.3 4.38 10.61 

Grp_12 -1.19E-02 99 -972 0.074 0.435 737.5 378.2 197.9 0.020 34.51 4.881 0.170 0.100 -137.13 23.57 464.8 22.46 8.83 

Grp_13 -1.15E-03 224 -1209 -0.018 0.416 759.3 403.4 200.4 0.012 34.49 4.342 0.088 0.101 -511.97 19.84 320.7 48.55 10.92 

Grp_14 1.21E-03 155 -791 -0.021 0.387 714.8 467.0 195.6 0.029 34.45 4.911 0.150 0.096 -294.08 19.97 200.4 26.39 1.61 

Grp_15 -1.50E-04 15 -1682 0.126 0.394 666.5 442.1 169.7 0.013 34.58 4.172 0.092 0.085 -824.40 12.24 170.4 85.13 7.29 

Grp_16 -5.31E-04 405 -420 -0.130 0.400 778.9 453.3 205.4 0.022 34.54 5.515 0.145 0.104 -20.64 21.57 244.7 8.08 5.13 

Grp_17 2.75E-05 73 -1132 -0.120 0.390 665.5 463.3 175.5 0.014 34.47 4.349 0.126 0.086 -320.45 16.05 150.4 43.37 4.73 

Grp_18 1.23E-03 1344 -582 0.123 0.419 753.3 409.2 185.2 0.013 34.58 5.119 0.144 0.101 249.45 26.45 282.9 14.92 24.17 

Grp_19 -2.56E-06 296 -837 0.044 0.487 567.4 389.6 153.6 0.033 34.47 4.811 0.156 0.062 469.32 17.65 116.3 25.19 3.64 

Grp_20 -4.32E-06 78 -1199 0.106 0.531 428.1 300.7 118.4 0.015 34.44 4.193 0.112 0.047 461.59 10.72 109.8 48.32 5.54 

Grp_21 -3.50E-05 23 -778 0.202 0.542 453.7 331.0 119.7 0.021 34.45 4.644 0.153 0.050 464.83 16.33 53.9 22.80 2.89 

Grp_22 -2.90E-04 213 -87 -0.230 0.411 826.6 536.6 239.3 0.018 34.65 5.936 0.290 0.103 219.71 29.80 51.4 3.40 19.32 

Grp_23 1.46E-03 1224 -1121 -0.171 0.527 508.0 411.6 141.8 0.017 34.47 4.116 0.149 0.052 313.72 15.07 108.9 46.57 5.00 

Grp_24 -2.36E-05 628 -653 -0.142 0.402 634.7 453.4 166.2 0.007 34.51 5.212 0.195 0.079 303.73 21.43 93.9 15.24 9.70 
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Grp_25 -6.63E-07 1750 -533 0.181 0.496 552.9 371.7 150.5 0.048 34.61 5.129 0.237 0.065 677.02 23.10 101.7 9.22 8.87 

Grp_26 2.01E-05 65 -492 0.095 0.535 475.7 377.0 120.7 0.026 34.57 5.175 0.246 0.055 451.45 22.24 37.3 9.26 7.27 

Grp_27 1.27E-02 177 -831 0.227 0.522 415.6 290.1 108.4 0.011 34.42 4.523 0.142 0.045 678.27 12.41 109.9 31.02 5.05 

Grp_28 1.59E-05 48 -422 -0.657 0.477 492.7 376.3 121.0 0.032 34.52 5.360 0.280 0.066 294.20 26.20 15.2 8.06 15.53 

Grp_29 1.63E-05 1257 -486 -0.637 0.370 678.3 519.8 147.2 0.031 34.47 5.691 0.247 0.103 47.14 35.18 36.1 8.25 3.55 

Grp_30 3.85E-05 451 -539 -0.642 0.374 650.3 501.7 150.2 0.035 34.43 5.633 0.216 0.103 38.60 31.36 25.3 10.26 2.62 

Grp_31 6.79E-06 39 -323 -0.471 0.454 566.5 368.6 131.5 0.026 34.61 5.516 0.310 0.076 361.99 37.30 16.9 6.58 10.54 

Grp_32 9.11E-05 64 -264 0.527 0.521 450.5 346.9 122.0 0.015 34.79 5.490 0.447 0.055 371.88 30.50 35.7 4.81 17.74 

Grp_33 5.79E-08 1052 -357 0.454 0.539 498.0 341.4 127.8 0.024 34.72 5.223 0.131 0.064 389.65 31.54 47.4 5.79 5.89 

Grp_34 -3.09E-05 15 -92 1.261 0.523 484.4 514.0 151.9 0.007 34.90 5.808 0.611 0.070 562.63 39.99 24.8 2.80 21.81 

Grp_35 -4.56E-06 164 -102 -0.508 0.393 686.4 602.7 167.4 0.038 34.56 6.115 0.346 0.079 306.16 44.34 14.4 3.60 19.43 

Grp_36 5.67E-05 244 -439 -0.957 0.421 579.1 456.0 121.2 0.039 34.46 5.547 0.239 0.089 198.93 32.07 43.3 8.01 5.72 

Grp_37 -2.78E-05 2038 -197 -0.688 0.373 697.2 558.4 142.7 0.025 34.61 5.927 0.348 0.099 252.38 43.39 87.4 4.48 7.60 

Grp_38 -5.12E-06 1244 -527 -0.896 0.436 526.3 446.4 126.9 0.035 34.43 5.423 0.196 0.075 235.51 24.80 49.4 9.31 12.98 

Grp_39 1.25E-05 173 -731 -1.118 0.431 453.8 429.6 120.2 0.028 34.35 5.097 0.186 0.059 235.27 18.26 60.9 17.94 10.23 

Grp_40 2.22E-03 1980 -1237 0.120 0.525 403.6 276.3 105.8 0.009 34.41 4.289 0.114 0.045 558.24 10.12 166.0 44.12 5.01 

Grp_41 -9.81E-07 84 -70 -0.180 0.398 719.5 736.4 223.3 0.031 34.56 6.241 0.199 0.085 224.06 40.29 6.5 3.50 9.54 

Grp_42 1.96E-04 60 -329 0.064 0.496 433.2 337.0 133.8 0.011 34.72 5.514 0.190 0.054 897.81 23.75 99.8 4.83 20.19 

Grp_43 3.69E-04 60 -610 -0.386 0.477 412.0 300.0 129.4 0.023 34.46 5.204 0.154 0.047 655.04 18.02 104.4 11.11 12.22 

Grp_44 -1.21E-05 2413 -262 -1.097 0.380 649.5 507.9 133.3 0.053 34.45 6.050 0.169 0.077 279.45 46.87 98.8 5.53 7.06 

Grp_45 1.45E-04 70 -706 -0.920 0.364 566.4 555.8 119.3 0.028 34.33 5.317 0.164 0.083 31.82 28.19 38.2 18.66 1.75 

Grp_46 1.50E-04 59 -905 -1.344 0.340 465.4 557.6 111.8 0.016 34.33 4.822 0.130 0.060 30.32 19.17 54.8 36.47 3.51 

Grp_47 -2.75E-05 11 -1224 -1.180 0.327 374.4 478.1 108.1 0.008 34.43 4.307 0.108 0.039 44.19 11.71 41.4 54.17 4.79 

Grp_48 -1.26E-05 690 -508 -0.941 0.369 613.6 520.8 119.3 0.044 34.40 5.880 0.159 0.069 100.22 38.61 84.3 10.20 3.45 

Grp_49 -8.87E-06 0 -1574 -0.401 0.262 322.6 460.8 95.0 0.005 34.57 4.082 0.084 0.031 -42.58 8.01 57.7 77.73 1.75 

Grp_50 2.09E-05 184 -816 -0.873 0.342 500.8 494.7 117.9 0.048 34.33 5.068 0.089 0.047 -156.80 25.87 204.3 29.11 2.63 
 


