

# Extent of bottom contact by commercial trawling and dredging in New Zealand waters, 1989–90 to 2018–19

New Zealand Aquatic Environment and Biodiversity Report No. 260

S.J. Baird, R. Mules

ISSN 1179-6480 (online) ISBN 978-1-99-100377-5 (online)

May 2021

Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: brand@mpi.govt.nz Telephone: 0800 00 83 33 Facsimile: 04-894 0300

This publication is also available on the Ministry for Primary Industries websites at:

http://www.mpi.govt.nz/news-and-resources/publications http://fs.fish.govt.nz go to Document library/Research reports

© Crown Copyright – Fisheries New Zealand

CORRECTION: This report was updated, in July 2021, with the correct doorspread values assigned to trawl tracklines (section 2.2.2) for the BEN2019-01 project.

# **TABLE OF CONTENTS**

| EXE | CCUTIVE SUMMARY                                                               | 1           |
|-----|-------------------------------------------------------------------------------|-------------|
| 1.  | INTRODUCTION                                                                  | 3           |
| 2.  | METHODS                                                                       | 5           |
| 2.  | 1 Trawl fishery analyses                                                      | 5           |
| 2.2 | 2 Generation of trawl fishery spatial output                                  | 8           |
| 2.3 | 3 Underlying assumptions in trawl fishery spatial analysis and representation | 10          |
| 2.4 | 4 Comparison of the ERS data and TCEPR/TCER data, 2018 and 2019               | 11          |
| 2.: | 5 Shellfish dredge fishery analyses                                           | 11          |
| 3.  | ALL STOCKS TRAWL FOOTPRINT, 1990–2019                                         | 12          |
| 3.  | 1 Number of tows                                                              | 12          |
| 3.2 | 2 Spatial coverage                                                            | 12          |
| 3   | 3 Overlap of All Stocks footprint with 200-m depth zones                      | 17          |
| 3.4 | 4 Overlap of All Stocks footprint with BOMEC classes                          | 18          |
| 3.  | 5 Overlap of All Stocks footprint with surficial sediment layers              | 21          |
| 4.  | DEEPWATER FISHSTOCKS, TRAWL FOOTPRINT 1990–2019                               | 24          |
| 4.  | 1 Deepwater data                                                              | 24          |
| 4.2 | 2 Spatial extent                                                              | 25          |
| 4   |                                                                               | 32          |
| 4.4 | 4 Intensity                                                                   | 33          |
| 4.: | 5 Number of years contacted                                                   | 34          |
| 4.0 |                                                                               | 34          |
| 4.  |                                                                               | 37          |
| 4.3 |                                                                               | 39          |
| 4.9 |                                                                               | 48          |
| 5.  | INSHORE FISHSTOCKS TRAWL FOOTPRINT, 2008–2019                                 | 49          |
| 5.  |                                                                               | 49          |
| 5.2 | 1                                                                             | 49          |
| 5   |                                                                               | 53          |
| 5.4 | •                                                                             | 53          |
| 5.: | •                                                                             | 54          |
| 5.0 | 1                                                                             | 55          |
| 5.  | 1                                                                             | 56          |
| 5.3 | 1                                                                             | 58          |
| 6.  | COMPARISON OF ERS DATA POSITION REPORTING WITH TCER AND DATA                  | TCEPR<br>58 |
| 7.  | DISCUSSION AND MANAGEMENT IMPLICATIONS                                        | 61          |
| 8.  | ACKNOWLEDGMENTS                                                               | 63          |
| 9.  | REFERENCES                                                                    | 63          |
|     | PENDIX A: TRAWL FISHERY DATA                                                  | 66          |
|     | PENDIX B: SPATIAL OVERLAY LAYERS                                              | 68          |
|     | PENDIX C: ALL STOCKS SUMMARY                                                  | 74          |
|     | PENDIX D: DEEPWATER FISHSTOCKS TOW DATA                                       | 88          |

| ADDIVIDUAL INGUADE PROMOTO CAVO        | 400 |
|----------------------------------------|-----|
| APPENDIX E: INSHORE FISHSTOCKS         | 129 |
| APPENDIX F: ERS DATA                   | 146 |
| APPENDIX G: SHELLFISH DREDGE FISHERIES | 148 |
|                                        |     |

#### **EXECUTIVE SUMMARY**

Baird, S.J.; Mules, R. (2021). Extent of bottom contact by commercial trawling and dredging in New Zealand waters, 1989–90 to 2018–19.

New Zealand Aquatic Environment and Biodiversity Report No. 260. 157 p.

The spatial analysis of bottom-contacting trawl effort by commercial trawlers within the New Zealand Territorial Sea and 200 n. mile Exclusive Economic Zone (EEZ+TS), in waters open to trawling down to 1600 m depths, is presented in this report, for different time periods, based on available data.

The All Stocks (deepwater and inshore fishstocks) analysis was completed for 1989–90 (1990) to 2018–19 (2019) fishing years, but the most comparable time period covers fishing years 2008–2019. During this latter period, the All Stocks footprint contacted between about 81 000 and 95 500 km² each year, decreasing over the 12 years, with the lowest value estimated for 2019. These data reflect the decreasing amount of bottom-contacting trawl effort during these years; the numbers of tows in the Trawl Catch Effort Processing Return, Trawl Catch Effort Return, and Electronic Reporting System (ERS) data steadily dropped from 89 236 in 2010 to 66 039 in 2019. The annual aggregate areas for the All Stocks analysis decreased overall from a peak of 164 795 km² in 2010 to the nadir of 143 500 km² in 2019. Over these years, the intensity of trawling within cells was reasonably steady despite the decrease in aggregate area, implying that the contact was more concentrated. The All Stocks footprint contacted about 2% of the EEZ+TS seafloor annually for 2008–2019 and about 6% of the fishable area each year.

In the 30-year time series for deepwater data, there was a steady increase in the footprint from under 50 000 km² in 1990 to a sustained period of contact during 1998 to 2003 (range 72 612 to 81 005 km²), followed by a steady decrease to 43 481 km² in 2019, the lowest of the full 30-year time series, with declines seen for most deepwater targets and the swept area data reflecting the drop in effort. The annual aggregate areas have decreased from 150 730–171 901 km² during 1997–2003 to under 100 000 km² after 2005, with a nadir in 2009 (79 650 km²), another peak at 97 045 km² in 2018, and a drop to 86 777 km² in 2019. The deepwater analysis estimated a 30-year total of 3 475 450 km² aggregate area and 351 683 km² footprint, with this overall deepwater footprint representing 8.6% of the EEZ+TS and 25.3% of the fishable area. Between 1990 and 2007, the annual footprint contacted between 1.2% and 2.0% of the EEZ+TS and 3.4% and 5.8% of the fishable area (peaks in 2002 and 2003); whereas, between 2008 and 2019, the annual footprint contacted 1.1–1.2% and 3.2–3.7% of the fishable area (lowest values in 2019).

The 2008–2019 inshore footprint also decreased, from a peak of about 47 220 km² in 2010 to a nadir of 38 131 km² in 2019. This contact was equivalent to 0.9–1.1% of the EEZ+TS seafloor area, and 2.7–3.4% of the fishable area, with the lowest values from 2019. The aggregate areas during these years ranged between the low in 2019 (56 611 km²) and the peak in 2014 (71 053 km²). As noted above, the decrease in swept areas seen for each group of fishstocks reflects the drop in bottom-contacting effort.

The use of ERS data in 2018 and 2019 has allowed for more precision in locating the start and end positions of tows and thus had an effect on the standard reporting measures: number of contacted cells, aggregate swept area, and footprint. The magnitude of the effect depended on the target fishery. The greatest effect of the ERS data is in the inshore fishstocks because the ERS data provide both start and finish positions and therefore provide more certainty in the direction of a tow and more comparability with the deepwater data.

These results are further discussed to indicate the intensity of contact, the frequency of contact (comparing annual data), and any areas contacted in one years but not in previous years. Overlap of the footprints with depth zones, the Benthic-optimised Marine Environment Classification, surficial sediment layers, and probability of occurrence of some target species is presented by the broad fishery

groups. Data inclusion and the effect of the methodology used is also discussed. The data behind these summaries are stored in a Ministry for Primary Industries Geographic Information System geodatabase at the level of each tow, with the potential to analyse data at regional or smaller scales by target or groups of targets, as well as at a 25-km<sup>2</sup> cell grid level for the broad analysis of the EEZ+TS given here.

Lastly, shellfish dredge data are presented as summaries of the effort by year and specific target fishery, and, for the oyster fishery in Foveaux Strait, swept area per 1-nautical mile grid provides a finer resolution of this fishery based on 2019 ERS data.

## 1. INTRODUCTION

Understanding the nature and extent of bottom-contacting fishing activity within New Zealand waters is a research area that contributes to Fisheries New Zealand fisheries management objectives: For offshore fisheries — 'Manage deepwater and middle-depth fisheries to avoid, remedy or mitigate the impacts of deepwater fisheries on the benthic habitat' (Fisheries New Zealand 2019a) and inshore finfish fisheries — 'Minimise adverse effects of fishing on the aquatic environment, including on biological diversity' (Ministry of Fisheries 2011). The primary bottom-contacting mobile fishing methods are trawling for finfish, squid, and scampi, as well as dredging for shellfish (oysters and scallops).

Bottom-contacting trawling has been conducted mainly in continental shelf waters in depths defined by the distribution of target species, generally in waters shallower than 1600 m (Baird et al. 2011). The primary trawl gear, defined here as including bottom trawl and midwater trawl used within a metre of the seafloor, target inshore and deepwater fishstocks within the 200 n. mile New Zealand Exclusive Economic Zone and the Territorial Sea (EEZ+TS). Skippers of trawl vessels operating these gears have reported this commercial fishing activity on Trawl Catch Effort Processing Return (TCEPR) forms if the vessel is over 28 m in overall length or if the vessel is required by the Director-General of Fisheries to furnish a TCEPR (as required by the Fisheries (Reporting) Regulations 1990). Introduced in October 1989, the TCEPR was primarily used to report data from vessels in the deepwater fleet; these vessels mainly operate in waters deeper than 200 m. From October 2017, the Electronic Reporting System (ERS) was introduced for data collection from these vessels, to replace the TCEPR.

Daily trawl effort by vessels operating in inshore waters around New Zealand was primarily reported on Catch Effort Landing Return (CELR) forms from October 1989, although skippers of some small inshore trawl vessels also reported effort on TCEPRs from the mid-1990s (see Baird et al. 2011). The CELR form for trawl data was replaced in October 2007 by a more comprehensive form, the Trawl Catch Effort Return (TCER). From January 2019, the use of ERS for data collection was gradually implemented throughout other commercial fishing fleets, including the inshore trawl and dredge vessels.

The TCER, TCEPR, and ERS data provide tow-by-tow information that can be used to generate annual trawl footprints that represent the area of the seafloor contacted by trawl gear. Previously, trawl footprints have been determined using, where available, TCEPR and TCER data extracted from the Ministry for Primary Industries (MPI) database *warehou* (see for example, Baird et al. 2011, Black et al. 2013, Baird et al. 2015, and Baird & Wood 2018), generally for fishing years since 1989–90. In 2018, the trawl footprint analysis for deepwater vessels was re-run and updated, using the MPI CatchMapper software tool (Osbourne 2018) and data extracted from the Enterprise Data Warehouse (EDW) – a database that includes the *warehou* form-based data and the ERS data (Baird & Mules 2019). In 2019, the footprint analysis was extended to include the inshore fleet activity, based on data up to the end of the 2018 fishing year (Baird & Mules 2021).

The overall research objective for the BEN201901 project reported in this document is: to monitor the extent and intensity of bottom contact by trawl and dredge fishing for all inshore and deepwater target species in the Territorial Sea and Exclusive Economic Zone.

The specific objectives addressed by this report are:

- 1. To help MPI groom data, develop and compile summary statistics for all deepwater and inshore trawl and dredge fishing by year, depth zone, sediment categories, fishable area, and any other agreed habitat classifications or proxies, and to identify any trends or changes to meet management needs.
- 2. To assess the effects of footprint estimation methods used in previous footprint assessments where less precise location data were available.
- 3. To summarise all trends and statistics in an Aquatic Environment and Biodiversity Report.

## 1.1 Specific Objectives

# **Objective 1**

# Trawl swept area

Objective 1 requires analyses of the bottom-contacting trawling for deepwater Tier 1 and Tier 2 fishstocks (as defined by Fisheries New Zealand 2019a) and for inshore trawl fisheries with specific analyses of inshore fishstock groups defined by Fishery Management Area (FMA). Trawl footprint summaries are presented relative to the 'fishable' area—waters open to trawling down to 1600 m—and to defined 200-m depth zones within the fishable area; the 15-class Benthic-optimised Marine Environment Classification (BOMEC) generated by Leathwick et al. (2012); predicted distribution of likely occurrence for the deepwater Tier 1 target species (Leathwick et al. 2006); and interpolated distribution of surficial sediments for the continental shelf, slope, and deep ocean (Bostock et al. 2019a, 2019b). Additional summaries are provided for some deepwater Tier 1 fishstock groups relative to areas used in analyses of the distribution of finfish bycatch (Anderson & Edwards 2018) or to specific orange roughy fishery areas relevant to Marine Stewardship Council certification assessment.

The footprint analyses are presented by fishing year (1 October to 30 September) for the 1989–90 (1990) to 2018–19 (2019) fishing years for bottom-contacting effort based on deepwater and combined deepwater and inshore (total) effort and for 2007–08 (2008) to 2018–19 (2019) for inshore effort. These years cover the time period for which detailed tow-by-tow data have been available since the introduction of the TCEPR in the 1990 fishing year, primarily for the deepwater fleets.

# Dredge swept area

The spatial coverage for dredge effort has previously been summarised in earlier projects by the number of tows in a year in each fishery-specific area, as reported by oyster and scallop fishers, because of the lack of fine-scale location data. With the gradual implementation of ERS data collection for these fisheries during 2019, the available dredge ERS data are investigated and a preliminary spatial swept area coverage is presented where data are available. Note: the data, methods, and results for dredge effort are presented in Appendix G, separate from the trawl footprint analyses.

# **Objective 2**

#### Trawl swept area

The ERS data collection provides a finer-scale set of position data compared with the previous form-based paper logbooks, as input to the swept area estimation. A comparison of methods used to generate trawl footprints from the different data collection methods is presented as a preliminary assessment of the effect on the extent of seafloor area contacted by trawl gear.

## **Objective 3**

This report describes the data sources and treatment, assumptions, methods, and results of the above analyses, with additional summaries and information given in appendices. Annual summary documents from the May and November fishery plenaries provide historical and current background information on the fishstocks analysed in this report (Fisheries New Zealand 2019a, 2020).

## 2. METHODS

## 2.1 Trawl fishery analyses

The methods below describe the data exploration and grooming and the preparation for the trawl footprint spatial analysis. The methods used for the dredge spatial analyses are described in section 2.2. These methods build on those developed and described by Baird et al. (2011), Black et al. (2013), and Baird & Wood (2018) for TCEPR data; Baird et al. (2015) and Baird & Wood (2018) for TCER data; and Baird & Mules (2019, 2021) using the MPI spatial software CatchMapper.

# 2.1.1 Fishery data sources

The MPI Spatial Intelligence team accessed all TCEPR, TCER, and ERS trawl and dredge effort data from the Enterprise Data Warehouse for 1990–2019 fishing years. The data extract (replog 12010) included fishing event data and associated vessel data for trawl and shellfish fisheries. The TCEPR data provided information about each fishing operation, with tow-by-tow records of latitude and longitude and date-time for the start and end of each tow, target species, tow duration, tow speed, and gear parameters, amongst others. The TCERs provided similar tow-by-tow data, but with start of the tow position information only which necessitates the generation of an endpoint (see Baird et al. 2015). The ERS collects data similar to the TCEPR; however, the position data are at a finer resolution: TCER and TCEPR data are generally recorded in degrees to one or two decimal places, whereas ERS data are recorded to four decimal places.

# 2.1.2 Fishery data grooming and treatment

Grooming routines followed those used in previous analyses (see references in section 2.1) and summary data are given in Appendix A. Broad queries on all bottom and midwater trawl data were run using R statistical package (R Core Team 2019) to isolate duplicates or missing data. Particular attention in the grooming was given to variables required to characterise the effort: location/area fished, date and time, gear type, target species, number of tows, fishing duration, towing speed, vessel characteristics, effort width (wingspread), and depth.

The deepwater component included the Tier 1 and Tier 2 deepwater fishstocks (Fisheries New Zealand 2019b) listed in Table 1. Fisheries New Zealand provided a list of potential fishstocks to be included in a Fishery Management Area-based collation of inshore fishstocks, based mainly on those fishstocks given in Table 2. The data indicated that some of these have few data (kahawai and smooth skate) and there are some that have data in recent years (ling and dark ghost shark) that have been added to the original list.

Table 1: Tier 1 and Tier 2 deepwater fishstocks with bottom-contacting trawl effort reported during fishing years 1990–2019 (see Fisheries New Zealand 2020 for fishstock boundaries). The fishstocks with no reported effort in these years (and not in the table) are for pale ghost shark (*Hydrolagus bemisi*).

| Code: fishstock              | Common name           | Scientific name                                        |
|------------------------------|-----------------------|--------------------------------------------------------|
| Tier 1                       |                       |                                                        |
| HAK: all                     | Hake                  | Merluccius australis                                   |
| HOK: all                     | Hoki                  | Macruronus novaezelandiae                              |
| JMA: JMA 3, 7                | Jack mackerels        | Trachurus declivis, T. murphyi, T. novaezealandiae     |
| LIN: LIN 3, 4, 5, 6, 7       | Ling                  | Genypterus blacodes                                    |
| OEO: all                     | Oreo species          | Allocyttus niger, Neocyttus rhomboidalis, Pseudocyttus |
| ORH: all                     | Orange roughy         | Hoplostethus atlanticus                                |
| SBW: all                     | Southern blue whiting | Micromesistius australis                               |
| SCI: all                     | Scampi                | Metanephrops challengeri                               |
| SQU: all                     | Arrow squid           | Nototodarus sloanii, N. gouldi                         |
| Tier 2                       |                       |                                                        |
| BAR: BAR 4, 5, 7             | Barracouta            | Thyrsites atun                                         |
| BYX: all                     | Alfonsino             | Beryx splendens, B. decadactylus                       |
| CDL: all                     | Black cardinal fish   | Epigonus telescopus                                    |
| EMA: EMA 3, 7                | English mackerel      | Scomber australasicus                                  |
| FRO: FRO 3, 4, 5, 6, 7, 8, 9 | Frostfish             | Lepidopus caudatus                                     |
| GSH: GSH 4, 5, 6             | Dark ghost shark      | Hydrolagus novaezelandiae                              |
| LDO: all                     | Lookdown dory         | Cyttus traversi                                        |
| PRK: all                     | Prawn killer          | Ibacus alticrenatus                                    |
| PTO: all                     | Patagonian toothfish  | Dissostichus eleginoides                               |
| RBT: all                     | Redbait               | Emmelichthys nitidus                                   |
| RBY: all                     | Rubyfish              | Plagiogeneion rubiginosum                              |
| RIB: RIB 3, 4, 5, 6, 7, 8    | Ribaldo               | Mora moro                                              |
| SKI: SKI 3, 7                | Gemfish               | Rexea solandri                                         |
| SPD: SPD 4, 5                | Spiny dogfish         | Squalus acanthias                                      |
| SPE: SPE 3, 4, 5, 6, 7       | Sea perch             | Helicolenus percoides                                  |
| SWA: all                     | Silver warehou        | Seriolella punctata                                    |
| WWA: all                     | White warehou         | Seriolella caerulea                                    |

Table 2: Inshore fishstocks for which there was trawl effort during fishing years 2008–2019 (see Fisheries New Zealand 2020 for fishstock boundaries). A full list of inshore targets is given in Table E2 (Appendix E).

| Code: fishstock       | Common name      | Scientific name                                                      |
|-----------------------|------------------|----------------------------------------------------------------------|
| BAR 1                 | Barracouta       | Thyrsites atun                                                       |
| ELE 3, 5, 7           | Elephant fish    | Callorhinus millii                                                   |
| FLA 1,2,3,7           | Flatfish         | Rhombosolea retiaria, R. plebeia, R. tapirina, Pelotretis flavilatus |
| GSH 1, 2, 3, 7, 8, 9  | Dark ghost shark | Hydrolagus novaezealandiae                                           |
| GUR 1, 2, 3, 7, 8     | Red gurnard      | Chelidonichthys kumu                                                 |
| JDO 1, 2, 3, 7        | John dory        | Zeus faber                                                           |
| KAH 1, 2, 3, 8        | Kahawai          | Arripis trutta                                                       |
| LEA 1, 2, 3           | Leatherjacket    | Parika scaber                                                        |
| LIN 1, 2, 8, 9        | Ling             | Genypterus blacodes                                                  |
| MOK 1, 3              | Moki             | Latridopsis ciliaris                                                 |
| RCO 2, 3, 7           | Red cod          | Pseudophycis bachus                                                  |
| RSK 7,3               | Rough skate      | Zearaja nasuta                                                       |
| SCH 1, 2, 3, 5, 7, 8  | School shark     | Galeorhinus galeus                                                   |
| SKI 1, 2              | Gemfish          | Rexea solandri                                                       |
| SNA 1, 2, 3, 7, 8     | Snapper          | Chrysophrys auratus                                                  |
| SPD 1, 3, 7           | Spiny dogfish    | Squalus acanthias                                                    |
| SPO 2, 7, 8           | Rig              | Mustelus lenticulatus                                                |
| SSK 3                 | Smooth skate     | Dipturus innominatus                                                 |
| STA 2, 3, 4, 5        | Giant stargazer  | Kathetostoma giganteum                                               |
| TAR 1, 2, 3, 4, 5, 7, | Tarakihi         | Nemadactylus macropterus                                             |
| TRE 1, 2, 3, 7        | Trevally         | Pseudocaranx dentex                                                  |
| WAR 1, 2, 3, 7, 8     | Blue warehou     | Seriolella brama                                                     |
| , , , , , -           |                  |                                                                      |

## 2.1.3 GIS layers for estimating the overlap of the bottom-contacting trawl footprint

Spatial data layers were used to determine the extent of coverage of the trawl footprint in 200-m depth zones, the potential 'fishable' area, and modelled environmental classification layers, as required in the project specifications. These layers are described below. Note that all the spatial overlap and area calculations were made from data in the following projection: Albers Equal Area Projection (central meridian at 175° E, standard parallels at 30° S and 50° S, and the latitude of origin at 40° S). Appendix B provides maps of the spatial distributions of these layers at the resolution they were generated in, and the extent of the seafloor area of each layer (and divisions therein) within their full boundary within the EEZ+TS.

All the spatial layers described below were overlaid on a 5 km x 5 km analysis grid and a data value for each layer was assigned to the midpoint of each cell.

## Depth zone

Two depth zone layers were used: one created from the 2016 NIWA 250-m cell bathymetry data (Mitchell et al. 2012) to yield 200-m depth zones out to a depth of 1600 m, the depth that is close to the depth limit of current trawling effort; and a second based on an unpublished but validated 100-m cell bathymetry dataset produced by NIWA (Kevin Mackay, NIWA, pers. comm.) for use in coastal areas to yield a 50-m depth zone GIS layer to describe the fishing depths of effort for inshore fishstocks (to 250 m). The seafloor area (square kilometres) of each zone was then calculated using tools in ArcGIS. The distribution of these zones is shown in Figure B1 in Appendix B. The depth zones are restricted to waters open to trawling, and thus the area of 0–1600 m depths has the same seafloor area as the 'fishable' area.

#### 'Fishable' area

The 'fishable' area is used to display the trawl swept area values and represents waters in 0–1600 m depths that are open to trawling: that is, waters exclusive of Benthic Protection Areas (BPAs) that were introduced in 2007, closed areas to protect underwater features including seamounts (the first of which were closed in 2001), and marine reserves, for example, around the Auckland Islands group (Figure B1, Appendix B). The area covered by the 'fishable' area was calculated as 1 391 680 km² using the equal area projection described above. The percent overlap of the footprint and the layers discussed in this section are based on the fishable area; the seafloor areas covered by the full extents of these layers (which vary by layer) are given in Table B1 of Appendix B.

#### Benthic-optimised marine environment classification (BOMEC)

This layer was created by Leathwick et al. (2012) and contains 15 classes that represent different environments generated from modelling the relationships between the distributions of relevant environmental variables to discriminate the distributions for eight taxonomic groups of benthic fish and invertebrates. The classification broadly describes three inshore classes (A, B, D), three shelf classes (C, E, F), and nine classes in deeper waters down to 3000 m (G–O) (see Figure B1 in Appendix B). Thus, it extends beyond the depths where fishing normally occurs. The area (square kilometres) of each class was calculated, as above, for the full extent of the predicted layer and the fishable area.

## Probability of capture/annual distribution for the Tier 1 target species

For the seven fish target species in the deepwater Tier 1 group of fishstocks, Leathwick et al. (2006) predicted the distribution of the probability of capture during a standardised trawl in waters out to 1950 m within the outer EEZ boundary, based on presence/absence data and relevant modelled environmental variables (Figures B2a–B2b of Appendix B). For scampi and arrow squid, the annual distributions of the populations as mapped by MPI (<a href="www.nabis.govt.nz">www.nabis.govt.nz</a>) are used as a proxy for the species distribution (see Figure B2c). The arrow squid and scampi areas match the extent of the EEZ+TS; the areas of unknown presence, hotspot, 90% and 100% annual distribution for arrow squid and scampi were calculated, as above.

### Surficial sediment distribution

Sediment analyses and observations from a comprehensive range of sources were collated into a database nzSEABED to characterise and map the surficial sediments of the New Zealand continental shelf, slope, and deep ocean by Bostock et al. (2019a, 2019b). The data were interpolated using kriging in GIS to yield percent mud, sand, and gravel (to total 100%) and carbonate content (% carbonate versus non-carbonate) to provide information about biological content. The distributions of these substrates are shown in Figure B3 in Appendix B).

## 2.2 Generation of trawl fishery spatial output

The trawl data have position and operational data that allow spatial analysis and presentation. However, each data type requires different treatment to generate swept area estimates. TCEPR data include both start and end positions (generally to the nearest 1 minute of arc, or about 1.852 km), as do ERS data (to a finer resolution). TCER data have tow start positions only, at the same resolution as TCEPR data. Thus, the groomed data are treated separately (by form type) before being combined to develop the swept area statistics. The methods described below follow those used and fully described by Baird et al. (2011) and Black et al. (2013) for TCEPR data and Baird et al. (2015) and Baird & Mules (2021) for TCER data.

Where latitude and longitude data were truncated to the nearest minute of arc, and thus many tows appearing to start at the same location because of the lower resolution of the data, the start and finish positions were randomly jittered using an offset of  $\pm$  0.5 minute, to better represent the likely start and finish positions. The jittered values were stored as new fields in the dataset. Note that the reported position data represent where the vessel was at the time the net was deemed to have reached (and left) fishing depth rather than the location of the net. However, the use of random jittering does limit the artificial patchiness of effort created by the resolution of the data.

A second set of 2018 and 2019 ERS swept area data was generated by decreasing the resolution of the position data to the same level as that generally seen in TCER and TCEPR data (to the nearest minute of arc), to provide a 'rounded' comparison dataset of the ERS data required for Objective 2 (section 6).

## 2.2.1 Preparation for estimating swept area from TCER forms

The TCER data lack information that describes the finish location. Although a measure of swept area can be calculated, based on the duration of the tow and tow speed, the swept area cannot be spatially represented, other than as a circle centred on the start position. To create a trawl track, the methods described by Baird et al. (2015) was used, whereby, within a trip, a tow direction was generated from the bearing between the start position of a tow and the start of the following tow. A distance measure (in kilometres) was estimated from tow speed and tow duration data and used with the estimated bearing to generate finish coordinates.

TCER data are characterised by a relatively small number of tows per trip (Baird et al. 2015) and thus, a substantial number of tows had no following tow (in a given trip). Thus, the last tows and only tows of a trip are identified, and for each of these tows, a bearing was estimated based on the median estimated bearing values from other tows by the same vessel for the same target species within 1/30<sup>th</sup> of a degree north/south or east/west, using a minimum number of 2 tows. This was used to generate finish coordinates (as above). Where this failed, tow end coordinates were generated by using the median estimated bearing values from tows of the same target species within 1/30<sup>th</sup> of a degree north/south or east/west, using a minimum number of 2 tows.

# 2.2.2 Spatial allocation of tows

Several new variables were generated on a tow-by-tow basis to provide spatial representation of each tow:

**Doorspread**. The distance between the two trawl doors provides a measure of the width of the trawl path used to estimate the potential area of the seafloor contacted by the trawl gear, that is, the swept area. This measure is not reported on commercial data forms, so previous footprint

studies have applied doorspread values (with agreement from the Fisheries New Zealand Aquatic Environment Working group) to each tow, based on vessel size, target species, and known gear parameters, including the number of nets used to reflect differences in the spread of gear depending on vessel size (see for example, Baird & Wood 2018). The estimated doorspread values used in this study were assigned according to vessel size (overall length), target, and the number of nets used (based on the "number of nets" data which were first collected on the TCER and TCEPR forms in the 2008 fishing year), informed further by observer data. Data from the HOK/HAK/LIN stock assessment projects (Sira Ballara, NIWA, pers. comm.) were used to identify those tows in the effort data that used twin trawls before 2008. Vessel categories and types are given Figure 13. The assigned doorspreads were:

- 70 m for category A vessels under 20 m in length, with a single net
- 100 m for category A vessels over 20 m (max. 28 m) in length, with single net
- 150 m for category B vessels, with a single net
- 50 m for scampi tows with two nets and 70 m for scampi tows using three nets for category A vessels
- 70 m for scampi tows with two nets and 90 m for scampi tows using three nets for category B vessels
- 150 m for all targets, except HAK/HOK/LIN/SWA, for category C vessels that used one net
- 200 m for category C vessels targeting HAK/HOK/LIN/SWA with a single net
- 400 m for category C vessels targeting HAK/HOK/LIN/SWA with two nets [bottom trawl, BT] and for a single category D vessel that used two nets [BT]
- 150 m for all category D BATM vessels [BT and midwater within 1 m seafloor]
- 200 m for remaining category D vessels with single net.

**Tow distance.** A distance for each trawl track (kilometres) was calculated from the finalised start and fishing positions, assuming a straight-line tow.

**Speed-time distance.** A second distance value (kilometres) was calculated for each tow; this was based on the speed and the tow duration (the difference between the reported tow start and finish times) for use with the TCER data and for some deepwater target TCEPR tows where short tows on hills resulted in the coordinates of the start and finish location being the same.

Each tow was converted into a trackline (distance between the start and finish locations). Scampi, arrow squid, and hake tows were permitted a maximum length of 70 km and a maximum tow distance for other species was set at 55.56 km (after Black & Tilney 2017, Baird & Mules 2019). A median distance (calculated from the straight-line tow distance by target species) was applied to the start points of those tows that exceeded the prescribed maximum lengths, and new end points were generated in GIS by shortening the trackline to the median distance.

The trawl data were imported in GIS and each trackline was buffered by the assigned doorspread to produce polygons to represent the trawl path (as a straight line). In some regions, this resulted in tow tracks going across land (for example, Farewell Spit at the northwestern edge of the South Island). Each trawl polygon was clipped by the fishable area layer, so that no effort remained on land or in any areas closed to fishing and portions of some tows remained in the data (e.g., for narrow protrusions such as Farewell Spit). A summary of the data retained, and data excluded, from the fishable analysis is provided in Appendix C.

## 2.2.3 Assignment of tow data to cells

To aid in the categorisation and analysis of the data, a grid of approximately 25 km<sup>2</sup> cells was created as a database table and joined to the TCER, TCEPR, and ERS effort table. This 5x5 km cell size has been used in previous work and is considered reasonable, by successive Aquatic Environment Working Group meetings, as the unit of analysis for trawl swept areas on a broad scale such as the EEZ+TS. This grid was generated in the Albers Conic Equal Area Projection and re-projected to latitude and longitude degrees to overlay with groomed effort data as a basis for spatial analysis to identify and quantify the amount of effort per cell over time and to generate an indicative 'footprint' of trawl effort on the seafloor.

For area-based calculations, the data were re-projected to the Albers Conic Equal Area projection to minimise distortions caused by converging lines of longitude with increasing latitude using degrees as the coordinate units.

This study used the estimated swept area for each tow (in square kilometres), hereafter referred to as the *swept area*, as a measure of the fishing intensity.

- 1. *Swept area* is the area derived from the tow distance as the straight-line measurement between start and finish positions and the assigned doorspread. This measure was used to summarise the effort and the total for each fishing year, referred to as the *aggregate swept area* (Figure 1).
- 2. *Trawl footprint* is the area (square kilometres) that represents the seafloor area estimated to have been contacted by trawl gear (Figure 1).

For each cell, the sum of the area of all the portions of the estimated doorspread trawl polygons that lie within that cell was calculated. Thus, a cell in any given fishing year may have an aggregate swept area of 0 km² (no contact) or 25 km² (contacted area is similar to the cell size), or perhaps 100 km², suggesting that for that year, the swept contacted area was 4 times the cell area; whereas the maximum trawl footprint in a cell is 25 km².

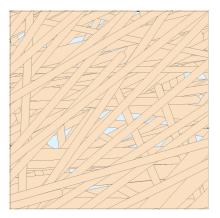





Figure 1: A 25-km² cell showing the trawl polygons representing the aggregate area (i.e., the sum of the swept areas of the bottom-contacting trawls) shown in the left panel and the footprint that represents the seafloor area estimated to have been contacted by the trawls in the right panel.

# 2.3 Estimation of newly trawled area using identification of 'new' cells contacted

The extent of the trawl footprint will vary in each annual footprint project analysis because: (i) a full set of data is extracted for each project and includes the most recent fishing year of data, as well as any updates to the underlying previous years of data; (ii) the use of jittering (section 2.2) will produce slight changes in the location of each jittered position in each analysis. To identify areas that are newly contacted by the annual footprint in the most recent year, the footprint of the previous years (e.g., for the combined 1990–2018 fishing years) can be directly compared with the most recent year (e.g., 2019) in GIS. Baird & Mules (2019) showed that this method identified small slivers of footprint from the most recent year in areas of dense contact and concluded that because of the inherent uncertainty in the estimation of the swept area – from the resolution of the start and finish data, the treatment of the trawl trackline as a straight line, and the use of generic doorspread values – much of this 'new' area may not represent expansion of the footprint extent.

An alternative method to identify areas of expansion/exploration in the most recent year is a cell-based comparison, based on the 25-km² cell footprint. Thus, any cells in the most recent analysis year that were not identified as contacted in the combined previous years are identified as 'new' cells (Baird & Mules 2019): that is, cells that had no previous trawl contact (within the time series of analysis) as newly trawled areas that represented an extension of bottom trawling. This method is used in this analysis.

# 2.4 Underlying assumptions in trawl fishery spatial analysis and representation

The effort data used here represent subsets of the total commercial trawl effort data reported during these years. First, data are for tows that used bottom trawl gear or midwater gear within 1 m of the seafloor, and second, the data are restricted to three data sources (TCER (2008–2019 fishing years), TCEPR (1990–2019), and ERS (2018–2019).

Some underlying assumptions need to be stated.

- 1. Each time series has an artificial start and end. The study treats the first fishing year of data, for example, 1990 or 2008, as the start of fishing in each area, and thus any discussion of trends is relative to the fishing year at the beginning of the time series.
- 2. It is assumed that the paths (trackline) of all tows follow a straight line between the reported or estimated start and end positions. In reality, tows may follow contours and may include turns, but the trackline data do not allow any determination of actual tow path. The duration-speed distance measure provides some measure of a tow path distance and where this differs from the trackline distance it is assumed to be closer to the 'real' length of a tow.
- 3. It is assumed that the gear is in contact with the seafloor throughout the tow.
- 4. It is assumed that gear used by similar sized vessels fishing for the same target species has the same doorspread, and that there are no differences in the way in which skippers operate or rig their gear.
- 5. The resolution of most of the position data is to the nearest minute (about 1.852 km assuming no allowance for latitudinal changes).
- 6. The measure of swept area will be indicative and may well be better estimated for certain target species where fishing effort is carried out by larger vessels with gear parameters that are better understood.
- 7. The irregular nature of the seafloor is ignored, and it is assumed that, within each cell, the seafloor is homogeneous.
- 8. The patchy distribution of fishing is in part due to avoidance of areas of the seafloor that are unfishable because of undersea formations or habitats such as sponge gardens that fishers may describe as 'foul ground'.

# 2.5 Comparison of the ERS data and TCEPR/TCER data, 2018 and 2019

To address Objective 2, the methods used to generate the tow polygons (as an initial step in the spatial analysis) for the TCER and TCEPR data were applied to the fine scale start and finish position data collected via electronic reporting, to provide an assessment of the difference between the resolution of the source data. For this work, the resolution of the finer-scale position data from ERS data collection was reduced to the nearest nautical mile (the resolution of most of the paper logbook data), then the same rules described in section 2.2 were applied to generate the spatial representation of the tows: that is, round or truncate the ERS position data (which record the vessel position when the net reaches fishing depth – as do the TCERs and TCEPRs) and then apply the jittering script and compare the results with the original ERS position data.

# 2.6 Shellfish dredge fishery analyses

The scallop and oyster dredge fishery data for 1990–2019 were groomed according to rules used by Baird et al. (2011), based on information from fishers and researchers at the time. The methods used and the analysis results are presented in Appendix G.

## 3. ALL STOCKS TRAWL FOOTPRINT, 1990–2019

#### 3.1 Number of tows

For the combined 1990–2019 fishing years, 2 044 718 bottom-contacting tows were retained for the spatial analyses; 71% were from TCEPRs, 26% from TCERs, and 3% from ERS data collection (Table A1 in Appendix A). Deepwater fishstocks accounted for about 59% of all tows and inshore fishstocks for about 41%. These forms were introduced in different years over the time series, with the TCEPR providing the first tow-by-tow data collection for vessels over 28 m that generally fished deeper waters within the New Zealand EEZ, with the first data collection year being 1 October 1989 to 30 September 1990 (referred to here as the 1990 fishing year). It is this form that provides the backbone of the All Stocks data, and the deepwater component has been supplemented from the mid-1990s with inshore effort primarily targeting snapper, but also other inshore target species that were likely fished by the snapper vessels. Other inshore effort continued to be recorded on CELRs that collected daily data on a target-Statistical Area basis; the summary data for annual effort recorded on CELRs are given in Table A2, along with the annual TCER, TCEPR, and ERS tows. These data show that before 2008 the amount of overall trawl effort each year could be double that which is recorded from the tow-level data; note that these CELR tow numbers are preliminary.

With the introduction of the TCER in October 2007 (2008 fishing year), a new set of data covering an equally sized fishery group (inshore) was available for spatial analysis alongside the TCEPR data. Lastly, the move to ERS data from TCEPR during 2018 for deepwater fishstocks and from TCER in 2019 for inshore fishstocks has provided similar data but at a finer resolution and, for inshore data, an endpoint for each tow. The change of data collection during the time series needs to be considered when interpreting these data. The most comparable time period for annual data is from 2008 to 2019.

## 3.2 Spatial coverage

The extent of the All Stocks seafloor contact is summarised by year in Table C1 in Appendix C. Overall, the data available for all stocks indicate that at least 41 424 25-km² cells were contacted over the 30 years, with a total aggregate area of 4 672 058 km², and a footprint of 460 627 km². These areas represent the estimated swept areas retained in the fishable area analyses (for the waters open to trawling down to 1600 m), where, for 1990–2019, 98.7% of the aggregate area and 93.9% of the footprint area were retained (see Appendix C, including Tables C2 & C3 and Figure C1 in Appendix C). Any further references to the aggregate and footprint in areas in this document are for the fishable area.

All Stocks footprint. Overall, the trawl footprint of 460 627 km² represents 11% of the EEZ+TS seafloor area, and 33.1% of the fishable area (Table C1). The annual footprint shown in Figure 2 shows a steady increase from the start of the data collection in 1990, to a peak in 2002 and 2003 at about 97 000 km², followed by a sharp drop to about 68 000 km² in 2006 and 2007. The marked rise in the annual footprint from 2008 is a result of the addition of the TCER data from all the bottom-contacting inshore trawl activity. Effectively the footprint has extended from offshore to inshore with the addition of these TCER data, and the lack of a large increase in the annual number of cells in subsequent years, despite the addition of the inshore data, indicates a decrease in the extent (as measured by cells contacted) of the offshore component. The annual footprint after 2010 (at 95 500 km²) shows a slight decrease overall, to a low (since 2008) in 2019 (at 81 000 km²). The spatial distribution of the All Stocks footprint for all years combined and for 2019 is shown in Figure 3.

All Stocks aggregate area. The aggregate area increased to a peak in 1998, at over 202 000 km<sup>2</sup>, then had a relatively steady period (range of 175 235–182 542 km<sup>2</sup>) between 1999 and 2003 (Table C1, Figure 2). From 2004 to 2007, the aggregate area declined to levels seen in the early 1990s, to a low of 112 518 km<sup>2</sup>. The TCER data increased the aggregate area in 2008 to the level seen in 2004 and over the following years the aggregate area ranged between 150 830 and 157 466 km<sup>2</sup>, except for peaks in 2010 (164 795 km<sup>2</sup>) and 2018 (160 151 km<sup>2</sup>) and lows of just over 148 000 km<sup>2</sup> in 2013 and 2016 and

143 503 km<sup>2</sup> in 2019. The spatial distribution of the All Stocks aggregate area for all years combined and for 2019 is shown in Figure 4.

All Stocks number of cells. Over the 30 years in this dataset, 41 424 cells were contacted by the All Stocks footprint (Table C1). Pre 2008, when the data mainly represented the deepwater fleet effort, the number of cells increased to a peak of over 20 000 cells in 2002 and then dropped to 15 890 cells in 2007 (similar to the number in 1994). Subsequently, with the addition of the TCER data, 18 606 cells were contacted in 2008, then the number dropped to 16 363 in 2013, followed by a steady period at about 17 300 to 17 600 until 2019 when the number of cells dropped to just over 16 000. During those most recent 12 years, a total of 30 247 cells were contacted and 32% of those cells had contact, at some time, by both deepwater and inshore trawl effort.

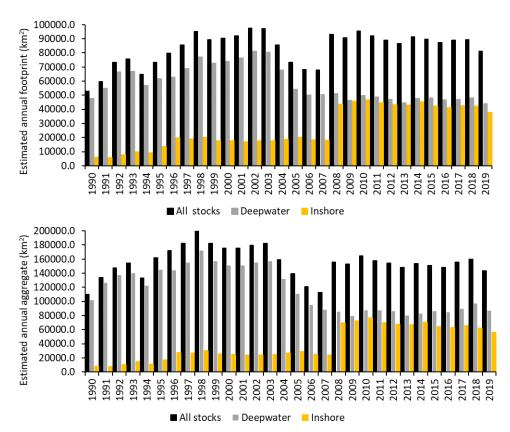



Figure 2: Annual estimated footprint and aggregate area for All Stocks, Deepwater stocks, and Inshore stocks, 1990–2019. The data represent TCEPR (1990–2019), TCER (2008–19), and ERS (2018–2019) bottom-contacting effort. Note: TCER data collection was introduced in the 2008 fishing year and ERS data collection started in the 2018 fishing year.

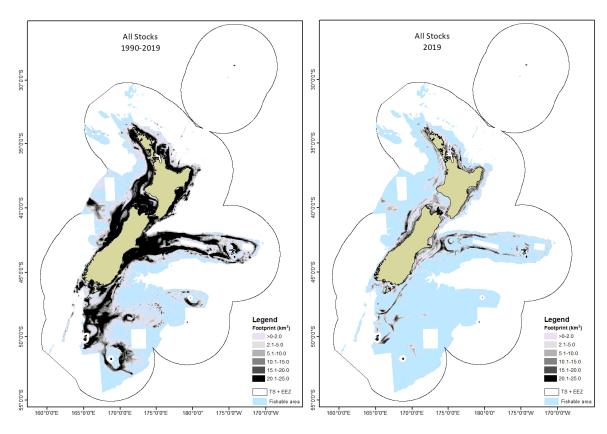



Figure 3: Distribution of the All Stocks footprint represented by 25-km<sup>2</sup> cells, 1990–2019 and 2019.

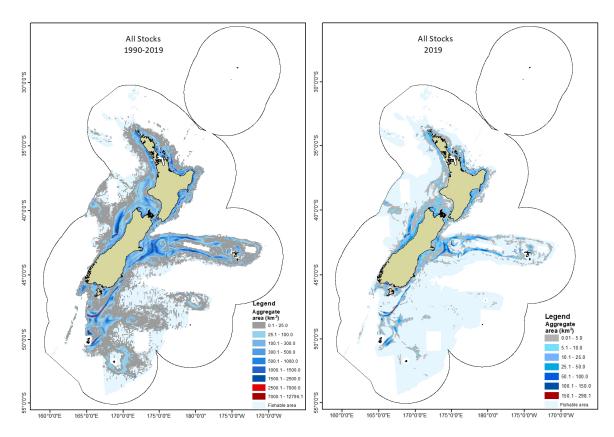



Figure 4: Distribution of the All Stocks aggregate area per 25-km<sup>2</sup> cell, during the combined fishing years 1990–2019 (left) and for 2019 (right).

#### 3.2.1 Extent of new areas contacted across the time series

Overall, 68% of all cells contacted by the footprint were contacted in both 1990–2007 and 2008–2019 time periods, whereas 27% were contacted pre-2008, but not during 2008–2019, and 5% were contacted for the first time during the last 12 fishing years.

A measure of change across all years is the number of cells contacted in a year (for example 1998) that were not contacted in previous years (1990–1997); these cells are referred to as 'new cells'. These cells provide a way in which to isolate new areas that have been contacted, beyond the usual fishing areas. From a total of 27 820 cells contacting during the 1990–1994 fishing years, 1439 cells were contacted for the first time in 1995. In the following years the number of new cells each year ranged between a low of 1147 (in 2000) and a high of 1519 (in 1998) (Table C4). The extent of the aggregate area and footprint for these new cells gives an idea of the amount of spread estimated in these new cells. In most years given in Table C4, there is little difference between the estimated swept area measures and the areas are small and likely represent the edge of the main fishing areas. For 1990–2007, the annual new cell footprint represents between 81 and 96% of the pre-2008 new cell aggregate area, and for 2009–2019 the annual new cell footprint represents between 91 and 100% of the total 2009–2019 aggregate area. This suggests the swept area of the tows is spread out within each cell, without much overlap between tows. However, in 2008 when the complete set of bottom-contacting inshore data was included (resulting in a large number of new cells relative to previous years), the new cell footprint is 68% of the new cell aggregate area suggesting more overlap of tows.

## 3.2.2 Intensity

For the combined 1990–2019 All Stocks data, the median number of tows that contacted a cell was 28 tows (mean of 277), and 50% of cells had contact by between 4 and 229 tows, with a maximum of 19 483 tows over the total dataset (Table 3). The top 10 cells for total aggregate area are at the southern edge of the Stewart-Snares shelf (between 7277 and 12 796 km²); nine of these cells were in the top ten cells for the number of tows per cell and the other cell was in Cook Strait.

Over the time series, the median number of tows in a cell in a year was 3–6 tows during 1990–2007 and in 2008–2019, the median number was 8–9 tows (Table C5). During the pre-2008 fishing years, the spread of the data was tighter than for the 2008–2019 years, but the maximum numbers of tows contacting cells during 1990–2007 was between 2 and 3 times that in most years for the 2008–2019 data. The year with the maximum of tows contacting a cell was 1991 (2427 tows off the southern edge of the Stewart-Snares shelf) and, for 2008–2019, the maximum number was in 2018 (828 tows near the Hokitika Canyon off the west coast South Island). This pattern was reflected in the annual summary data for aggregate area (Table C5). Substantially smaller maximum aggregate areas per cell were seen in the last 12 years compared with the earlier years; a reflection of the decrease in deepwater component of aggregate area as well as the inclusion of the inshore data (see Figure 2). The peak years for aggregate area during 2008–2019 were mainly between 2013 and 2019 (with the exception 2017) when maxima were between 290 and 403 km² per cell (in the Hokitika Canyon for most years and on the Stewart-Snares shelf southern and eastern edge). The maximum footprint in a cell in each year was equivalent to the cell area (25 km²).

Table 3: Summary data for the number of tows that contact a cell, the aggregate area, and the footprint by 25-km<sup>2</sup> cell for the All Stocks data, for the combined fishing years 1990–2019. Annual summaries are given in Table C5.

|                              | Minimum | 1st quarter | Median | Mean  | 3 <sup>rd</sup> quarter | Maximum  |
|------------------------------|---------|-------------|--------|-------|-------------------------|----------|
| No. of tows                  | 1       | 4           | 28     | 277   | 229                     | 19 483   |
| Aggregate area (km²)         | < 0.1   | 1.4         | 10.6   | 112.8 | 82.3                    | 12 796.1 |
| Footprint (km <sup>2</sup> ) | < 0.1   | 1.4         | 28.0   | 11.1  | 22.7                    | 25.0     |

# 3.2.3 Number of years contacted

Of the 41 424 cells contacted by the total All Stocks footprint, 16% (n = 6662) were contacted in one year only, 8% in 2 years, and 6% in 3 years (Figure 5). Just over half the cells (56%) were contacted for up to 12 years (the number of years TCERs were used). In total, 7.2% of cells (n = 2993) were contacted each year. Beyond the 12 years, these data largely reflect the deepwater stocks reported on TCEPRs. This is reflected in the spatial distribution of number of years per cell, as shown in Figure 6.

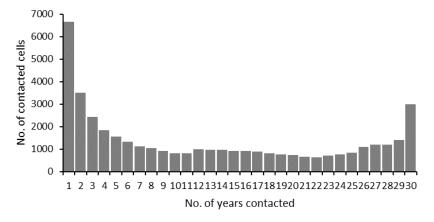



Figure 5: Frequency of the number of years cells were contacted, All Stocks for 1990–2019.

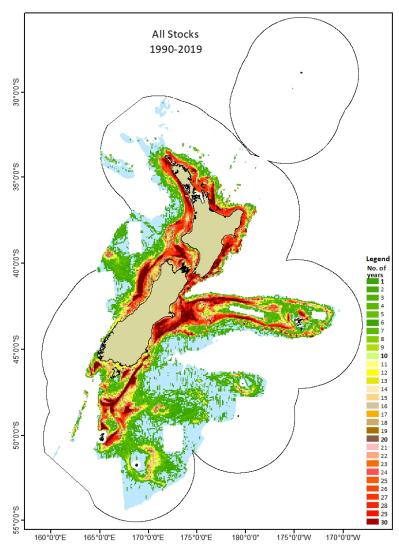



Figure 6: Distribution of the All Stocks cells by the number of years contacted, during 1990–2019.

# 3.3 Overlap of All Stocks footprint with 200-m depth zones

Tables C6, C7, and C8 in Appendix C give the total and annual extent of the 1990–2019 bottom-contacting measures (number of cells contacted, aggregate area, and footprint), by year. Almost 40% of the 1990–2019 footprint was in the shallowest depth zone (Tables 4 & C6). Another 23% of the total footprint was in 400–600 m, 13% in 600–800 m, and 11% in 200–400 m. In 2019, 53% of the footprint was in waters shallower than 200 m, 26% in 400–600 m, and 9% in 200–400 m. The percent of the total and 2019 footprints in depths over 1000 m was under 7% and under 2%, respectively. The extent of the distribution of the footprint by depth class for all years and for 2019 is shown in Figure 7.

Table 4: The total area of the seafloor in each depth zone within 'fishable' waters (all depth zones ≤ 1600 m combined), the All Stocks footprint, the percent of the total footprint in each depth zone, and the percent of each depth zone area contacted by the trawl footprint, for 1990–2019 and the 2019.

| Depth     | Area        | Footp     | rint (km²) | Total foot | tprint (%) | Footprint over | rlap (%) |
|-----------|-------------|-----------|------------|------------|------------|----------------|----------|
| zone (m)  | $(km^2)$    | 1990–2019 | 2019       | 1990–2019  | 2019       | 1990–2019      | 2019     |
| < 200     | 249 341.9   | 180 810.8 | 42 645.1   | 39.3       | 52.6       | 72.5           | 17.1     |
| 200-400   | 98 295.9    | 48 651.9  | 7 490.7    | 10.6       | 9.2        | 49.5           | 17.6     |
| 400–600   | 253 939.2   | 104 923.7 | 21 278.9   | 22.8       | 26.3       | 41.3           | 8.4      |
| 600-800   | 185 161.6   | 59 832.3  | 5 670.5    | 13.0       | 7.0        | 32.3           | 3.1      |
| 800-1000  | 166 645.0   | 3 544.4   | 2 515.4    | 7.7        | 3.1        | 21.3           | 1.5      |
| 1000-1200 | 144 930.5   | 19 620.2  | 1 033.3    | 4.3        | 1.3        | 13.5           | 0.7      |
| 1200-1400 | 168 376.8   | 7 875.1   | 341.2      | 1.7        | 0.4        | 4.7            | 0.2      |
| 1400-1600 | 124 988.8   | 3 368.9   | 79.8       | 0.7        | 0.1        | 2.7            | 0.1      |
| ≤ 1600    | 1 391 679.7 | 460 627.2 | 81 054.9   | 100.0      | 100.0      | 33.1           | 5.8      |

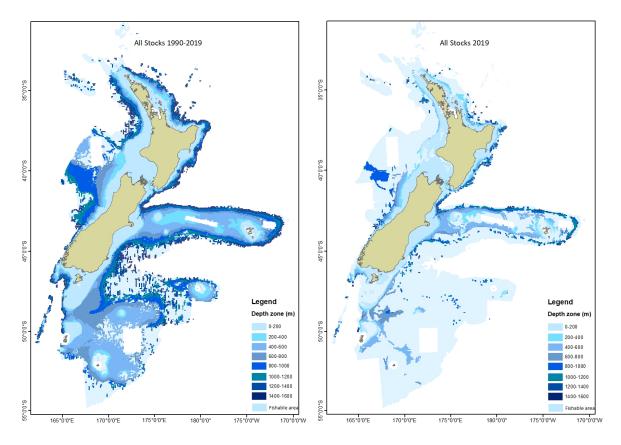



Figure 7: Extent of the All Stocks footprint overlap with 200-m depth zones, represented by 25-km<sup>2</sup> cells, for all years combined(left), and for 2019 (right).

The footprint overlap was greatest in the shallowest depth zone, which had the second largest seafloor area (72.5% of the < 200 m depth zone for all years combined, and 17% for 2019) (see Table 4). About 50% and 8% of the relatively small seafloor area in 200–400 m, 41% and 8% of 400–600 m zone, and 32% and 3% of the 600–800 m zone was contacted by the 1990–2019 and 2019 footprints, respectively. Although the 1990–2019 overlap was about 21% in 800–1000 m and 13.5% in 1000–1200 m, the 2019 footprint contacted 1.5% and 0.7%, respectively, of the seafloor in these deeper zones.

The annual change in the percent of each depth zone contacted by the footprint is shown in Figure 8. The percent of the overlap of the 400–600 m zone increased from 1990 to a peak in 2003, then dropped to under 10% from 2005. The influence of the addition of the TCER data in 2008 is evident in the marked increase in overlap of under 200 m zone, with a peak at 22% in 2010, before dropping to 17% in 2019. For the years since 2008, the percent overlap of other depth zones by the annual All Stocks footprint has been relatively steady, though many indicate a small decrease in the overlap extent in 2019.

The total aggregate area by depth zone showed a similar pattern to the footprint in the two shallowest depth zones, with 40% of the total aggregate area in under 200 m and 13.5% in 200–400 m, but the higher estimated aggregate area in the 400–600 m zone (32% of the total) indicated more intense contact (Table C7). In contrast, relatively small proportions of the total aggregate area were in deeper waters where the tow swept areas are likely smaller because the effort often consists of short tows on underwater features. The aggregate area in waters over 800 m accounted for under 5% of the total 1990–2019 area. The spread of the 2019 aggregate area showed a similar pattern with 49% in under 200 m, 11% in 200–400 m, 31% in 400–600m, and 6% in 600–800 m. About 3.5% of the 2019 aggregate area was in 800–1600 m.

The changes described above are reflected in the numbers of cells contacted (Table C8), particularly with the shift from middle depths to shallow depths as a result of the addition of inshore data in 2008.

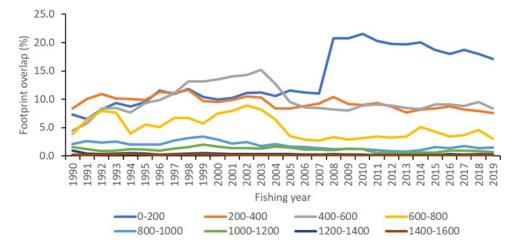



Figure 8: Percent of each 200-m depth zone contacted by the All Stocks footprint each year, for 1990–2019.

# 3.4 Overlap of All Stocks footprint with BOMEC classes

The extent of the distribution of the footprint by BOMEC class for all years and for 2019 is shown in Figure 9, and Tables C9–C11 in Appendix C provide the annual overlap of the footprint, aggregate area, and number of contacted cells for each class.

The 1990–2019 footprint was mainly in classes C, H, J, and L (Table 5); these four classes accounted for 63% of the 30-year dataset. These classes represent four of the five groups discriminated by Leathwick et al. (2012): class C is part of the inshore and shelf group (classes A-E), class H is in the

upper slope group (classes F-H), class J is in the northern mid-depths group (classes I-K), and class L is in southern mid-depths group (classes L and M); classes N and O are in the deeper waters group.

The annual footprints for the inshore and shelf areas increase markedly with the addition of TCER data in 2008, whereas the footprints for other groups tend to drop off or remain reasonably steady from 2008, after peaks years in 1998–2004 for classes H-J, for example, and 2001–2004 for class L (Figure 10, Table C9). Comparatively small amounts of footprint were in classes N and O. For 2019, classes C and H-J accounted for 60.5% of the footprint; all classes except class B showed a decrease in 2019.

When the 1990–2019 All Stocks footprint is considered as a percent of the seafloor area of each class, between 56 and 89% of classes in the inshore and shelf group and classes G-I were contacted (see Table 5), and 18–28% of classes F, J, and L seafloor were contacted. For the 2019 data, a similar pattern was seen, though at a smaller scale. The impact of the TCER additional data is evident in the annual percent of each class area that was contacted shown in Figure 11, with higher percent overlap in the inshore and shelf group especially.

The 1990–2019 aggregate area was greatest in classes H-J, with 51% from these classes; 24% was in classes C and E, and 16% in classes A, D, and L (Table C10). For the classes more likely to be comparable across years (deepwater trawling effort), in middle depths and deeper waters, Class J accounted for the greatest spread when measured by the number of contacted cells (Table C11), followed by classes, H, L, and N; these classes are expansive and effort in them is widespread (see Figure 9). In contrast, less than half the cells contacted in class H were contacted in class I, yet the aggregate areas for these two classes, for all years, were similar. Thus, although the footprint in class I is relatively smaller than that in class H, the intensity as measured by the aggregate area is greater because of the limited extent of class I.

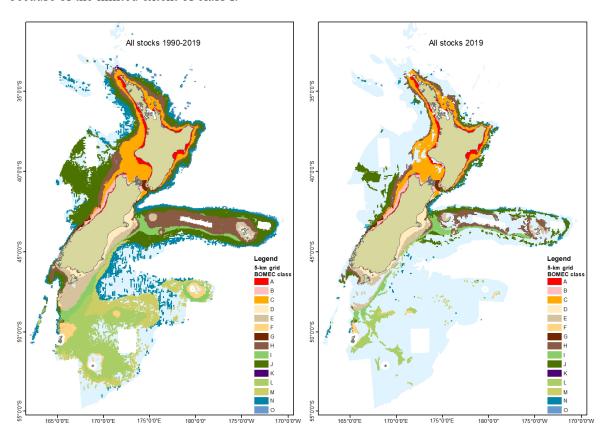



Figure 9: Extent of the All Stocks footprint overlap with BOMEC classes, represented by 25-km<sup>2</sup> cells for all years combined(left), and for 2019 (right).

Table 5: The total area of the seafloor in each BOMEC class within 'fishable' waters (all depth zones ≤ 1600 m combined), the All Stocks footprint, the percent of the total footprint in each class and the percent of each class area contacted by the trawl footprint, for 1990–2019 and the 2019.

| BOMEC | Area        | Foot      | orint (km²) | Total foot | print (%) | Footprint over | lap (%) |
|-------|-------------|-----------|-------------|------------|-----------|----------------|---------|
| class | $(km^2)$    | 1990–2019 | 2019        | 1990–2019  | 2019      | 1990–2019      | 2019    |
| A     | 30 661.0    | 17 481.6  | 5 236.8     | 3.8        | 6.5       | 57.0           | 17.1    |
| В     | 12 786.1    | 11 374.4  | 5 297.1     | 2.5        | 6.5       | 89.0           | 41.4    |
| C     | 90 256.5    | 74 461.7  | 15 782.4    | 16.2       | 19.5      | 82.5           | 17.5    |
| D     | 28 085.7    | 21 748.7  | 6 934.7     | 4.7        | 8.6       | 77.4           | 24.7    |
| E     | 61 258.0    | 34 431.6  | 6 316.9     | 7.5        | 7.8       | 56.2           | 10.3    |
| F     | 38 775.8    | 6 900.9   | 316.7       | 1.5        | 0.4       | 17.8           | 0.8     |
| G     | 6 702.3     | 5 173.3   | 1 092.4     | 1.1        | 1.3       | 77.2           | 16.3    |
| Н     | 138 399.1   | 78 072.4  | 12 987.0    | 16.9       | 16.0      | 56.4           | 9.4     |
| I     | 52 008.3    | 38 811.1  | 9 906.8     | 8.4        | 12.2      | 74.6           | 19.0    |
| J     | 312 604.9   | 81 921.7  | 10 365.4    | 17.8       | 12.8      | 26.2           | 3.3     |
| K     | 1 200.2     | 41.5      | 0.4         | 0.0        | 0.0       | 3.5            | 0.0     |
| L     | 198 578.4   | 56 638.2  | 5 518.0     | 12.3       | 6.8       | 28.5           | 2.8     |
| M     | 233 837.4   | 19 138.8  | 719.9       | 4.2        | 0.9       | 8.2            | 0.3     |
| N     | 495 154.2   | 13 771.8  | 555.4       | 3.0        | 0.7       | 2.8            | 0.1     |
| O     | 1 006 911.1 | 614.7     | 19.7        | 0.1        | 0.0       | 0.1            | 0.0     |
| Total | 2 707 219.0 | 460 627.2 | 81 054.9    | 100.0      | 100.0     | 17.0           | 3.0     |

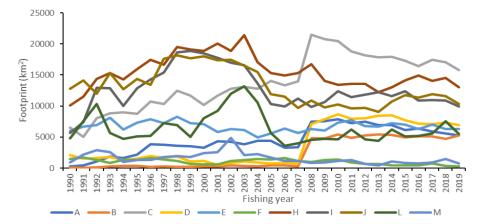



Figure 10: Estimated annual footprint for bottom-contacting trawling for All Stocks, by BOMEC class within the fishable area, for 1990–2019. The full dataset is given in Table C9.

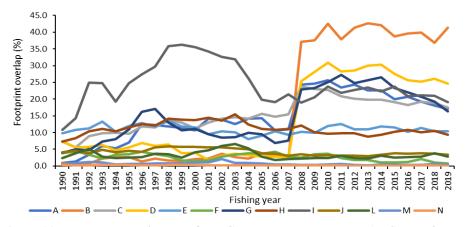



Figure 11: The percent of each BOMEC class contacted by the All Stocks footprint each year, for 1990–2019. Classes K and O are not included (see Table C9 for the footprint areas).

# 3.5 Overlap of All Stocks footprint with surficial sediment layers

In relation to the interpolated surficial sediments layers available for within the EEZ+TS (Bostock et al. 2019a, 2019b), the overlap of the 1990–2019 and 2019 footprints of the seafloor areas estimated for each sediment layer is summarised in Table C12. There are overlaps between substrate types: for example, 0–20% sand could overlap with 80–100% gravel (compare figures in Figure B3).

The footprint is reasonably well spread throughout the carbonate classes (Table C12), whereas the footprint in the gravel classes is greatest in 0-20%. For mud, most of the footprint is with the 0-20%, 20-40%, and 40-60% classes, and for sand, in the 40-60% and 60-80% classes.

The seafloor areas of these classes can vary greatly within each sediment layer: for example, the class area for carbonate 0–20% is about a third the size of the 80–100% area (Table 6), whereas the seafloor area for gravel 0–20% is almost 8 times the size of the 80–100% class. The greatest overlap of the All Stocks footprint is with the carbonate layer (as percent of the seafloor area in each sediment class): in the 0–20% and 20–40% categories, at 63% and 48%, respectively for the 1990–2019 and 17% and 10% for 2019 (Table 6). For gravel, the footprint contacts at least a third of the vastly different sized areas in the 10–20% and 20–40% classes, and about a third of the 40–60% and 60–80% classes. The footprint overlap with the mud classes ranges between 26% and 39% of class areas, and, for sand, the overlap varies between 26% and 51%.

The extent of the 1990–2019 All Stocks footprint overlap with each substrate type is shown in Figure 12.

Table 6: Percentage overlap of the seafloor area of the substrate classes by the fishable area 1990–2019 and 2019 All Stocks footprint. For gravel, mud, and sand, the percentage classes total 100%, and for carbonate the percentage represents the proportion that is carbonate versus non-carbonate.

| Substrate | Class (%) | Class area (km²) | 1990–2019 overlap (%) | 2019 overlap (%) |
|-----------|-----------|------------------|-----------------------|------------------|
| Carbonate | 0-20      | 138 252.7        | 63.4                  | 17.0             |
| Carbonate | 20-40     | 282 469.8        | 47.8                  | 9.4              |
| Carbonate | 40-60     | 275 070.0        | 33.3                  | 5.2              |
| Carbonate | 60-80     | 288 732.7        | 22.6                  | 2.9              |
| Carbonate | 80–100    | 369 402.8        | 20.8                  | 2.1              |
| Gravel    | 0-20      | 1 037 250.7      | 34.6                  | 6.3              |
| Gravel    | 20-40     | 188 550.0        | 36.9                  | 6.2              |
| Gravel    | 40–60     | 77 886.4         | 25.8                  | 3.1              |
| Gravel    | 60–80     | 26 682.0         | 21.6                  | 1.4              |
| Gravel    | 80–100    | 14 188.5         | 11.5                  | 2.7              |
| Mud       | 0-20      | 387 549.1        | 38.7                  | 6.3              |
| Mud       | 20-40     | 323 852.0        | 34.2                  | 5.6              |
| Mud       | 40–60     | 299 719.3        | 34.1                  | 6.8              |
| Mud       | 60-80     | 233 123.9        | 27.5                  | 5.7              |
| Mud       | 80–100    | 109 712.9        | 26.5                  | 4.1              |
| Sand      | 0-20      | 142 639.8        | 28.9                  | 4.6              |
| Sand      | 20-40     | 348 482.0        | 26.2                  | 5.1              |
| Sand      | 40–60     | 482 383.1        | 34.0                  | 5.8              |
| Sand      | 60-80     | 303 832.8        | 39.8                  | 6.7              |
| Sand      | 80–100    | 77 166.5         | 50.6                  | 9.9              |

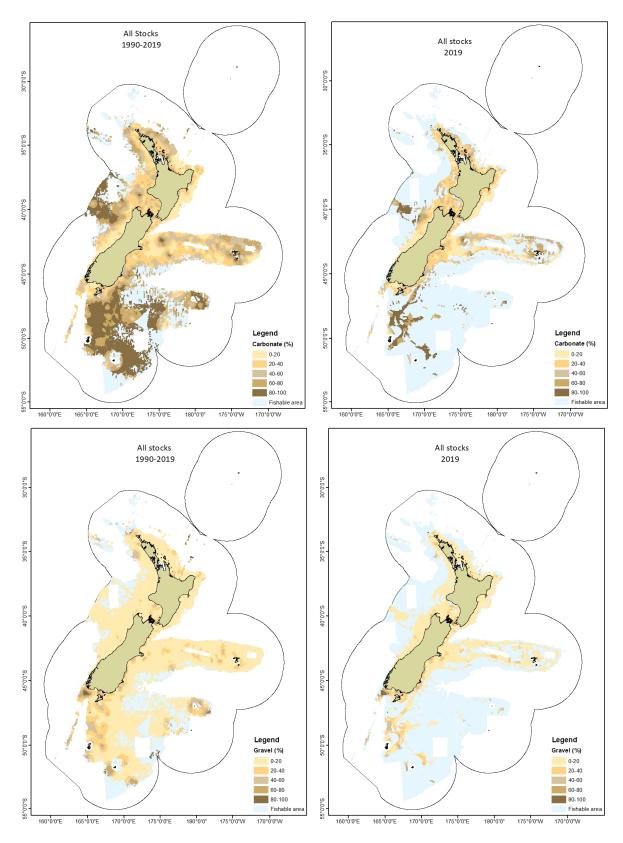



Figure 12: Distribution of the extent of the 25-km<sup>2</sup> cells for the All Stocks 1990–2019 (left) and the 2019 trawl footprints (right) for substrate types, by class: carbonate, gravel, mud, and sand (after Bostock et al. 2019a, 2019b). Carbonate (upper) and gravel (lower).

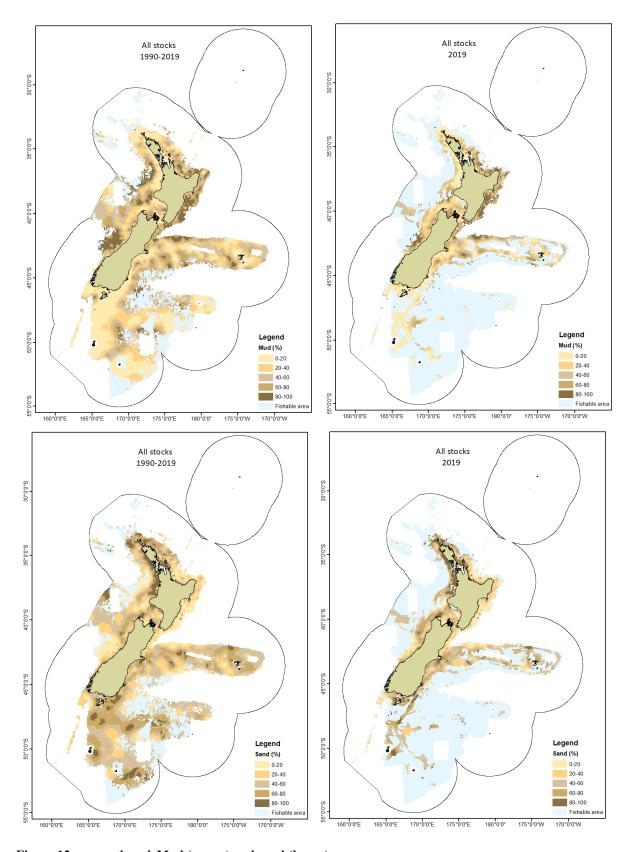



Figure 12: — continued. Mud (upper) and sand (lower).

## 4. DEEPWATER FISHSTOCKS TRAWL FOOTPRINT, 1990–2019

## 4.1 Deepwater data

During 1990–2019, a total of 570 vessels reported bottom-contacting effort that targeted deepwater Tier 1 and Tier 2 species (Table D1). These vessels represented both foreign and domestic fleets and over time there have been substantial changes in the numbers of vessels and the type and size of vessels in this dataset. The numbers of vessels in most vessel groups have decreased over the years, especially the foreign-owned fleets and this is reflected in the decrease in reported tows by these vessels (Figure 13). Different trawl gear set-ups have been used by these vessel groups to target a variety of deepwater species and, until there is better information on the spread of gear that contacts the seafloor, vessels in each group are considered to have similar bottom contact in these analyses.

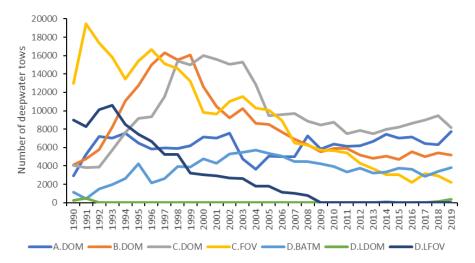



Figure 13: The number of bottom-contacting tows reported by vessels that targeted Tier 1 and Tier 2 deepwater fishstocks during 1990–2019, by year and vessel type. A.DOM is domestic vessel  $\leq$  28 m in length; B.DOM is domestic vessel > 28 m and  $\leq$  46 m; C.DOM is domestic vessel > 46 and  $\leq$  82 m; C.FOV is foreign-owned vessel > 46 and  $\leq$  82 m; D.BATM is foreign-owned vessel of 104 m in length; D.LDOM is domestic vessel > 82 m; and D.LFOV is foreign-owned vessel > 82 m long.

The underlying tow data and results of analyses based on the deepwater Tier 1 and Tier 2 fishstocks (see Table 1) are presented in Appendix D. The tow data are from TCEPRs throughout the time series, TCERs from 2008 to 2019, and ERS from 2018 to 2019 (Table D1). Over 1.1 million tows in the deepwater dataset targeted Tier 1 fishstocks, primarily hoki (39%), arrow squid (17%), orange roughy (15%), and scampi (12%) (Table D2). Over the time series, the number of Tier 1 bottom-contacting tows increased from about 31 220 in 1990 to nearly 57 600 in 1998, then decreased each year to about 29 400 tows in 2007. A small amount of TCER data was included in subsequent years, but the decrease in numbers of tows continued, with between about 23 000 and 24 000 tows during 2012–2017. In 2018 and 2019, tow numbers increased to about 24 900 a year; the predominant data collection was by ERS.

In the first year of this dataset, hoki, arrow squid, and orange roughy accounted for about 73% of the annual effort (Table D2). Hoki data accounted for most of the annual tow data, with at least 43% of the annual tows in 1996–2004 from hoki effort; this peaked in 2000 and 2001, at about 51% of annual tows. The impact of decreases in the hoki TACC (Fisheries New Zealand 2020) can be seen in the subsequent drop in the hoki proportion of the annual effort; hoki tows accounted for 27–31% during 2005–2009. As the TACC was increased, the hoki percentage then increased to 38–44% during 2010–2018, then dropped to 35% in 2019, when the relative percentages of arrow squid and scampi increased. The numbers of tows for hoki and orange roughy were similar in the early-mid 1990s, and the numbers for arrow squid and orange roughy were similar in the mid-late 1990s before TACC changes affected the orange roughy fishery. About 12–13% of annual tows targeted orange roughy during most of the 2000s,

7–10% during 2011–2015, then closer to 13% in 2016–2019 (see Table D2). Arrow squid effort accounted for 25% of effort during 2005–2006, when hoki effort dropped off; in the following years, the arrow squid effort relative to hoki decreased to about 8–11% of annual tows, except for 2019 (17%). Annual effort for scampi relative to other main targets was generally under 10% before 2005. Following introduction to the Quota Management System in the 2005 fishing year (1 October 2004), the percentage of annual tows for scampi increased to over 18% from 2013 (peaks of 21.5% in 2016 and 21.6% in 2019).

Of the remaining Tier 1 targets, the percentage of hake, jack mackerel, and ling effort, although low in comparison, increased during the 2000s when the hoki TACC was decreased, but in recent years have accounted for under 2%, about 3.5%, and 4–5%, respectively. Oreo effort accounted for a decreasing amount of the annual tows over the time series, to about 3% in the last four years; the oreo fishstocks have been subject to a decreasing TAC throughout the time series (Fisheries New Zealand 2020). Southern blue whiting bottom-contacting tows accounted for a smaller percentage of the Tier 1 annual tows in the last four years than in the early 1990s.

The Tier 2 fishstock data for 1990–2019 represent about 9% of the total deepwater bottom-contacting tows, with a total of 103 787 tows (Table D3). The number of tows before the introduction of the TCERs was generally between about 3000 and 4000 per year, with peaks over 4000 in 1995, 1996, 2006, and 2007. The peak number for the time series was in 2008, with over 5000 tows; subsequently the effort gradually dropped to about 2600 (in 2018 and 2019). Barracouta accounted for 33% of all tows, with alfonsino, silver warehou, and black cardinalfish contributing 19.5%, 18%, and 15%, respectively; these four species accounted for 86% of all bottom-contacting Tier 2 tows. White warehou, sea perch, and rubyfish accounted for another 10%. For the remaining targets, effort was low and intermittent.

During 1990–2007, barracouta accounted for a decreasing percentage over the years, from over 50% in 1990–1991, to a nadir in 2006, then increased to a second peak at 42% in 2008 and between 33 and 39% during 2012–2019. The percentage of alfonsino tows increased in the late 1990s, with 22–27% of tows in most years between 1997 and 2012, apart from peaks of close to and over 30% (32% in 2006 and 37% in 1999), before a series low in 2013 at 8%. During 2014–2017, alfonsino accounted for 14–16%, with further increases in 2018 and 2019 (18%, 25% respectively). Silver warehou accounted for 18–28% of annual tows during 1990–1996, under 16% in 1997–2006, 17–25% in 2007–2018, then 13% in 2019 when there were small relative increases for the other main target species. Black cardinalfish accounted for about 25% of annual tows during 1996–2007, but since then dropped to under 10% in most years.

## 4.2 Spatial extent

The annual totals of cells, aggregate swept area, and footprint for the deepwater fishstocks are given in Table 7 and by tier and target in Appendix D. For all years, the deepwater fishstock effort contacted 38 872 25-km² cells, based on the total estimated aggregate area of almost 3.48 million km² and a total footprint equivalent to about 10% of the aggregate area (351 683 km², Table 7). Overall, the footprint contacted almost 9% of the area of the EEZ+TS and 25% of the fishable area. The greatest annual overlap was during 1992–2004, with peak overlap in 2002 and 2003, but from 2006 the footprint overlap has been 1.1–1.2% of the EEZ+TS and 3.2–3.7% of the fishable area (1.1 and 3.2%, respectively in 2019).

The annual aggregate area increased each year (except 1994) to a peak in 1998 (almost 172 000 km²), about 151 000–157 212 km² during 1999–2003, followed by a sharp drop before levelling out at between almost 80 000 and 97 045 km² during 2007–2019 (86 777 km² in 2019). The footprint generally followed the trend of the aggregate area in the 1990s, but the peak annual spread as measured by the footprint (at about 81 000 km²) and numbers of cells (16 000–17 000 cells) was during 2002 and 2003; at this time the footprint was equivalent to 80% of the 30-year footprint (Figure 14). Subsequently, the footprint decreased to about 50 000–51 000 km² during 2006–2009, then dropped below this and ranged from 49 886 km² (in 2010) to 43 481 km² (in 2019), the lowest annual footprint

estimated over the 30-year dataset. The numbers of cells steadily decreased after the peak in the early 2000s to a series minimum of 10 352 in 2019.

Table 7: The number of cells contacted by the deepwater bottom-contact trawls, the aggregate area, and the footprint, and the percent of the EEZ+TS (4.1 million km²) and the fishable area (1.39 million km²) contacted by the deepwater footprint, for 1990–2019.

| Fishing year | No. of cells | Aggregate (km <sup>2</sup> ) | Footprint (km <sup>2</sup> ) | %EEZ+TS | % fishable |
|--------------|--------------|------------------------------|------------------------------|---------|------------|
| 1990         | 12 345       | 101 844.5                    | 47 584.0                     | 1.2     | 3.4        |
| 1991         | 13 324       | 126 457.5                    | 55 058.4                     | 1.3     | 4.0        |
| 1992         | 14 567       | 137 294.0                    | 66 617.1                     | 1.6     | 4.8        |
| 1993         | 14 133       | 140 106.8                    | 66 927.0                     | 1.6     | 4.8        |
| 1994         | 13 413       | 122 080.2                    | 56 931.5                     | 1.4     | 4.1        |
| 1995         | 13 651       | 144 635.0                    | 61 830.5                     | 1.5     | 4.4        |
| 1996         | 13 647       | 144 433.7                    | 62 726.2                     | 1.5     | 4.5        |
| 1997         | 14 070       | 155 222.9                    | 68 756.4                     | 1.7     | 4.9        |
| 1998         | 15 443       | 171 901.7                    | 77 090.5                     | 1.9     | 5.5        |
| 1999         | 15 166       | 156 834.9                    | 72 611.9                     | 1.8     | 5.2        |
| 2000         | 15 360       | 150 733.1                    | 74 023.2                     | 1.8     | 5.3        |
| 2001         | 15 325       | 151 150.7                    | 76 256.1                     | 1.9     | 5.5        |
| 2002         | 17 070       | 155 213.9                    | 81 004.8                     | 2.0     | 5.8        |
| 2003         | 16 017       | 157 211.9                    | 80 616.7                     | 2.0     | 5.8        |
| 2004         | 14 133       | 131 779.7                    | 67 794.8                     | 1.6     | 4.9        |
| 2005         | 13 345       | 110 887.0                    | 54 221.3                     | 1.3     | 3.9        |
| 2006         | 12 399       | 95 332.0                     | 50 099.2                     | 1.2     | 3.6        |
| 2007         | 12 204       | 88 362.0                     | 50 347.7                     | 1.2     | 3.6        |
| 2008         | 13 192       | 85 589.0                     | 51 022.2                     | 1.2     | 3.7        |
| 2009         | 12 313       | 79 650.3                     | 46 228.7                     | 1.1     | 3.3        |
| 2010         | 12 477       | 87 835.8                     | 49 886.4                     | 1.2     | 3.6        |
| 2011         | 12 038       | 87 477.9                     | 48 678.5                     | 1.2     | 3.5        |
| 2012         | 11 447       | 86 230.1                     | 46 923.5                     | 1.1     | 3.4        |
| 2013         | 10 721       | 80 303.6                     | 44 784.3                     | 1.1     | 3.2        |
| 2014         | 11 755       | 82 825.1                     | 47 578.7                     | 1.2     | 3.4        |
| 2015         | 11 494       | 85 902.4                     | 48 183.6                     | 1.2     | 3.5        |
| 2016         | 11 557       | 84 765.1                     | 46 678.6                     | 1.1     | 3.4        |
| 2017         | 11 524       | 89 567.8                     | 46 983.6                     | 1.1     | 3.4        |
| 2018         | 11 092       | 97 044.7                     | 48 027.3                     | 1.2     | 3.5        |
| 2019         | 10 352       | 86 777.0                     | 43 841.0                     | 1.1     | 3.2        |
| Total        | 38 872       | 3 475 450.1                  | 351 683.5                    | 8.6     | 25.3       |

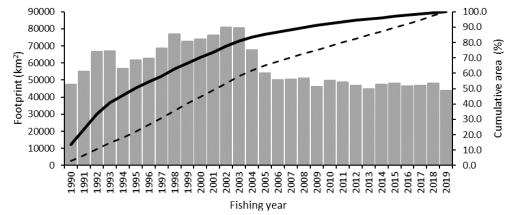



Figure 14: Annual deepwater footprint (bars) and cumulative footprint (solid line) and aggregate area (dashed line) presented as percent of the total (see Table 7), assuming 1990 is the first year of bottom-contacting effort.

The spatial distribution of the footprint and aggregate area for all years, and for 2019, is shown in Figure 15. The 2019 deepwater footprint shows the spread of the main Tier 1 fishery activity for hoki (Chatham Rise, west coast South Island, and Stewart-Snares shelf), arrow squid (Stewart-Snares shelf and Auckland Islands Shelf), orange roughy (western Challenger Plateau, northern and southeastern Chatham Rise), and scampi (east coast North Island, Chatham Rise, southeast Auckland Islands Shelf).

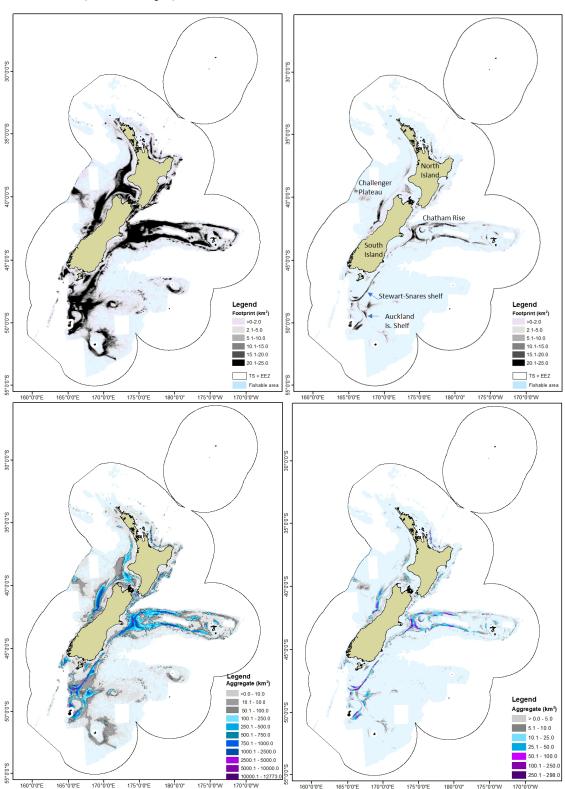



Figure 15: Distribution of the deepwater fishstocks footprint (upper maps) and aggregate area (lower), by 25-km<sup>2</sup> cells, 1990–2019 (left) and 2019 (right), with the fishable area (light blue background).

The greater extent of the Tier 1 component of the deepwater footprint and the overlap between fishery areas is evident in the spatial distribution of Tier 1 and Tier 2 footprints shown in Figures D1 and D2.

There is overlap of the footprints for each tier, and Tier 1 targets contacted 96% of the cells containing deepwater tows, whereas Tier 2 targets contacted 40% of the cells (Table D4). Up to 2008, Tier 1 fishstocks contacted over 90% of the annual cells, but from 2008 (when TCER forms were introduced and some smaller vessel data entered the series, coincident with some decreases in effort for some Tier 1 components) this dropped to between 82% and 87% as the spread of the Tier 2 effort increased (from mainly under 20% to over 30% during 2008–2017 and 28% in 2018 and 2019).

This 2008 effect is not as strong in the relative contributions of each tier in the aggregate area estimates; almost 94% of the 1990–2019 deepwater aggregate area was from Tier 1 target fishstocks. Almost 93% of the footprint was from Tier 1 fishstocks, with over 95% each year in the late 1990s and early 2000s, and between 86% (in 2008) and 93% (in 2019) in the last 12 years.

## 4.2.1 Tier 1 fishstocks: number of cells, aggregate area, and footprint

Tier 1 targets contacted 37 352 cells during 1990–2019 and the total aggregate area and footprint were estimated at 3.26 million km² and 325 829 km², respectively (Table 8). These fishstocks accounted for 94% of the deepwater aggregate area and 93% of the footprint. Although there is overlap of effort for different targets, hoki contacted over 50% of the cells, the aggregate area, and the footprint for Tier 1 targets during the 30 years (Table 8), indicating the larger number of tows and swept areas made in relatively broad areas that describe the main hoki fishery areas. In comparison, orange roughy contacted 24.6% of cells, 3.9% of aggregate area, and 12.6% of the footprint for Tier 1 targets, numbers that indicate the use of a mix of short tows on features and longer tows on the flat, with fishery areas spread throughout the EEZ. Similarly, for oreo species, 15% of deepwater cells were contacted, with 1% of the aggregate area and 5% of the footprint.

Arrow squid effort contacted about 22% of cells and accounted for 20.5% of the aggregate area and almost 13% of the footprint. Scampi fisheries are in relatively small defined areas (Fisheries New Zealand 2020), and scampi tows contacted 18% of the deepwater cells and accounted for 6.4% of the aggregate area and the footprint. For middle depth fishstocks such as hake, jack mackerels, ling, and southern blue whiting 11–18% of deepwater cells were contacted, with larger footprints relative to the aggregate area for targets with distinct fishery areas in different areas of the EEZ, such as jack mackerels which have been targeted off the west coasts of both main islands as well as Stewart-Snares shelf and western edge of the Chatham Rise.

During the most recent fishing year, 2019, hoki trawling contacted 44.5% of deepwater cells and accounted for 58% and 60% of the aggregate area and footprint, respectively; orange roughy contacted 18% of deepwater cells and accounted for almost 5% of the aggregate area and 7% of the footprint. Trawling for scampi, squid, and jack mackerels accounted for 11%, 10%, and 7% of the 2019 footprint area, respectively.

The Tier 1 outputs by target are given in Tables D5–D7. The annual deepwater footprint is dominated by hoki effort (Table D5) which drives the overall trend. After a peak in the early 2000s (at about 50 000 km²), the footprint area dropped to a low 2008 and 2009 (at about 18 180–18 655 km²), then increased slightly to 2018 (to 20 900km²), and dropped again in 2019 (24 392 km²). Most other targets, at under 10 000 km² a year, showed different trends over the time series, with most showing declining trends overall, other than scampi which remained relatively steady throughout, and orange roughy which showed an increase after 2013 to similar levels seen in most years in the 1990s. Ling peaked in 2006 to 2009, between steady periods, at under 2000 km².

The hoki effort was the main contributor, throughout the series, to the annual aggregate area, with over 40 000 km<sup>2</sup> a year except in 1990 and 2006–2009 when it totalled 30 000–36 616 km<sup>2</sup> (Table D6). The aggregate area peaked at about 100 000 km<sup>2</sup> in 1998, was stable during 1999 to 2003 at over 90 000 km<sup>2</sup>,

and was over  $40\ 000\ \text{km}^2$  again from 2010 to 2019, with a high of 62 111 km<sup>2</sup> in 2018, then a drop to  $47\ 267\ \text{km}^2$  in 2019.

Table 8: The total number of cells contacted, aggregate area (km²), and footprint (km²) for Tier 1 targets and the percentage contribution by each Tier 1 target for 1990–2019 (left) and for 2019 (right). Note that the footprints of some of the targets overlap.

|        | Percent of total Tier 1 for 1990–2019 |                |           | P     | ercent of total Tier | 1 for 2019 |
|--------|---------------------------------------|----------------|-----------|-------|----------------------|------------|
| Target | Cells                                 | Aggregate area | Footprint | Cells | Aggregate area       | Footprint  |
|        |                                       |                |           |       |                      |            |
| HAK    | 11.8                                  | 2.9            | 6.5       | 3.0   | 0.5                  | 0.9        |
| HOK    | 58.2                                  | 55.3           | 51.5      | 44.5  | 58.2                 | 60.0       |
| JMA    | 16.8                                  | 6.3            | 14.3      | 12.8  | 4.1                  | 7.0        |
| LIN    | 17.8                                  | 2.1            | 8.5       | 8.9   | 3.2                  | 4.0        |
| OEO    | 15.0                                  | 1.3            | 5.4       | 4.7   | 0.5                  | 0.7        |
| ORH    | 24.6                                  | 3.9            | 12.6      | 17.7  | 4.6                  | 7.4        |
| SBW    | 10.8                                  | 1.3            | 7.2       | 3.8   | 1.1                  | 1.9        |
| SCI    | 18.1                                  | 6.4            | 6.4       | 11.8  | 10.4                 | 11.3       |
| SQU    | 21.8                                  | 20.5           | 12.8      | 10.4  | 17.5                 | 9.7        |
| Total  | 37 352                                | 3 264 667.0    | 325 828.8 | 8 776 | 81 225.4             | 40 631.7   |

Arrow squid was the second largest contributor to the Tier 1 aggregate area before 2012, with about 22 000–40 785 km² (peak in 1995) for 1990–2006. From 2007, the aggregate area decreased from about 17 000 km² to below 10 000 km² from 2012 onwards and lows of close to 6500 km² in 2014 and 2015. The last four years have seen increases to 9877 km² in 2018 and 14 203 km² in 2019. The scampi annual aggregate area topped 10 000 km² in 2002 and was generally stable at over 7000 km² in most years after that, with 9500 km² in 2016 and 8445 km² in 2019. The annual aggregate areas for other targets were below 10 000 km² and most showed decreasing trends overall, in particular jack mackerels, except for orange roughy with an increasing trend in the last five years.

## 4.2.2 Tier 2 fishstocks: number of cells, aggregate area, and footprint

Summary tables for Tier 2 footprint, aggregate area, and number of cells contacted are given by target and fishing year in Tables D8–D10. The 1990–2019 footprint totalled 74 217 km², with a range from 3190 km² (in 2004) to 8700 km² (in 1990) and 8786 km² (in 2008) (Table D8). In subsequent years, the annual footprint decreased from almost 7000 km² in 2009 to 4069 km² in 2019. Barracouta and silver warehou dominated the data; barracouta accounted for 48% and silver warehou accounted 35% of the total Tier 2 footprint, and 46% and 33% of the total aggregate area, respectively. The annual footprints (and aggregate areas) indicate the nature of many Tier 2 fishstocks, often being secondary targets, with either strong annual fluctuations or groups of years when more effort is expended, perhaps because of TACC changes, market demand, or fleet activity. Both these targets showed a second peak in footprint in 2008 and this was followed by a drop in barracouta, then a slight rise to a level about 2000–2500 km² during 2012–2019; whereas the silver warehou footprint gradually decreased after 2008 to under 2000 km² and further to under 1000 km² in 2019. Sea perch accounted for 7%, and alfonsino for 3%, of the total Tier 2 footprint, with generally under 400 km² since 2008. The remaining targets contacted under 1500 km² throughout the 30-year dataset.

# 4.2.3 HAK/HOK/LIN/SWA/WWA: number of cells, aggregate area, and footprint

The combined main middle depths targets of hake, hoki, ling, silver warehou, and white warehou contacted about 61% of deepwater cells, 59% of deepwater aggregate area, and 54% of the deepwater footprint (Tables D4 & D11). These species are often targeted on the same trips and in the same areas and depths, with the same gear. Quota changes for one species (e.g., hoki) may result in an increase in effort for one or more of the other species in this group. Fisheries New Zealand requires summary footprint output for this group of species for provision to the Marine Stewardship Council (MSC) certification process and requested that the combined data are analysed by Bycatch Assessment Areas (see Anderson & Edwards 2018). These data are summarised in Tables D11–D14.

The total combined footprint for these targets contacted 4.6% of the EEZ+TS (annual range 0.5–1.45%) and 13.6% of the fishable area (annual range 1.5–4.0%) (Table D11). The peak years were in the late 1990s to the mid-2000s when the aggregate area was close to or over 100 000 km², the footprint about or over 50000 km², and the number or contacted cells close to or over 9000. In 2005, these measures showed large decreases (e.g., aggregate area of almost 55 000 km² and footprint of about 31 500 km²). The subsequent years showed further aggregate area decrease to under 50 000 km² for 2006–2009, an increase from 2010 to a recent peak in 2018 (67 380 km²), then a drop to under 52 000 km² in 2019. A similar trend was seen in the footprint, with the lowest footprint area (26 704 km²), since 1990, estimated in 2019.

The spatial distribution of the footprint by the Bycatch Assessment Areas, for 1990–2019 and 2019, is shown in Figure 16. For 1990–2019, the extent of the contact by these combined targets is greatest in CHAT4, which accounted for 44% of the estimated HAK/HOK/LIN/SWA/WWA footprint, 53% of the aggregate area, and 33.5% of the contacted cells (Tables D12–D14). The area that encompasses the Stewart-Snares shelf (STEW5) accounted for 19% of the footprint, 17.5% of the aggregate area, and 16% of the cells, and the other main southern area (SUBA6) accounted for 12% of the total footprint, 3% of the aggregate area, and 22% of the cells (indicating the relatively small amount of effort spread over a larger number of cells). The latter area boundary does not appear to effectively separate the effort for these targets in the fisheries off the Stewart-Snares shelf, the Auckland Islands Shelf, and the wider sub-Antarctic waters.

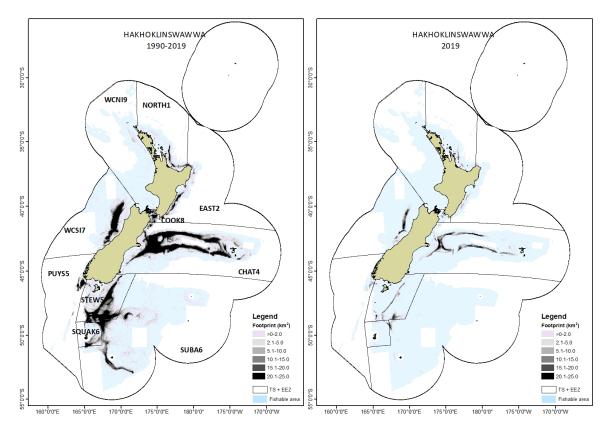



Figure 16: Distribution of the HAK/HOK/LIN/SWA/WWA footprint, by 25-km² cells in each Bycatch Assessment Area (see Anderson & Edwards 2018), 1990–2019 (left) and 2019 (right).

The other main area, WCSI7, accounted for 12% of the total combined footprint, 19.5% of the aggregate area, and 11% of the cells; the relatively larger percent of the aggregate area in WCSI7 is indicative of more effort in a relatively confined fishery area compared with other main areas (apart from CHAT4). Much of the WCSI7 data will be from the hoki spawning fishery, whereas areas such as CHAT4 and STEW5 are more likely to include a more even spread of effort for the five target species in this group.

In the most recent analysis year, 2019 (which had one of the lowest estimated annual footprints in the time series), decreases were seen in all the main areas, and slight increases were seen in the less fished areas such as EAST2, NORTH1, and PUYS5. For the main areas, 57% of the 2019 HAK/HOK/LIN/SWA/WWA footprint was in CHAT4, 15% in STEW5, 4% in SUBA6, and 16% in WCSI7; 58.5% of the aggregate area was in CHAT4, 14% in STEW5, 3% in SUBA6, and 17% in WCSI7; and 45% of cells contacted were in CHAT4, 18% in STEW5, 6% in SUBA6, and 12% in WCSI7.

# 4.2.4 ORH/OEO for MSC areas: number of cells, aggregate area, and footprint

Fisheries New Zealand requires summary footprint output for orange roughy and oreo species for provision to the Marine Stewardship Council (MSC) certification process and requested that the combined data are analysed by orange roughy areas ORH7A (Challenger Plateau), NWCR (northwest Chatham Rise), and ESCR (southeast Chatham Rise) (Figure 17).

The annual and total numbers of cells contacted, aggregate area, and footprint are given for each area in Table D15. The western area ORH7A has been subject to closures (Fisheries New Zealand 2020), with the first after the peak footprint in the 1990–2019 series during 1998 and 1999 when the footprint contacted over 2000 km² a year and about 888 cells (Table D15). The footprint halved in 2000 and there was very little contact in years with data until 2015–2019, when between 320 and 552 cells were contacted and the footprint ranged between 755 and 1493 km² (1366 km² in 2019 and aggregate area of 1546 km²). In total, ORH7A had an aggregate area of 22 466 km² and a footprint of 8975 km² that contacted 1481 cells.

The NWCR area contacted fewer cells overall (859 cells) but had a similar aggregate area (22 011 km²) and a smaller footprint (6882 km²) to that of ORH7A (Table D15). The main period of contact in NWCR was during 1997–2005 (footprint range of 678 to 1623 km²), with the peak years being 2001–2004. In 2008–2010, the annual footprints were between about 212 and 544 km², and in 2011–2013 there was very little trawling. From 2014 to 2019, the footprint was variable, at 235 km² in 2014, a peak at 888 km² in 2017, and 486 km² in 2019.

Overall, the ESCR area had an aggregate area of 39 529 km² and a footprint of 11 209 km² that contacted 1505 cells (Table D15). Of the three areas, ESCR is the only one with effort each year during 1990–2019; however, there were periods of smaller footprints (1993–2003, with footprints generally under 600 km², though with 4 years of 804–984 km² footprints). This was followed by increased footprints during 2004–2011 (1334–2065 km²), lower footprints in 2011–2015 (340–498 km²), before increasing to 700–842 km² in 2016–2019.

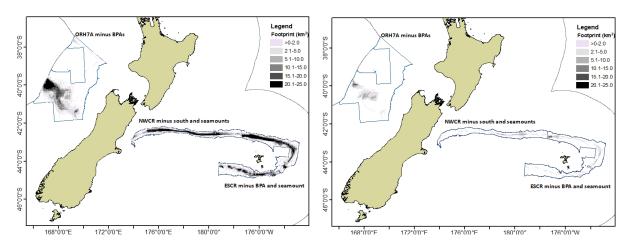



Figure 17: The extent of the footprint, based on 25-km<sup>2</sup> cells, for the ORH/OEO fishery (left) for the ORH MSC ORH7A, NWCR, and ESCR areas, in 800–1600 m, for 1990–2019 (left) and 2019 (right).

## 4.3 Extent of new cells contacted across the time series

The number of cells that were fished in one year, but not in previous years, is shown in Table 9 for the combined deepwater fishstocks, where the base footprint was created for 1990–1994 and contacted 25 103 cells. It is evident from Tables 9 and D16 that in the many of these years the contact in the new cells is of low intensity; there is little difference between the aggregate area and the footprint, which could indicate exploratory fishing or be an artefact of the methodology used to generate the spatial data. However, in years of higher effort and increased swept areas (as seen in 1998–2000), the numbers of new cells increased and the aggregate area relative to the footprint was greater. This larger difference is also evident in some of the Tier 1 targets, such as hoki in 1998 and 2000, orange roughy in 1998 and 2001, arrow squid in 1998 and 2001, and scampi in 2005 (Table D17).

The spatial distribution of where the footprint contacted the seafloor in one year but not the next, for deepwater targets is shown in Figure D3. This is not based on the cell grid, but is a direct comparison of the footprint of previous years and the footprint of the most recent year and indicates that in recent years there has been little expansion beyond the regularly fished areas, other than some contact in the Challenger area off the west coast of the South Island. The comparison of the 1990–2018 footprint with the 2019 footprint for deepwater fishstocks (not based on cell differences) yielded a footprint of 2292.6 km² from 6393 cells, with a max of 9.8 km² per cell and mean of 0.36 km². This indicates that much of the difference is in cells that have been contacted previously, apart from the obvious dark areas in the last plot in Figure D3 – areas which correspond with the new cells identified in 2019 (Figure D4).

Table 9: For the deepwater fishstocks, the number of cells contacted in a year, that had not been contacted in previous years, and the aggregate area and footprint within those cells. A base of 25 103 cells were contacted in 1990–94, and, for example, 1316 cells were contacted in 1995 (but not in 1990–94), with an aggregate area of 1201 km² and footprint of 1022 km². Table D16 shows the equivalent data for Tier 1 and Tier 2 fishstocks.

| Fishing year           | No. new cells    | Aggregate area (km²) | Footprint (km <sup>2</sup> ) |
|------------------------|------------------|----------------------|------------------------------|
| No. cells contacted in | 1990–94 = 25 103 |                      |                              |
| 1995                   | 1 316            | 1 201.5              | 1 022.3                      |
| 1996                   | 1 420            | 1 032.1              | 948.8                        |
| 1997                   | 1 185            | 916.0                | 868.5                        |
| 1998                   | 1 543            | 1 892.8              | 1 538.1                      |
| 1999                   | 1 388            | 1 360.6              | 1 172.7                      |
| 2000                   | 1 227            | 1 517.1              | 1 363.2                      |
| 2001                   | 737              | 715.7                | 614.1                        |
| 2002                   | 1 173            | 1 050.2              | 1 007.5                      |
| 2003                   | 633              | 703.5                | 629.7                        |
| 2004                   | 328              | 319.8                | 294.9                        |
| 2005                   | 557              | 587.0                | 519.9                        |
| 2006                   | 266              | 134.0                | 129.3                        |
| 2007                   | 251              | 153.4                | 143.7                        |
| 2008                   | 279              | 191.0                | 177.7                        |
| 2009                   | 220              | 99.7                 | 96.6                         |
| 2010                   | 165              | 60.3                 | 59.5                         |
| 2011                   | 167              | 59.1                 | 58.7                         |
| 2012                   | 106              | 36.9                 | 36.7                         |
| 2013                   | 74               | 35.6                 | 35.0                         |
| 2014                   | 94               | 34.4                 | 34.2                         |
| 2015                   | 178              | 171.8                | 157.7                        |
| 2016                   | 172              | 108.6                | 104.5                        |
| 2017                   | 100              | 60.8                 | 59.4                         |
| 2018                   | 117              | 32.8                 | 32.8                         |
| 2019                   | 73               | 89.9                 | 85.7                         |

## 4.4 Intensity

For the combined 1990–2019 deepwater fishstocks data, the median number of tows that contacted a cell was 13 tows (mean of 180), and 50% of cells had contact by between 3 and 83 tows, with a maximum of 19 434 tows over the total dataset (Table 10). Refer to Figure 15 which shows the areas where fishing was most intense in 1990–2019 and 2019.

For Tier 1 targets, the median number of tows in a cell in a year was about 4 tows during 1990–2019 (Table D18). The mean numbers increased during the 1990s to 2005 (peak at about 22 tows per cell), before dropping to a steady 14–16 tows and about 17–18 in 2018 and 2019. At the same time the maximum numbers of tows per cell decreased from over 1000 to about 500 in most years since 2006.

The annual median values were 1–2 km<sup>2</sup>, whereas the means ranged between about 7 and 11 km<sup>2</sup>, with peak years during the mid-1990s to mid-2000s. The maximum aggregate areas were mostly during 1991–1995, at 800–1631 km<sup>2</sup>, and in 2004 and 2005 (at about 920–950 km<sup>2</sup>). Median footprint in comparison with aggregate area values indicated that many cells have low levels of contact (Table D18).

The influence of the HAK/HOK/LIN/SWA/WWA mixed fishery group is obvious when comparing summary data of Tables D18 and D19, particularly after the mid–1990s: hoki effort has the greatest effect, and note that silver warehou and white warehou are Tier 2 targets (compare data in Tables D5 and D8). Overall, the median aggregate area per cell has increased, and the highest median values for number of tows contacted, aggregate area, and footprint per cell were in 2019. When these mixed fishery group data are split by Bycatch Assessment Area, the areas with the greatest intensity as measured by the number of tows per cell are COOK8 and CHAT4 (Table 11) and by the aggregate area per cell are CHAT4, COOK8, STEW5, and WCSI7 (Table D20). Different sized vessels fish in these areas and this is reflected in the data: for example, smaller vessels fish in Cook Strait waters (where the available area is small relative to that in the offshore areas where the larger vessels operate). The maximum number of tows per cell for 1990–2019 was from Cook Strait. Most areas appeared to have more intense effort during the early-2000s.

Summary data for the ORH/OEO targets (Table D21) reflect the generally shorter tows for these targets, often in isolated areas, and the effects of quota changes in some years, in contrast to the larger HAK/HOK/LIN/SWA/WWA tows in broader fishery grounds where, despite some quota changes for hoki, the other targets can be fished.

Table 10: Summary data for the number of tows that contact a cell, the aggregate area, and the footprint by 25-km<sup>2</sup> cell for the deepwater fishstocks data, for the combined fishing years 1990–2019.

|                              | Minimum | 1 <sup>st</sup> quarter | Median | Mean | 3 <sup>rd</sup> quarter | Maximum  |
|------------------------------|---------|-------------------------|--------|------|-------------------------|----------|
| No. of tows                  | 1       | 3                       | 13     | 180  | 83                      | 19 434   |
| Aggregate area (km²)         | < 0.1   | 1.0                     | 5.3    | 89.4 | 35.5                    | 12 772.9 |
| Footprint (km <sup>2</sup> ) | < 0.1   | 1.0                     | 4.7    | 9.0  | 17.6                    | 25.0     |

Table 11: Number of tows per cell for five of the Bycatch Assessment Areas used to analyse the bottom-contacting trawl footprint of HAK/HOK/LIN/SWA/WWA, for 1990–2019 and 2019.

|       | 199    | 0–2019 no. | tows per cell | 2019 no. tows per cel |      |         |  |
|-------|--------|------------|---------------|-----------------------|------|---------|--|
| •     | median | mean       | maximum       | median                | mean | maximum |  |
| CHAT4 | 6      | 18         | 316           | 6                     | 16   | 195     |  |
| COOK8 | 3      | 30         | 1418          | 5                     | 21   | 255     |  |
| PUYS5 | 7      | 16         | 351           | 7                     | 13   | 115     |  |
| STEW5 | 4      | 15         | 633           | 4                     | 11   | 271     |  |
| SUBA6 | 2      | 6          | 394           | 2                     | 7    | 59      |  |
| WCSI7 | 6      | 27         | 1144          | 9                     | 23   | 568     |  |

For comparison, the summary data for Tier 2 targets are given in Table D22; these data reflect the lower level of effort for these targets.

# 4.5 Number of years contacted

Of the 38 872 cells contacted by the 1990–2019 deepwater footprint, 60% had under 10 years of contact: 19% were contacted in 1 year, 10% in 2 years, 7% in 3 years, and 5.6% in 4 years. Another 5.6% were contacted each year in the 30-year dataset (Figure 18). The spatial distribution of these cells, by number of years contacted is shown in Figure 19 with the primary fishery areas for Tier 1 targets clearly distinguished.

About 27% (n = 10 352) of all deepwater cells were contacted in 2019, and 8.5% (n = 3298 cells) were last contacted in 2018 (see Figure 18); the distribution of these cells by last year fished is shown in Figure 19. Another 18% were last contacted during 2014–2017. About 17% have not been contacted since 2000.

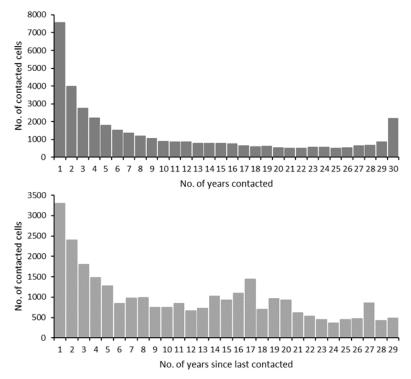



Figure 18: The number of cells contacted in annual year bins for 1990–2019 (upper) and the number of cells in each bin representing the number of years since a cell was last contacted (lower).

# 4.6 Overlap of the deepwater footprint and 200-m depth zones

The all-year deepwater contact (Tier 1 and Tier 2 combined) was greatest in middle depths: 29% of the total 1990–2019 footprint was in 400–600 m and 17% was in 600–800 m (Table D23). Shallower depths accounted for 24% in under 200 m and 12% in 200–400 m. Beyond 800 m, 10% of the total deepwater footprint was in 800–1000 m, 5% in 1000–1200 m, and almost 3% in 1200–1600 m. For 2019, the spread of the annual footprint by depth zone was similar to that above, but a greater percent was in 400–600 m (at 48%), with 92% in 0–800 m compared with 82% of the 30-year footprint. The extents of these footprints, by depth zones, are shown in Figure 20.

Overall, the total deepwater footprint contacted 25% of the seafloor area open to trawling in depths under 1600 m (Table 12). In the middle depths, 40% of 400–600 m and 32% of 600–800 m of the seafloor areas were contacted; in shallower depths, 42% in 200–400m and 34% in under 200 m were contacted; and 21% of 800–1000 m, 13% of 1000–1200 m, and under 5% of the two deepest zones were

contacted. The 2019 overlap shows a similar pattern to the all-year pattern, being greatest in the under 800 m zones, with a maximum overlap of 8% in 400–600 m.

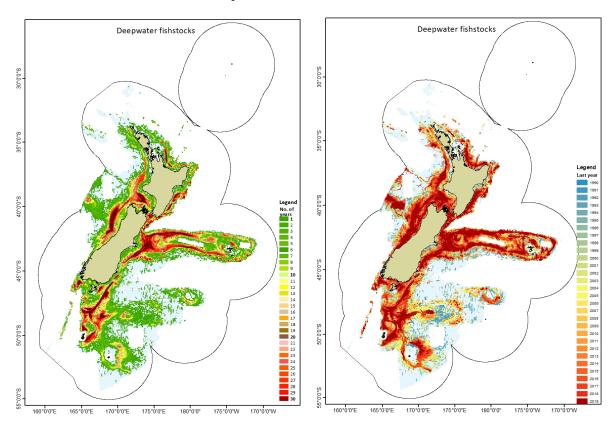



Figure 19: Distribution of the deepwater cells, by the number of years contacted (left), and by the year last fished (right).

The estimated footprints by Tier 1 and Tier 2 targets are given in Tables D24–D27. Jack mackerel, arrow squid, and hoki had the largest footprints in 0–200m; hoki, scampi, and arrow squid in 200–400 m; mainly hoki, then southern blue whiting, ling, hake, and scampi in 400–600 m; mainly hoki, then ling, hake, and arrow squid in 600–800 m; and in waters deeper than 800 m, mainly orange roughy, as well as oreo and hoki. Note that the distribution for some targets is outside their main depth range and this is partly an artefact of using the 25-km² cell grid with the depth value being the midpoint. The 2019 footprint has a similar pattern.

The 1990–2019 footprint overlap of each depth zone, expressed as the percentage contacted in each depth zone, is shown for Tier 1 targets separately and combined in Table 13. The total hoki footprint has the greatest coverage of 200–800 m waters, contacting about 20% of the 200–400 m zone, 28% of the 400–600 m zone, and 28% of the 600–800 m zone (Table 13). In less than 200 m, the targets with the greatest footprint overlap are jack mackerel species and arrow squid. Other targets with footprint overlap of at least 6% in the 200–400 m zone are jack mackerels, ling, scampi, and arrow squid. Hake, ling, and southern blue whiting cover 5–7% of the 400–600 m zone.

In the deep zones, the orange roughy footprint has an 11% overlap, and oreo species and hoki footprints each have 5% overlap in 800–1000 m. In 1000–1200 m, 8% of the seafloor area is contacted by the orange roughy footprint, and 3.5% by the oreo footprint. Orange roughy has the largest overlap in the two deepest zones, with 3% in 1200–1400 m and about 2% in 1400–1600 m. The patterns seen for the 2019 footprint for these species were similar to those described above, though the percentage overlap was substantially smaller, for only one year of footprint; for example, the hoki overlap in 2019 in 400–600 m was 7% (Table 14).

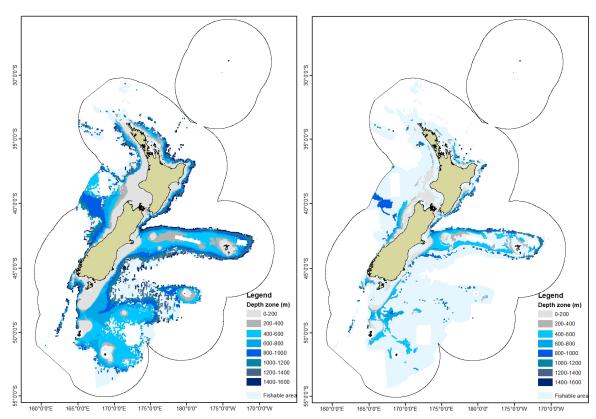



Figure 20: Extent of the deepwater footprint overlap with 200-m depth zones, represented by 25-km<sup>2</sup> cells for 1990–2019 (left) and 2019 (right).

Table 12: The total area of each fishable area depth zone and the percent contacted by the 1990–2019 and 2019 footprints for the Tier 1, Tier 2, and total deepwater target species.

| Depth     | Area        | 1990-2019 | footprint ove | erlap (%) | 201    | 9 footprint ove | rlap (%)_ |
|-----------|-------------|-----------|---------------|-----------|--------|-----------------|-----------|
| zone (m)  | $(km^2)$    | Tier 1    | Tier 2        | All       | Tier 1 | Tier 2          | All       |
| < 200     | 249 341.9   | 27.2      | 25.5          | 34.2      | 2.1    | 2.0             | 3.0       |
| 200-400   | 98 295.9    | 38.4      | 19.5          | 42.3      | 5.3    | 1.0             | 6.0       |
| 400-600   | 253 939.2   | 39.8      | 5.9           | 40.5      | 7.4    | 0.3             | 8.3       |
| 600-800   | 185 161.6   | 30.9      | 2.0           | 31.6      | 2.5    | 0.1             | 3.0       |
| 800-1000  | 166 645.0   | 20.4      | 1.0           | 20.8      | 1.3    | 0.0             | 1.5       |
| 1000-1200 | 144 930.5   | 12.7      | 0.7           | 13.0      | 0.5    | 0.0             | 0.7       |
| 1200-1400 | 168 376.8   | 4.2       | 0.3           | 4.3       | 0.1    | 0.0             | 0.2       |
| 1400-1600 | 124 988.8   | 2.2       | 0.3           | 2.3       | 0.0    | 0.0             | 0.1       |
| ≤ 1600    | 1 391 679.7 | 23.4      | 7.5           | 25.3      | 2.6    | 0.5             | 3.2       |

Table 13: The total seafloor area in each depth zone within 'fishable' depth zones  $\leq 1600$  m, and the percentage of each depth zone contacted by the 1990–2019 Tier 1 footprint.

| Depth     | Area        |      |       |       |      |      |       | Fo   | otprint | area ove | rlap (%) |
|-----------|-------------|------|-------|-------|------|------|-------|------|---------|----------|----------|
| zone (m)  | $(km^2)$    | HAK  | HOK   | JMA   | LIN  | OEO  | ORH   | SBW  | SCI     | SQU      | Tier 1   |
| < 200     | 249 341.9   | 0.13 | 5.17  | 15.82 | 1.08 | 0.04 | 0.11  | 0.04 | 0.71    | 9.71     | 27.17    |
| 200-400   | 98 295.9    | 1.35 | 19.79 | 5.96  | 7.39 | 0.07 | 0.20  | 3.94 | 9.59    | 8.51     | 38.38    |
| 400–600   | 253 939.2   | 5.00 | 28.03 | 0.35  | 4.58 | 0.08 | 0.22  | 7.46 | 3.47    | 2.04     | 39.77    |
| 600-800   | 185 161.6   | 3.02 | 28.20 | 0.18  | 3.12 | 0.80 | 0.90  | 0.18 | 0.24    | 1.57     | 30.93    |
| 800-1000  | 166 645.0   | 0.62 | 5.32  | 0.03  | 0.21 | 5.26 | 11.09 | 0.03 | 0.10    | 0.29     | 20.36    |
| 1000-1200 | 144 930.5   | 0.04 | 1.39  | 0.04  | 0.05 | 3.50 | 8.87  | 0.02 | 0.10    | 0.22     | 12.72    |
| 1200-1400 | 168 376.8   | 0.01 | 0.38  | 0.04  | 0.02 | 0.85 | 3.05  | 0.01 | 0.06    | 0.16     | 4.16     |
| 1400-1600 | 124 988.8   | 0.01 | 0.31  | 0.01  | 0.01 | 0.30 | 1.59  | 0.00 | 0.05    | 0.08     | 2.20     |
| ≤ 1600    | 1 391 679.7 | 1.51 | 12.05 | 3.36  | 2.00 | 1.26 | 2.96  | 1.68 | 1.50    | 3.01     | 23.41    |

Table 14: The total area of the seafloor in each depth zone within 'fishable' waters, all depth zones ≤ 1600 m combined, and the percentage of each depth zone covered by the 2019 trawl footprint for each Tier 1 target species and for the Tier 1 targets combined. – indicates no overlap.

| Depth       | Area        |        |        |        |        |        |        | F      | ootprint | area ovei | lap (%)_ |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|----------|-----------|----------|
| zone (m)    | $(km^2)$    | HAK    | HOK    | JMA    | LIN    | OEO    | ORH    | SBW    | SCI      | SQU       | Tier 1   |
| < 200       | 249 341.9   | < 0.01 | 0.15   | 1.08   | 0.03   | < 0.01 |        | < 0.01 | 0.05     | 1.02      | 2.33     |
| 200-400     | 98 295.9    | 0.01   | 1.60   | 0.12   | 0.32   | < 0.01 | < 0.01 | 0.10   | 2.28     | 1.20      | 5.62     |
| 400–600     | 253 939.2   | 0.09   | 6.66   | < 0.01 | 0.33   | < 0.01 | < 0.01 | 0.26   | 0.88     | 0.08      | 8.30     |
| 600-800     | 185 161.6   | 0.08   | 2.74   | < 0.01 | 0.21   | < 0.01 | 0.02   | _      | < 0.01   | < 0.01    | 3.05     |
| 800-1000    | 166 645.0   | < 0.01 | 0.26   | _      | 0.02   | 0.10   | 1.06   | _      | < 0.01   | _         | 1.45     |
| 1000-1200   | 144 930.5   | _      | < 0.01 | _      | < 0.01 | 0.08   | 0.58   | _      | < 0.01   | < 0.01    | 0.67     |
| 1200-1400   | 168 376.8   | _      | < 0.01 | _      | _      | 0.01   | 0.18   | _      | < 0.01   | _         | 0.18     |
| 1400-1600   | 124 988.8   | _      | < 0.01 | _      | _      | < 0.01 | 0.04   | _      | _        | _         | 0.05     |
| $\leq 1600$ | 1 391 679.7 | 0.03   | 1.75   | 0.20   | 0.12   | 0.02   | 0.22   | 0.05   | 0.33     | 0.28      | 3.01     |

## 4.7 Overlap of the deepwater footprint and BOMEC classes

About 84% of the 1990–2019 footprint was distributed in 6 BOMEC classes: J (22%), H (18%), L (16%), I (11%), C (10%), and E (7%) (Table D28). Another 9% of the footprint was in classes M and N. The spatial distribution of the footprint by class is shown in Figure 21 and the annual footprints by Tier 1 and Tier 2 fishstocks are given in Tables D29 and D30.

When the overlap is expressed as a percent of the seafloor area of each class, the deepwater footprint had the greatest overlap, in descending order, in BOMEC classes I (74% area contacted), G, H, C, and E (54%–40%) (Table 15). For some classes, the overlap was mainly from the Tier 1 footprint (C, G-J, and L), from the Tier 2 footprint (B), or more evenly spread (E). In the BOMEC classes M–O, the overlap is very small, mainly because these classes are in deeper waters. There was minimal overlap of class K, a very small area north of the North Island (see Figure B1). The percent overlap by Tier 1 target footprints is given in Tables 16 and 17: jack mackerel is the main contributor to class C; arrow squid, jack mackerel, and hoki for class E; hoki and ling in class G; hoki, jack mackerel, ling and arrow squid in class H; hoki in class I; hoki and orange roughy in class J; hoki and southern blue whiting in class L.

Table 15: The total area of each BOMEC class and the percentage of each class area covered by the 1990–2019 and 2019 bottom-contacting trawl footprint for the Tier 1, Tier 2, and combined deepwater fishstocks. – indicates no overlap.

| BOMEC |                         | 1990-2019 | footprint ove | erlap (%) | 2019 footprint area overlap (% |        |      |
|-------|-------------------------|-----------|---------------|-----------|--------------------------------|--------|------|
| Class | Area (km <sup>2</sup> ) | Tier 1    | Tier 2        | All       | Tier 1                         | Tier 2 | All  |
|       |                         |           |               |           |                                |        |      |
| A     | 30 661.0                | 2.5       | 3.0           | 4.9       | 0.1                            | 0.03   | 0.1  |
| В     | 12 786.1                | 9.8       | 29.0          | 34.4      | 0.2                            | 2.60   | 2.8  |
| C     | 90 256.5                | 33.0      | 14.4          | 40.6      | 2.7                            | 0.34   | 3.0  |
| D     | 28 085.7                | 8.4       | 7.0           | 13.5      | 0.4                            | 0.18   | 0.5  |
| E     | 61 258.0                | 33.7      | 21.2          | 40.1      | 3.9                            | 2.15   | 5.4  |
| F     | 38 775.8                | 17.6      | 0.6           | 17.8      | 0.8                            | 0.00   | 0.8  |
| G     | 6 702.3                 | 42.2      | 24.7          | 54.1      | 4.0                            | 1.68   | 5.6  |
| H     | 138 399.1               | 43.5      | 16.7          | 46.9      | 6.5                            | 0.78   | 7.2  |
| I     | 52 008.3                | 73.7      | 10.8          | 74.2      | 18.7                           | 0.63   | 19.0 |
| J     | 312 604.9               | 24.1      | 2.8           | 25.0      | 3.1                            | 0.14   | 3.2  |
| K     | 1 200.2                 | 0.2       | < 0.1         | 0.3       | _                              | _      | _    |
| L     | 198 578.4               | 28.4      | 0.4           | 28.5      | 2.8                            | 0.01   | 2.8  |
| M     | 233 837.4               | 8.0       | 0.1           | 8.0       | 0.3                            | 0.00   | 0.3  |
| N     | 495 154.2               | 2.4       | 0.2           | 2.5       | 0.1                            | 0.01   | 0.1  |
| O     | 1 006 911.1             | 0.1       | 0.0           | 0.1       | 0.0                            | 0.00   | 0.0  |
| All   | 2 707 219.0             | 12.0      | 2.7           | 13.0      | 1.5                            | 0.15   | 1.6  |
|       |                         |           |               |           |                                |        |      |

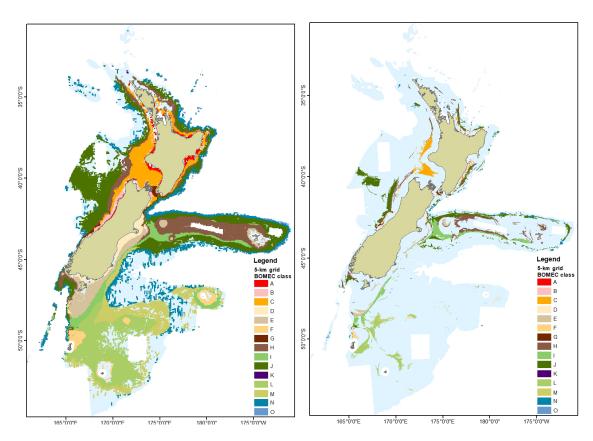



Figure 21: Extent of the deepwater Tier 1 footprint overlap with BOMEC classes, represented by 25-km<sup>2</sup> cells for 1990–2019 (left) and 2019 (right). The extent of the Tier 2 overlap is in Figure D5.

Table 16: The total area of each BOMEC class and the percentage of each area covered by the 1990–2019 footprint for the Tier 1 deepwater target species. Note: there are some large differences in the areas of some classes. – indicates no overlap.

|       |                         |        | Footprint area overlap (%) |        |        |        |      |        |        |        |        |
|-------|-------------------------|--------|----------------------------|--------|--------|--------|------|--------|--------|--------|--------|
| Class | Area (km <sup>2</sup> ) | HAK    | HOK                        | JMA    | LIN    | OEO    | ORH  | SBW    | SCI    | SQU    | Tier 1 |
| A     | 30 661.0                | < 0.01 | 0.50                       | 0.40   | 0.02   | 0.01   | 0.14 | 0.01   | 0.20   | 1.25   | 2.49   |
| В     | 12 786.1                | 0.29   | 6.21                       | 0.67   | 2.51   | 0.03   | 0.11 | 0.06   | 0.06   | 0.36   | 9.77   |
| C     | 90 256.5                | 0.09   | 3.15                       | 27.82  | 0.35   | 0.01   | 0.10 |        | 0.67   | 1.68   | 33.00  |
| D     | 28 085.7                | 0.04   | 3.08                       | 1.68   | 0.63   | 0.06   | 0.13 | 0.01   | 0.33   | 4.16   | 8.36   |
| E     | 61 258.0                | 0.38   | 9.00                       | 14.29  | 2.29   | 0.12   | 0.03 | < 0.00 | 0.17   | 24.99  | 33.70  |
| F     | 38 775.8                | 0.04   | 1.10                       | 0.30   | 1.11   | < 0.01 | 0.02 | 5.09   | 0.78   | 11.21  | 17.64  |
| G     | 6 702.3                 | 1.02   | 31.94                      | 0.29   | 11.09  | 0.05   | 1.40 |        | 1.51   | 0.09   | 42.18  |
| Н     | 138 399.1               | 5.57   | 28.04                      | 7.63   | 7.13   | 0.05   | 0.17 | 0.02   | 8.18   | 5.17   | 43.47  |
| I     | 52 008.3                | 3.75   | 66.06                      | 0.65   | 8.50   | 0.53   | 0.24 | 4.36   | 0.09   | 9.58   | 73.75  |
| J     | 312 604.9               | 3.14   | 12.05                      | 0.32   | 0.78   | 2.51   | 9.74 | 0.01   | 0.85   | 0.59   | 24.07  |
| K     | 1 200.2                 | _      | 0.20                       | _      | _      | _      | 0.04 | _      | _      | _      | 0.24   |
| L     | 198 578.4               | 0.45   | 15.93                      | 0.03   | 3.77   | 0.04   | 0.01 | 9.27   | 2.72   | 2.15   | 28.40  |
| M     | 233 837.4               | 0.09   | 4.57                       | < 0.01 | 0.09   | 2.90   | 0.38 | 0.26   | 0.02   | 0.19   | 7.97   |
| N     | 495 154.2               | < 0.01 | 0.35                       | 0.01   | 0.01   | 0.44   | 1.77 | 0.01   | 0.04   | 0.08   | 2.43   |
| O     | 1 006 911.1             | < 0.01 | 0.00                       | < 0.01 | < 0.01 | 0.02   | 0.04 | _      | < 0.01 | < 0.01 | 0.05   |
| All   | 2 707 219.0             | 0.78   | 6.19                       | 1.72   | 1.03   | 0.65   | 1.52 | 0.86   | 0.77   | 1.55   | 12.04  |

Table 17: The total area of each BOMEC class and the percentage of each area covered by the 2019 bottom-contacting trawl footprint for the Tier 1 deepwater target species. – indicates no overlap.

|       |             |         | Footprint area overlap (%) |        |        |        |        |        |        |        |       |
|-------|-------------|---------|----------------------------|--------|--------|--------|--------|--------|--------|--------|-------|
| Class | Area (km²)  | HAK     | HOK                        | JMA    | LIN    | OEO    | ORH    | SBW    | SCI    | SQU    | Tier1 |
| A     | 30 661.0    |         | < 0.01                     | < 0.01 | < 0.01 | _      | _      | _      | < 0.01 | _      | 0.01  |
| В     | 12 786.1    | < 0.01  | 0.44                       | 0.01   | 0.24   | _      | < 0.01 | _      | < 0.01 | 0.01   | 0.70  |
| C     | 90 256.5    | < 0.01  | 0.09                       | 3.65   | 0.05   | _      |        | _      | < 0.01 | 0.01   | 3.80  |
| D     | 28 085.7    | < 0.001 | 0.07                       | 0.01   | 0.02   | _      | _      | _      | < 0.01 | 0.05   | 0.15  |
| E     | 61 258.0    | < 0.01  | 0.37                       | 0.28   | 0.10   | < 0.01 | _      | _      | < 0.01 | 2.58   | 3.15  |
| F     | 38 775.8    | _       | < 0.01                     | -      | < 0.01 | _      | < 0.01 | 0.25   | < 0.01 | 2.05   | 2.12  |
| G     | 6 702.3     | 0.09    | 3.13                       | < 0.01 | 2.08   | _      | _      | _      | 0.01   | 0.01   | 5.34  |
| Н     | 138 399.1   | 0.02    | 3.95                       | 0.24   | 0.34   | _      | < 0.01 | _      | < 0.01 | 0.14   | 6.35  |
| I     | 52 008.3    | 0.32    | 19.71                      | -      | 0.33   | < 0.01 | < 0.01 | 0.02   | < 0.01 | 0.63   | 2.60  |
| J     | 312 604.9   | 0.43    | 2.31                       | < 0.01 | 0.07   | 0.04   | 0.69   | _      | < 0.01 | 0.01   | 3.38  |
| K     | 1 200.2     | _       | _                          | -      | _      | _      | _      | _      | _      | _      | _     |
| L     | 198 578.4   | < 0.001 | 1.33                       | -      | 0.12   | < 0.01 | _      | 0.07   | < 0.01 | 0.39   | 2.99  |
| M     | 233 837.4   | < 0.001 | 0.30                       | -      | < 0.01 | 0.04   | < 0.01 | 0.02   | < 0.01 | _      | 0.35  |
| N     | 495 154.2   | < 0.001 | < 0.01                     | -      | < 0.01 | 0.01   | 0.11   | _      | < 0.01 | < 0.01 | 0.12  |
| O     | 1 006 911.1 | _       | _                          | -      | _      | < 0.01 | < 0.01 | _      | < 0.01 | < 0.01 | 0.00  |
| All   | 2 707 219.0 | 0.06    | 1.02                       | 0.14   | 0.05   | 0.01   | 0.10   | < 0.01 | < 0.01 | 0.14   | 1.68  |

# 4.8 Overlap of the Tier 1 target footprints and predicted habitat

The overlap of each Tier 1 species footprint on their 'preferred habitat' distribution (probability of occurrence) for the seven fish species (or annual distribution for scampi and arrow squid) is shown in Figures 22a–22d. This distribution represents the probability of capture (%) of a fish in a standardised trawl where, for example, 91–100% is the body of water in which a trawl is most likely to capture the species.

For all the Tier 1 fish species, except hake and jack mackerels, the footprint is mainly distributed in areas where the probability of occurrence in over 90% (Table D31). For hake and jack mackerels, the footprint is spread out in 50–90% and 20–80% occurrence, respectively. The footprint overlap of the seafloor area of each probability bin is given in Table 18 for the 1990–2019 and 2019 footprints.

The footprint overlap of the annual distributions for scampi and arrow squid is given in Table D31, the percent overlap of seafloor area in Table 18, and the spatial distribution in Figure 22e.

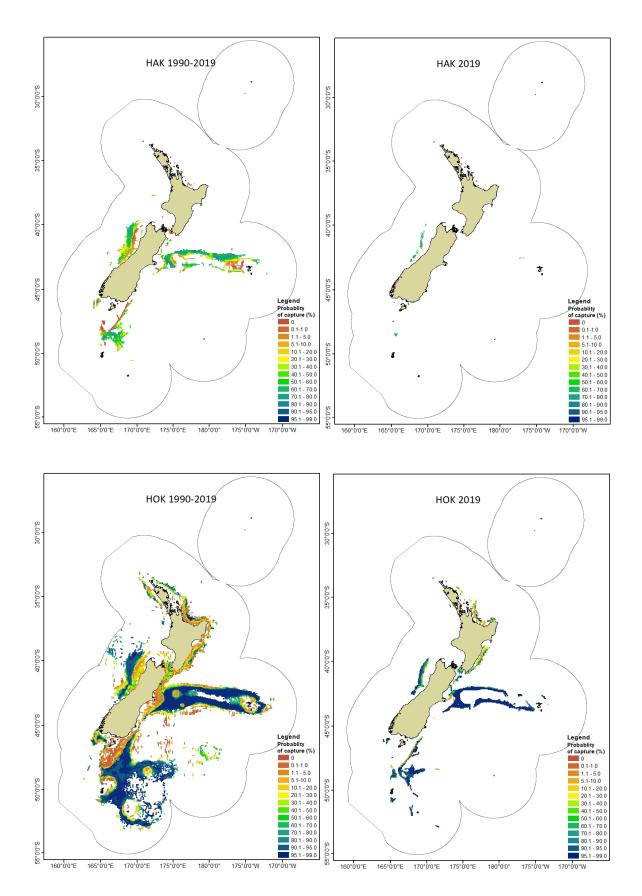



Figure 22a: Distribution of the 1990–2019 (left) and the 2019 trawl footprints (right) for hake (top) and hoki (bottom), displayed by 25-km² contacted cell, relative to the probablity of capture for that species (after Leathwick et al. 2006).

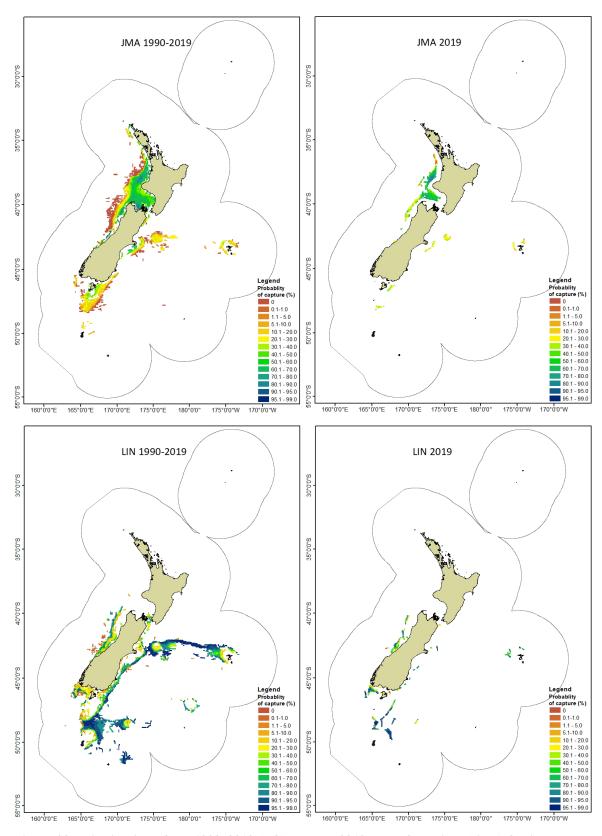



Figure 22b:Distribution of the 1990–2019 (left) and the 2019 trawl footprints (right) for jack mackerels (top) and ling (bottom), displayed by 25-km<sup>2</sup> contacted cell, relative to the probablity of capture for that species (after Leathwick et al. 2006).

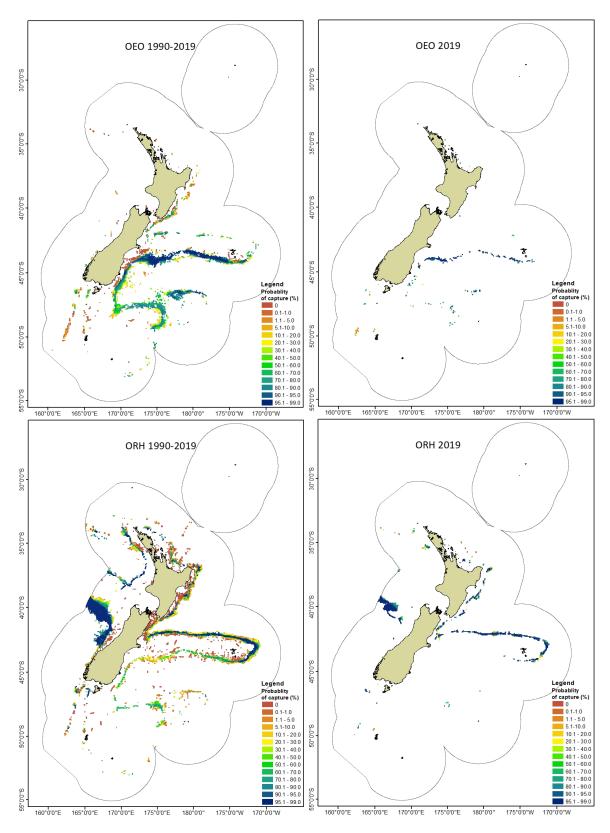



Figure 22c:Distribution of the 1990–2019 (left) and the 2019 trawl footprints (right) for oreo species (top) and orange roughy (bottom), displayed by 25-km² contacted cell, relative to the probablity of capture for that species (after Leathwick et al. 2006).

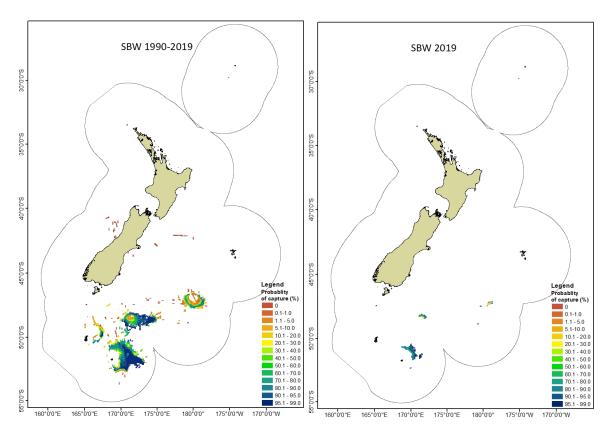



Figure 22d:Distribution of the 1990–2019 (left) and the 2019 trawl footprints (right) for southern blue whiting, displayed by 25-km² contacted cell, relative to the probablity of capture for that species (after Leathwick et al. 2006).

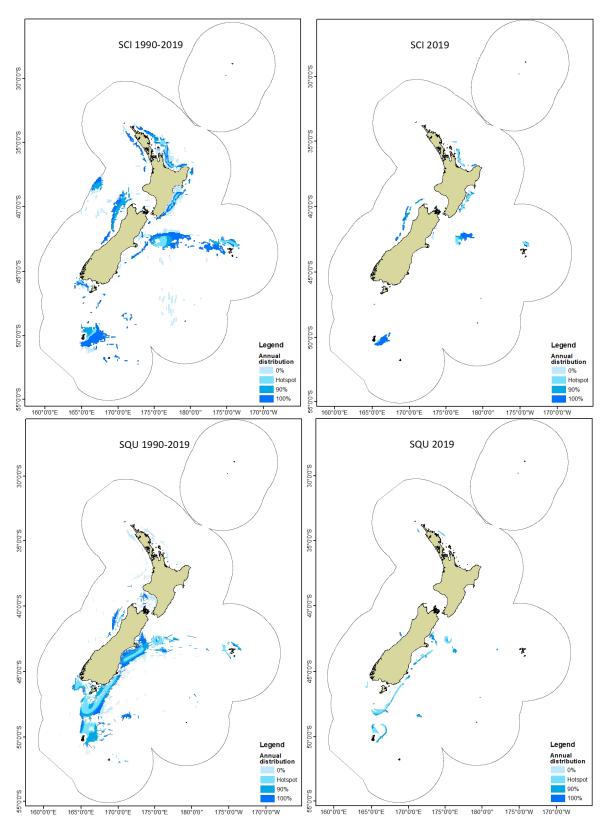



Figure 22e:Distribution of the 1990–2019 (left) and the 2019 trawl footprints (right) for scampi (top) and arrow squid (bottom), relative to the annual distribution of the species population (see <a href="https://www.nabis.govt.nz">www.nabis.govt.nz</a>).

Table 18: The total area of each 'preferred habitat' (probability of capture) and the percentage of each species 'preferred habitat' (probability of capture) area (for HAK, HOK, JMA, LIN, OEO, ORH, and SBW) or area of the annual distribution (for SCI and SQU) covered by the 1990–2019 and 2019 bottom-contact trawl footprint for the Tier 1 deepwater target species. – indicates no data. [Continued over next two pages.]

| Probability | HAK         |              | HAK       | ПОК         |               | HOK       | JMA         |               | JMA       |
|-------------|-------------|--------------|-----------|-------------|---------------|-----------|-------------|---------------|-----------|
| occurrence  | area        | footprint ov | erlap (%) | HOK area    | footprint ove | erlap (%) | area        | footprint ove | erlap (%) |
| (%)         | $(km^2)$    | 1990–2019    | 2019      | $(km^2)$    | 1990–2019     | 2019      | $(km^2)$    | 1990–2019     | 2019      |
| 0           | 157 798.9   | 0.2          | _         | 59 927.6    | 0.4           | 0.01      | 970 883.1   | 0.1           | < 0.01    |
| 0.1 - 1.0   | 143 613.4   | 0.2          | _         | 191 141.7   | 0.6           | 0.01      | 32 448.6    | < 0.6         | < 0.01    |
| 1.1 - 5.0   | 372 123.2   | 0.1          | < 0.01    | 232 065.7   | 1.3           | 0.03      | 61 167.9    | 1.9           | 0.02      |
| 5.1 - 10.0  | 157 588.0   | 0.2          | < 0.01    | 94 978.0    | 3.3           | 0.10      | 44 463.3    | 2.2           | 0.01      |
| 10.1 – 0.0  | 136 822.9   | 0.4          | < 0.01    | 107 078.6   | 3.8           | 0.12      | 47 819.6    | 4.8           | 0.07      |
| 20.1-30.0   | 89 636.3    | 0.6          | < 0.01    | 47 646.2    | 5.9           | 0.24      | 47 433.6    | 12.4          | 0.31      |
| 30.1-40.0   | 71 790.2    | 1.1          | 0.01      | 38 300.4    | 6.7           | 0.33      | 40 735.0    | 15.9          | 0.66      |
| 40.1 - 50.0 | 64 748.6    | 2.5          | 0.03      | 31 571.6    | 8.4           | 0.55      | 35 569.3    | 13.1          | 0.63      |
| 50.1-60.0   | 60 031.3    | 3.9          | 0.11      | 27 614.6    | 10.2          | 0.64      | 31 777.9    | 16.3          | 1.28      |
| 60.1 - 70.0 | 55 069.8    | 5.8          | 0.16      | 31 773.8    | 8.5           | 0.83      | 34 795.2    | 27.3          | 2.41      |
| 70.1 - 80.0 | 53 189.8    | 11.5         | 0.26      | 35 949.5    | 10.6          | 1.00      | 27 510.5    | 24.4          | 1.45      |
| 80.1-90.0   | 26 263.0    | 16.6         | 0.16      | 58 122.5    | 11.2          | 1.39      | 13 200.3    | 20.1          | 3.67      |
| 90.1-95.0   | 2 801.7     | 10.2         | 0.06      | 118 974.0   | 17.4          | 2.38      | 3 330.3     | 2.0           | _         |
| 95.1–99.0   | 202.6       | 2.1          | _         | 316 535.4   | 35.3          | 6.08      | 545.2       | 1.6           | _         |
| 0.0-99.0    | 1 391 679.7 | 1.5          | 0.03      | 1 391 679.7 | 12.0          | 1.75      | 1 391 679.7 | 3.4           | 0.20      |

Table 18: — continued.

| Probability | LIN         |              | LIN       | OEO         |              | OEO       | ORH         |              | ORH       |
|-------------|-------------|--------------|-----------|-------------|--------------|-----------|-------------|--------------|-----------|
| occurrence  | area        | footprint ov | erlap (%) | area        | footprint ov | erlap (%) | area        | footprint ov | erlap (%) |
| (%)         | $(km^2)$    | 1990–2019    | 2019      | $(km^2)$    | 1990–2019    | 2019      | $(km^2)$    | 1990–2019    | 2019      |
| 0           | 16 384.1    | 0.03         | < 0.01    | 591 875.4   | 0.1          | < 0.01    | 775 356.3   | 0.2          | < 0.01    |
| 0.1 - 1.0   | 421 963.7   | 0.02         | < 0.01    | 96 946.8    | 0.1          | < 0.01    | 83 107.9    | 0.2          | < 0.01    |
| 1.1 - 5.0   | 123 925.6   | 0.1          | < 0.01    | 133 348.9   | 0.2          | < 0.01    | 96 265.0    | 0.4          | < 0.01    |
| 5.1 - 10.0  | 70 480.9    | 0.2          | < 0.01    | 72 594.5    | 0.3          | < 0.01    | 44 139.3    | 0.9          | 0.02      |
| 10.1 – 0.0  | 106 096.8   | 0.4          | 0.01      | 79 444.5    | 0.3          | < 0.01    | 46 647.0    | 1.3          | 0.04      |
| 20.1-30.0   | 70 823.3    | 1.6          | 0.05      | 55 551.7    | 0.4          | < 0.01    | 35 606.4    | 1.7          | 0.06      |
| 30.1-40.0   | 43 367.4    | 2.7          | 0.13      | 37 984.7    | 0.5          | < 0.01    | 27 429.2    | 1.8          | 0.05      |
| 40.1 - 50.0 | 33 728.4    | 3.6          | 0.21      | 33 074.3    | 0.6          | < 0.01    | 23 537.9    | 2.2          | 0.07      |
| 50.1-60.0   | 36 340.8    | 3.0          | 0.19      | 33 600.8    | 0.8          | < 0.01    | 22 652.0    | 2.3          | 0.06      |
| 60.1 - 70.0 | 31 498.5    | 3.5          | 0.22      | 35 852.2    | 1.3          | 0.01      | 28 958.4    | 2.3          | 0.06      |
| 70.1 - 80.0 | 42 477.3    | 3.1          | 0.18      | 52 184.0    | 2.5          | 0.02      | 34 593.1    | 2.9          | 0.12      |
| 80.1-90.0   | 96 312.2    | 3.5          | 0.13      | 77 332.4    | 4.1          | 0.03      | 40 907.6    | 5.3          | 0.28      |
| 90.1-95.0   | 129 835.6   | 5.9          | 0.33      | 43 870.1    | 6.9          | 0.09      | 27 886.2    | 9.8          | 0.56      |
| 95.1–99.0   | 168 444.9   | 5.3          | 0.42      | 48 019.4    | 15.8         | 0.43      | 104 593.2   | 28.5         | 2.47      |
| 0.0 – 99.0  | 1 391 679.7 | 2.00         | 0.12      | 1 391 679.7 | 1.3          | 0.02      | 1 391 679.7 | 3.0          | 0.22      |

Table 18: — continued.

|             |             |              | SBW       |                      |            |               | SCI      |            |              | SQU       |
|-------------|-------------|--------------|-----------|----------------------|------------|---------------|----------|------------|--------------|-----------|
| Preferred   | SBW         | Footprint ov | erlap (%) |                      | SCI        | Footprint ove | rlap (%) | SQU        | Footprint ov | erlap (%) |
| habitat (%) | Area (km²)  | 1990–2019    | 2019      | Annual distribution* | Area (km²) | 1990–2019     | 2019     | Area (km²) | 1990–2019    | 2019      |
| 0           | 931 718.1   | < 0.1        | _         | Hotspot              | 14 914.5   | 33.9          | 8.2      | 56 994.5   | 28.2         | 2.5       |
| 0.1 - 1.0   | 122 249.7   | 0.1          | < 0.01    | 90% population       | 77 916.5   | 6.7           | 0.8      | 172 093.3  | 8.8          | 1.3       |
| 1.1 - 5.0   | 140 341.1   | 0.3          | < 0.01    | 100% population      | 463 031.2  | 2.0           | 0.6      | 306 136.0  | 2.4          | 0.1       |
| 5.1 - 10.0  | 23 088.7    | 1.5          | < 0.01    | Not Exist /unknown   | 927 060.7  | 0.1           | 0.01     | 854 868.7  | 0.4          | 0.002     |
| 10.1 - 20.0 | 18 499.5    | 2.7          | 0.01      |                      |            |               |          |            |              |           |
| 20.1-30.0   | 13 156.5    | 3.3          | < 0.01    |                      |            |               |          |            |              |           |
| 30.1-40.0   | 11 096.7    | 3.4          | < 0.01    |                      |            |               |          |            |              |           |
| 40.1 - 50.0 | 9 764.8     | 3.6          | < 0.01    |                      |            |               |          |            |              |           |
| 50.1-60.0   | 8 856.4     | 6.2          | 0.01      |                      |            |               |          |            |              |           |
| 60.1 - 70.0 | 8 626.1     | 8.8          | 0.03      |                      |            |               |          |            |              |           |
| 70.1 - 80.0 | 11 355.4    | 11.9         | 0.26      |                      |            |               |          |            |              |           |
| 80.1-90.0   | 21 664.4    | 17.2         | 0.38      |                      |            |               |          |            |              |           |
| 90.1-95.0   | 20 464.7    | 26.4         | 0.50      |                      |            |               |          |            |              |           |
| 95.1–99.0   | 50 797.8    | 17.6         | 0.12      |                      |            |               |          |            |              |           |
| 0.0-99.0    | 1 391 679.7 | 1.7          | 0.02      |                      |            |               |          |            |              |           |

<sup>\*</sup> For SCI and SQU, the areas given here represent the areas shown for the annual distribution for scampi and arrow squid provided by MPI at www.nabis.govt.nz. The 'None' category is the area outside the 100% population area within the combined EEZ and Territorial Sea as Figure B2c.

#### 4.9 Overlap of the deepwater target footprints and sediment layers

Note that these layers do not include the occlusions to the EEZ where the seafloor is beyond 200 nm from land (one southeast on Chatham Rise and one near Pukaki Rise in southern waters). The overlap of the 1990–2019 and 2019 footprints of the seafloor areas estimated for each sediment layer is summarised in Table D32.

The footprint is reasonably well spread throughout the carbonate classes (Table D32), whereas the footprint in the gravel classes is greatest in 0–20%. For mud, most of the footprint is with the 0–20%, 20–40%, and 40–60% classes, and for sand, in the 20–40%, 40–60%, and 60–80% classes. Refer to Figure 12 which shows the overlap of the All Stocks with the sediment layers and the extent of the deepwater footprint shown in Figure 15.

The overlap of the deepwater footprint in the carbonate layer is between 21% (for the 60-80% and 80-100%) and 43.5% (for the 0-20% class); from 11% (of the 80-100%) to 29% (20-40%) of the gravel layer; 21-28% of the mud classes; and 20-30% of the sand classes (Table 19). The data for 2019 indicate that the percent overlap for all but carbonate 0-20% class is about 4% at the most.

Table 19: Percentage overlap of the seafloor area of the substrate classes by the fishable area 1990–2019 and 2019 deepwater footprint. For gravel, mud, and sand, the percentage classes total 100%, and for carbonate the percentage represents the proportion that is carbonate versus non-carbonate.

| Substrate | Class (%) | Class area (km²) | 1990–2019 overlap (%) | 2019 overlap (%) |
|-----------|-----------|------------------|-----------------------|------------------|
| Carbonate | 0-20      | 138 252.7        | 43.5                  | 8.1              |
| Carbonate | 20-40     | 282 469.8        | 30.3                  | 3.6              |
| Carbonate | 40–60     | 275 070.0        | 24.8                  | 2.6              |
| Carbonate | 60–80     | 288 732.7        | 20.7                  | 2.6              |
| Carbonate | 80–100    | 369 402.8        | 20.6                  | 2.1              |
| Gravel    | 0-20      | 1 037 250.7      | 26.3                  | 3.4              |
| Gravel    | 20-40     | 188 550.0        | 28.9                  | 3.7              |
| Gravel    | 40–60     | 77 886.4         | 20.3                  | 1.7              |
| Gravel    | 60–80     | 26 682.0         | 19.7                  | 0.9              |
| Gravel    | 80–100    | 14 188.5         | 11.2                  | 2.6              |
| Mud       | 0-20      | 387 549.1        | 28.3                  | 3.3              |
| Mud       | 20-40     | 323 852.0        | 26.5                  | 3.0              |
| Mud       | 40–60     | 299 719.3        | 27.2                  | 4.2              |
| Mud       | 60–80     | 233 123.9        | 20.8                  | 2.7              |
| Mud       | 80–100    | 109 712.9        | 22.0                  | 2.4              |
| Sand      | 0-20      | 142 639.8        | 23.7                  | 2.5              |
| Sand      | 20-40     | 348 482.0        | 19.5                  | 2.6              |
| Sand      | 40–60     | 482 383.1        | 27.7                  | 3.6              |
| Sand      | 60–80     | 303 832.8        | 30.4                  | 3.6              |
| Sand      | 80-100    | 77 166.5         | 28.3                  | 4.0              |

#### 5. INSHORE FISHSTOCKS TRAWL FOOTPRINT, 2008–2019

#### 5.1 Inshore data

The groomed inshore data for 2008–2019 yielded a dataset of 597 812 bottom-contacting tows for the spatial analysis (Table E1). The main form type used to report inshore data was the TCER (84% of inshore bottom-contacting tows), with another 14% from TCEPRs and 2% from ERS. Overall, 99.4% of the inshore data used bottom trawl gear.

These tows targeted at least 32 species (Table E1), 31% of which targeted flatfish species, 23% targeted tarakihi, 13% targeted red gurnard, 7% targeted snapper, 5% targeted red cod, and 5% trevally. Lesser targets included John dory, barracouta, giant stargazer, and blue warehou. This dataset included effort from 297 vessels, of which 245 were at least 28 m (made 95% of tows), 21 were > 28 m and  $\le$  46 m (4% of tows), and 31 vessels were larger than 46 m (under 1% of tows). The largest vessels targeted mainly barracouta. Over the 12 years, the number of vessels steadily dropped from 215 in 2008 to 150 in 2019. In 2019, 88% of vessels were at least 28 m and accounted for 95% of tows that year, 3% were > 28 m and  $\le$  46 m (4.5% tows), and the remainder were over 46 m (0.4% tows in 2019).

The effort dropped from a peak in 2010 (at 58 487 bottom-contacting tows) to a low in 2019 (38 339 tows). Annual effort decreased for most of the main inshore targets, except for red gurnard (with increased numbers of tows over the 12 years) and trevally which was reasonably steady throughout the series.

# 5.2 The spatial extent

The total number of cells, aggregate area, and footprint for the inshore targets during 2008–2019 are given in Table E2, listed in order of the greatest footprint, with the top 10 targets including tarakihi, red gurnard, flatfish species, snapper, trevally, red cod, barracouta, giant stargazer, John dory, and blue warehou. The greatest aggregate area (for tarakihi) was more than twice the aggregate swept area estimated for red gurnard tows, and 30% larger than the flatfish aggregate area. The tarakihi footprint contacted 52% of the 2008–2019 footprint compared with the 24% contact by red gurnard tows, 18% by flatfish tows, and about 14% by snapper tows and red cod tows. Overall, 15 199 cells were contacted by inshore targets (based on TCERs, TCEPRs, and ERS data) during 2008–2019, with the swept areas for all tows summing to an estimated aggregate area of 811 595 km² to give an overall footprint of 148 276 km² (Table 20). This footprint represented 3.6% of the EEZ+TS and 10.7% of the fishable area; and the 2019 footprint represented 2.7% of the EEZ+TS and 0.9% of the fishable area.

Table 20: Annual summary for the spatial overlap of the inshore bottom-contacting effort for 2008–2019 and the overlap (%) with the EEZ+TS (4 111 569.7 km²) and fishable area (1 391 679.7 km²).

| Fishing year | No. cells | Aggregate (km <sup>2</sup> ) | Footprint (km <sup>2</sup> ) | % EEZ+TS | % fishable |
|--------------|-----------|------------------------------|------------------------------|----------|------------|
| 2008         | 9 459     | 70 357.5                     | 44 237.2                     | 1.1      | 3.2        |
| 2009         | 9 400     | 73 623.1                     | 46 321.7                     | 1.1      | 3.3        |
| 2010         | 9 479     | 76 839.1                     | 47 219.3                     | 1.1      | 3.4        |
| 2011         | 9 582     | 69 901.3                     | 45 152.7                     | 1.1      | 3.2        |
| 2012         | 9 299     | 67 975.4                     | 43 572.7                     | 1.1      | 3.1        |
| 2013         | 9 189     | 67 735.9                     | 43 465.4                     | 1.1      | 3.1        |
| 2014         | 9 578     | 71 053.1                     | 45 608.2                     | 1.1      | 3.3        |
| 2015         | 9 488     | 64 803.2                     | 42 765.7                     | 1.0      | 3.1        |
| 2016         | 9 366     | 63 334.7                     | 41 718.4                     | 1.0      | 3.0        |
| 2017         | 9 476     | 66 374.8                     | 43 266.8                     | 1.1      | 3.1        |
| 2018         | 9 249     | 62 985.5                     | 42 585.4                     | 1.0      | 3.1        |
| 2019         | 8 686     | 56 611.4                     | 38 131.5                     | 0.9      | 2.7        |
| 2008–2019    | 15 199    | 811 595.0                    | 148 276.2                    | 3.6      | 10.7       |

The number of cells contacted was between 9189 (in 2013) and 9582 (in 2011) each year for the first 11 years, but in 2019 (the year with the lowest number of tows, see Table E1) the number of cells contacted dropped to 8686. The aggregate area was generally over 67 000 km² (peak in 2010 at 76 839 km²) until 2015 when it decreased in most years to a low of 52 611 km² in 2019. A similar trend was seen in the estimated footprint; during 2008–2018 the footprint was mainly in the range 41 718–47 219 km² but dropped to 38 131 km² in 2019. The spatial distribution of the 2008–2019 and 2019 footprints and aggregate areas are shown in Figure 23.

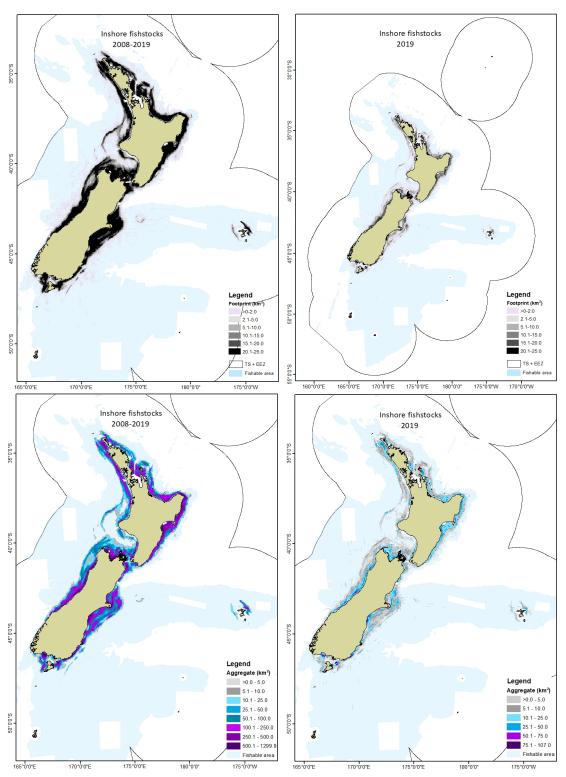



Figure 23: Distribution of the inshore fishstocks footprint (upper maps) and aggregate area (lower), by 25-km<sup>2</sup> cells, 2008–2019 (left) and 2019 (right), with the fishable area (light blue background).

**Spatial analysis by fishstock**. A fishstock analysis provides a spatial comparison of the effort for each target. When the data are combined by the main fishstocks for inshore bottom-contacting targets (see Table 2), 98.9% of the inshore contacted cells, 99.2% of the aggregate area, and 98.6% of the footprint are retained in the analysis (Table E3). The targets retained in these data include BAR, ELE, FLA, GSH, GUR, JDO, LEA, MOK, RCO, RSK, SCH, SKI, SNA, SPD, SPO, STA, TAR, TRE, and WAR; the annual totals of contacted cells, aggregate area, and footprint for the inshore fishstocks are given in Tables E4–E6 in Appendix E.

For all years, the inshore fishstock effort contacted 15 025 25-km<sup>2</sup> cells, with a total estimated aggregate area of 805 274 km<sup>2</sup> and a total fishstock footprint equivalent to about 18% of the aggregate area (146 224 km<sup>2</sup>, see Table E3). Overall, the fishstock footprint contacted 3.6% of the area of the EEZ+TS and 10.5% of the fishable area. There was very little difference from year to year in the percent overlap.

Overall, the main contributors to the 2008–2019 aggregate area were flatfish and tarakihi (see Table E5), with FLA 3, FLA 7, and TAR 2 contributing 82 423–86 306 km². TAR 7, TAR 1, GUR 2, and TRE 7 contributed between 40 010 and 55 711 km², with SNA 1 totalling 33 232 km², and RCO 3 and GUR 7 between 20 893 and 22 512 km². The fishstocks that contributed the most to the footprint over the 12 years (see Table E6) were: TAR 7 (23 114 km²), TAR 1 (19 022 km²), TAR 2 (15 415 km²), BAR 1 (13 952 km²), FLA 2 (13 073 km²), TRE 7 (11 289 km²), SNA 1 (11 051 km²), RCO 3 (10 381 km²), GUR 7 (9931 km²), and GUR 2 (9451 km²). Note that fishstock numbers do not necessary match the FMA boundaries: for example, TAR 1 includes FMAs 1 and 9; BAR 1 includes FMAs 1–3; FLA 3, GUR 3, and RCO 3 include FMAs 3–5; and TRE 7 includes FMAs 7–9.

Annual footprints for the main targets, by fishstock, are shown in Figure 24. Fishstocks TAR 1, 2, and 7 were generally above 3000 km² a year but showed different trends. TRE 7 declined from about 3000km² a year to about 2000km² and other tarakihi and trevally fishstocks were reasonably steady, below 2500 km². The FLA 7 footprint decreased from about 5000 km² in 2009 and 2010 to a low in 2019 (about 3000 km²). FLA 3 showed a slight increase to 4500 km² in 2013, then a decrease to a low in 2019 (under 3000 km²). FLA2 and RCO 3 and 7 decreased overall. Apart from a peak in 2010, GUR 2 was steady at about 2500 km² a year, whereas GUR 7 increased over the time series to a high in 2019 (at about 2800 km²), as did the GUR 3 footprint (to 1100 km²). The SNA 1 footprint decreased to a low in 2016–17 then increased in 2018 to about 2600 km²). From a peak in 2008, the SNA 8 footprint decreased by half (from 2011) and remained at this lower level of under 500 km² between 2016 and 2019. For most fishstocks, the 2019 footprint was very similar or lower than the previous year; GUR 3–8 fishstocks were the main exceptions, showing an increase in 2019.

**Spatial analysis by the main coastal FMAs**. Annual summaries of the inshore fishstock data by the coastal FMAs around the North Island, South Island, and Stewart Island are given in Tables E7 and E8. FMA 7, FMA 3, and FMA 2 accounted for most of the aggregate area, and FMA 7, FMA 3, and FMA 8/9 accounted for most of the footprint, for 2008–2019 (Table 21).

Table 21: The total aggregate area and footprint area, and the percent of total aggregate area and footprint area totals, for 2008–2019, by FMAs 1–3 and 5–8/9, based on the inshore fishstock data.

|                | FMA1      | FMA2      | FMA3      | FMA5     | FMA7      | FMA8/9    | Total     |
|----------------|-----------|-----------|-----------|----------|-----------|-----------|-----------|
| Aggregate area |           |           |           |          |           |           |           |
| Area (km²)     | 102 676.5 | 155 009.2 | 175 888.5 | 47 613.6 | 215 312.3 | 107 963.6 | 804 463.8 |
| % Total        | 13        | 19        | 22        | 6        | 27        | 13        | 100       |
| Footprint      |           |           |           |          |           |           |           |
| Area (km²)     | 22 423.5  | 20 172.2  | 30 642.0  | 8 446.8  | 37 746.3  | 28 152.4  | 145 884.7 |
| % Total        | 15        | 14        | 21        | 6        | 26        | 19        | 100       |

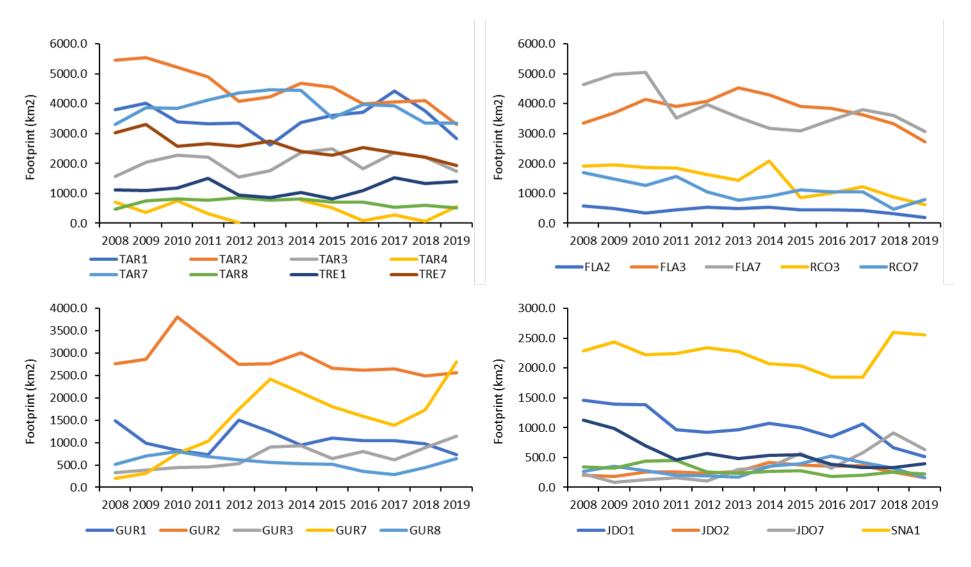



Figure 24: Annual footprints for the main inshore fishstocks, 2008–2019 (see also Tables E4–E6). Upper: tarakihi and trevally (left), flatfish and red cod (right). Lower: red gurnard (left) and John dory and snapper (right).

The main fishstocks in FMA 7 were TAR 7, FLA 7, TRE 7, GUR 7, RCO 7, WAR 7, and STA 7. For FMA 3, the main fishstocks included BAR 1, FLA 3, TAR 3, RCO 3, GUR 3, ELE 3, and WAR 3. In FMA 2, most of the footprint came from TAR 2, with the remainder mainly from GUR 2, JDO 2, and SNA 2. FMA 8/9 fishstocks included part of TAR 1, TAR 8, SNA 8, part of GUR 1, and GUR 8. FMA 1 fishstocks included part of TAR 1, part of GUR 1, SNA 1, TRE 1, and JDO 1, amongst others. The main fishstocks in the least contacted, FMA 5, were STA 5 and parts of FLA 3, GUR 3, RCO 3, and WAR 3.

Over the 12 years, the FMA annual aggregate areas generally decreased in FMAs 1, 2, and 8/9, whereas FMAs 3, 5, and 7 were reasonably steady, though all had the lowest annual aggregate in 2019. The footprint data show a similar pattern with the smallest footprints estimated for 2019. When comparing the annual aggregate area and the footprint, the intensity of bottom contact is greater in FMAs 2, 3, and 7 than in the other FMAs. This is not only because of the greater effort but also a result of the limited area for targeting these species in some areas: for example, the largest red gurnard aggregate area was from GUR 2, at more than twice the GUR 7 aggregate area (in FMA 7), but with a similar footprint area which indicates a wider extent of targeting in FMA 2 than in FMA 7.

#### 5.3 Extent of new cells contacted across the time series

The number of cells that were fished in one year, but not in previous years is shown in Table 22 for the combined inshore fishstocks, where the base footprint was the 2008 footprint. These data are limited in extent because data before the 2008 fishing year were not available to generate a spatial analysis, and as shown in section 3.1, the substantial data from CELR data collection that occurred before the 2008 fishing year are not included here. Thus, Table 22 provides data relative to 2008 only. As with the deepwater data, it is evident that in most of the years the contact in the new cells is of low intensity, because there is little difference between the aggregate area and the footprint. This is likely to be an artefact of the methodology used to generate the spatial data, particularly the endpoints of TCER tows. It is very likely that many of these 'new cells' have been fished in years before 2008.

Table 22: For the inshore fishstocks, the number of cells contacted in a year, that had not been contacted in previous years, and the aggregate area and footprint within those cells. A base of 9459 cells were contacted in 2008 (the fishing year that tow-level data were first collected for all inshore fisheries), and, for example, 1497 cells were contacted in 2009 (but not in 2008), with an aggregate area of 819.3 km² and footprint of 775.9 km².

| Fishing year               | No. new cells | Aggregate area (km²) | Footprint (km <sup>2</sup> ) |
|----------------------------|---------------|----------------------|------------------------------|
| No. cells contacted in 200 | 08 = 9459     |                      |                              |
| 2009                       | 1497          | 819.3                | 775.9                        |
| 2010                       | 934           | 657.8                | 576.4                        |
| 2011                       | 771           | 304.1                | 296.9                        |
| 2012                       | 484           | 151.7                | 148.3                        |
| 2013                       | 384           | 145.4                | 142.4                        |
| 2014                       | 400           | 167.9                | 161.0                        |
| 2015                       | 316           | 133.0                | 130.2                        |
| 2016                       | 285           | 79.1                 | 79.1                         |
| 2017                       | 275           | 80.6                 | 80.5                         |
| 2018                       | 198           | 66.1                 | 65.9                         |
| 2019                       | 196           | 63.5                 | 62.3                         |

#### 5.4 Intensity

For the main inshore fishstocks during 2008–2019, the median number of tows that contacted a cell ranged from 3 or 4 (FLA 2, GUR 1, JDO 1 and 2, TAR 4) to 15 (in GUR 2 and 21 in TAR 2), but the highest maximum number of tows in a cell (and aggregate area) was seen in the flatfish fishstocks

FLA 2, FLA 3, and FLA 7 (Table E9). These fishstocks also had some of the highest mean values for aggregate area, along with GUR 2. The highest median aggregate areas per cell were for TAR 2, SNA 1, TAR 7, GUR 2, and RCO 3. The most intensely contacted areas are shown in Figure 23, for the combined years data, and for 2019. Data for the most recent fishing year, 2019, indicate that for most fishstocks, the maximum aggregate areas represented at least the cell area (25 km²), and for the flatfish fishstocks, that the maximum aggregate area of a cell was equivalent to the whole cell area being contacted three to four times (Table E10). These cells generally had footprint values close to the cell area and were located close inshore in FMA 2, FMA 3, FMA 7, and FMA 5 (see Figure 23). The annual spread of data available from the cell analysis is shown in Figure E1, for TAR 1 and TAR 2, and FLA 3 and FLA 7, with a comparison of the annual aggregate and footprint data per cell.

## 5.5 Number of years contacted

Of the 15 199 cells contacted by the inshore fishstocks (for 2008–2019), 40% were contacted in each year and 19% were contacted in one year, with another 9% in two years (Figure 25, upper plot). About 57% of inshore fishstock cells were contacted in 2019 (lower plot in Figure 25, Table 23), and another 10.5% were last contacted in 2018, and about 12% of cells have not been contacted since 2012.

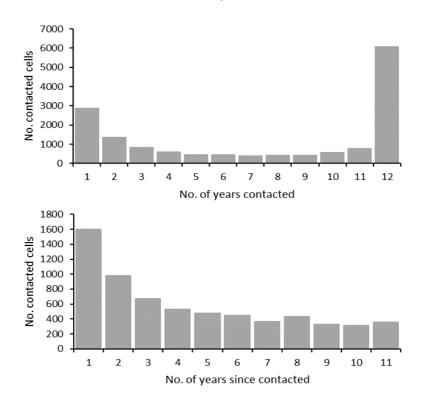



Figure 25: The number of cells contacted in annual bins by the inshore tows for 2008–2019 (upper) and the number of cells in each bin representing the number of years since a cell was last contacted (lower).

Table 23: The number of cells contacted for the most recent year that the cells were contacted, for inshore fishstocks, 2008–2019.

|           |       |       |      |      |      |      |      |      | The year | r of last | contact | by insh | ore tows |
|-----------|-------|-------|------|------|------|------|------|------|----------|-----------|---------|---------|----------|
|           | 2019  | 2018  | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011     | 2010      | 2009    | 2008    | All      |
| No. cells | 8 686 | 1 598 | 979  | 675  | 529  | 481  | 451  | 367  | 434      | 327       | 316     | 356     | 15 199   |
| % total   | 57.1  | 10.5  | 6.4  | 4.4  | 3.5  | 3.2  | 3.0  | 2.4  | 2.9      | 2.2       | 2.1     | 2.3     | 100      |

#### 5.6 Overlap of inshore bottom contact on 50-m depth zones

The spatial distribution of the inshore fishstock footprint overlap with the 50-m depth zones is shown in Figure 26. Annual data for the number of contacted cells, aggregate area, and footprint, for each depth zone are given in Tables E11–E13. There were few differences in the annual patterns of the footprint in each depth zone. For 2008–2019, most of the 12-year footprint and aggregate area was in depths shallower than 150 m (Table 24), and this pattern was reflected in the 2019 data. The relatively large percent of the 12-year footprint in over 250 m depths compared with the percent of the aggregate area indicates that this 'deeper' swept area represents some of the difficulties in locating effort based on TCER forms, unlikely start position data, and the use of the 25-km² cell grid, where the cell depth represents the depth at the midpoint of each cell.

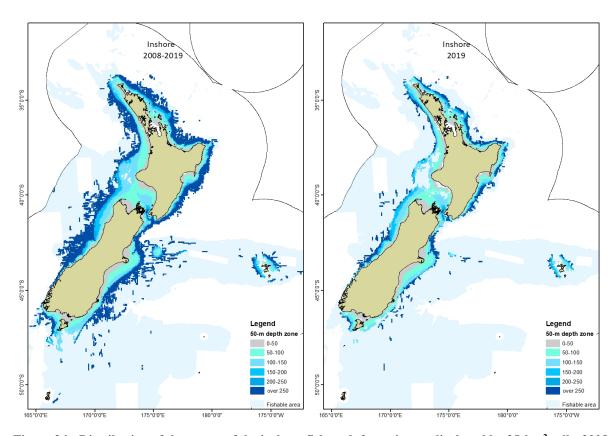



Figure 26: Distribution of the extent of the inshore fishstock footprint, as displayed by 25-km<sup>2</sup> cells, 2008–2019 (left) and 2019 (right), with the fishable area (light blue background).

Table 24: Percent of total inshore fishstock footprint (148 276 km²) and total aggregate area (811 595 km²), by 50-m depth zone, based on 25-km² cells, during 2008–2019 and 2019.

| Depth    |           | Footprint (%) | Agg       | gregate area (%) |
|----------|-----------|---------------|-----------|------------------|
| zone (m) | 2008–2019 | 2019          | 2008–2019 | 2019             |
| 0-50     | 25        | 33            | 41        | 37               |
| 50-100   | 29        | 35            | 31        | 35               |
| 100-150  | 22        | 19            | 16        | 17               |
| 150-200  | 9         | 6             | 6         | 5                |
| 200-250  | 3         | 2             | 2         | 2                |
| Over 250 | 11        | 4             | 4         | 3                |

The footprint overlap of each depth zone is expressed as the percent of the depth zone seafloor area contacted by the 2008–2019 and 2019 footprints. The 100–150 m depth zone has the largest seafloor area and the 2008–2019 and 2019 footprints contacted 22% and 8%, respectively (Table 25).

Table 25: The total seafloor area of each 50-m depth zone and the percentage of each depth zone within the fishable area that was contacted by the 2008–2019 and 2019 inshore footprints. Note: 10.6% of the 2008–2019 footprint was deeper than 250 m (4% in 2019).

| Depth    | Area     | Footprint area overlap ( |      |  |  |
|----------|----------|--------------------------|------|--|--|
| zone (m) | $(km^2)$ | 2008–2019                | 2019 |  |  |
| 0-50     | 48 005.1 | 17.4                     | 3.3  |  |  |
| 50-100   | 66 210.6 | 23.5                     | 5.6  |  |  |
| 100-150  | 94 095.2 | 21.9                     | 7.9  |  |  |
| 150-200  | 43 568.4 | 11.6                     | 3.2  |  |  |
| 200-250  | 21 407.0 | 5.3                      | 1.1  |  |  |

# 5.7 Overlap of inshore fishstock footprint with BOMEC classes

The extent of the distribution of the footprint by BOMEC class for all years and for 2019 is shown in Figure 27, and Tables E14–E16 in Appendix E provide the number of contacted cells and the overlap of the aggregate area and footprint for each class and fishing year.

About 35% of the 2008–2019 footprint was in class C (Table 26), the largest inshore class. About 14.5% was in class H close to the shelf edge and near Chatham Islands, 14% in class D in east and south coasts of the South Island inshore areas, 11% in class A inshore areas around the North Island and off the west coast South Island, 10.5% in class E on the shelf in deeper waters beyond the distribution of class D and on Mernoo Bank and near the Chatham Islands, 8% in class B beyond class A off the west coast South Island and in waters off the north coast of the South Island, and 3% in class G in Cook Strait. A small proportion of contact was in areas of deep water.

The distribution of the 2019 was similar to that for the 12-year dataset, although there was little overlap beyond the continental shelf with a more equal of contact in the inner shelf areas such as classes A, B, and D (Figure 27 and Table 26). All classes, except class B, showed a decrease in footprint contact in 2019 that was the lowest, or close to the lowest, compared with previous years (Table E16). Throughout the 12 years, contact in each class generally decreased, though annual footprints in classes B, D, E, and H were reasonably steady.

The footprint as a percent of the seafloor area of each class is greatest in the main inshore and shelf classes, classes A–D and G (Table 26), for both the 2008–2019 and the 2019 footprints.

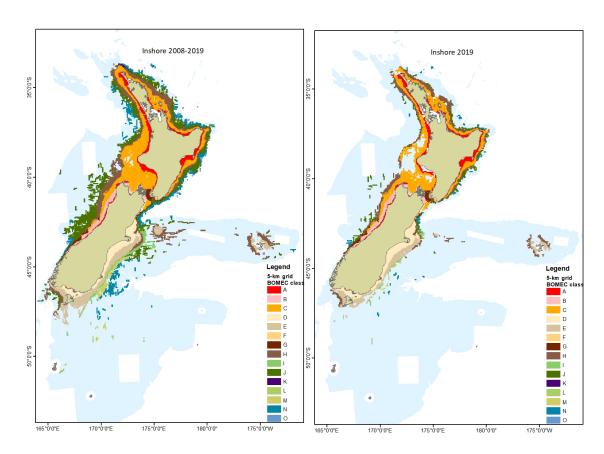



Figure 27: Extent of the inshore fishstocks footprint overlap with the BOMEC classes, represented by 25-km² cells for 2008–2019 (left) and 2019 (right).

Table 26: The total area of each BOMEC class and the percentage of each class area covered by the 2008–2019 and 2019 bottom-contacting trawl footprint for the combined inshore fishstocks.

| BOMEC |                         | % fo      | ootprint | % each class contacted |
|-------|-------------------------|-----------|----------|------------------------|
| Class | Area (km <sup>2</sup> ) | 2008–2019 | 2019     | 2008–2019 2019         |
|       |                         |           |          |                        |
| A     | 30 661.0                | 10.9      | 13.7     | 52.9 17.0              |
| В     | 12 786.1                | 7.5       | 13.5     | 87.5 40.1              |
| C     | 90 256.5                | 35.1      | 34.7     | 57.7 14.6              |
| D     | 28 085.7                | 13.8      | 18.0     | 73.0 24.4              |
| E     | 61 258.0                | 10.5      | 8.4      | 25.5 5.2               |
| F     | 38 775.8                | 0.0       | 0.0      | 0.0 0.0                |
| G     | 6 702.3                 | 2.9       | 2.1      | 64.0 11.8              |
| Н     | 138 399.1               | 14.5      | 8.7      | 15.5 2.4               |
| I     | 52 008.3                | 0.5       | 0.1      | 1.4 0.1                |
| J     | 312 604.9               | 3.3       | 0.8      | 1.6 0.1                |
| K     | 1 200.2                 | 0.0       | 0.0      | 2.0 0.0                |
| L     | 198 578.4               | 0.0       | 0.0      | 0.0 0.0                |
| M     | 233 837.4               | 0.2       | 0.0      | 0.1 0.0                |
| N     | 495 154.2               | 0.6       | 0.1      | 0.2 0.0                |
| O     | 1 006 911.1             | 0.0       | 0.0      | 0.0 0.0                |
| All   | 2 707 219.0             | 100.0     | 100.0    | 5.5 1.4                |

# 5.8 Overlap of inshore fishstocks footprint with sediment classes

The overlap of the 2008–2019 and 2019 footprints of the seafloor areas estimated for each sediment layer is summarised in Table E17, and the inshore and shelf areas shown in Figure 12 when compared with Figure 23 provide an understanding of the spatial distribution of the inshore footprint relative to the sediment layers. The 12-year footprint overlap with the carbonate layer is mainly in the 0–20%, 20–40%, and 40–60% classes (Table E17), whereas the overlap with the gravel layer is mainly in 0–20%. The footprint is reasonably well spread across the first four classes (0–80%) of the mud layer and throughout most of the sand layer. A similar pattern is seen in the 2019 footprint overlap.

When the footprint overlap is considered as the percent contact of the seafloor area of each sediment class, the highest percent is in the 0–20% and 20–40% carbonate classes and the 80–100% sand class (Table 27). About 11% of the 0–20% and 20–40% gravel classes is contacted by the footprint, and 10–12.5% of the 0–20%, 20–40%, and 40–60% mud classes is contacted, whereas for the sand layer the 60–80% and 80–100% classes have 13% and 24% percent cover. The data for 2019 show a similar pattern to the overall footprint overlap.

Table 27: Percentage overlap of the seafloor area of the substrate classes by the fishable area 2008–2019 and 2019 inshore footprint. For gravel, mud, and sand, the percentage classes total 100%, and for carbonate the percentage represents the proportion that is carbonate versus non-carbonate.

| Substrate | Class (%) | Class area (km²) | 2008–2019 overlap (%) | 2019 overlap (%) |
|-----------|-----------|------------------|-----------------------|------------------|
| Carbonate | 0-20      | 138 252.7        | 31.0                  | 9.2              |
| Carbonate | 20-40     | 282 469.8        | 23.7                  | 5.9              |
| Carbonate | 40-60     | 275 070.0        | 10.5                  | 2.6              |
| Carbonate | 60-80     | 288 732.7        | 2.2                   | 0.3              |
| Carbonate | 80–100    | 369 402.8        | 0.2                   | < 0.1            |
| Gravel    | 0-20      | 1 037 250.7      | 11.5                  | 3.0              |
| Gravel    | 20-40     | 188 550.0        | 10.8                  | 2.6              |
| Gravel    | 40-60     | 77 886.4         | 6.4                   | 1.5              |
| Gravel    | 60-80     | 26 682.0         | 2.7                   | 0.5              |
| Gravel    | 80-100    | 14 188.5         | 0.5                   | 0.1              |
| Mud       | 0-20      | 387 549.1        | 12.5                  | 3.1              |
| Mud       | 20-40     | 323 852.0        | 11.2                  | 2.7              |
| Mud       | 40–60     | 299 719.3        | 9.6                   | 2.7              |
| Mud       | 60-80     | 233 123.9        | 10.0                  | 3.0              |
| Mud       | 80–100    | 109 712.9        | 8.4                   | 1.8              |
| Sand      | 0-20      | 142 639.8        | 9.4                   | 2.3              |
| Sand      | 20-40     | 348 482.0        | 9.3                   | 2.7              |
| Sand      | 40–60     | 482 383.1        | 8.5                   | 2.2              |
| Sand      | 60-80     | 303 832.8        | 13.4                  | 3.2              |
| Sand      | 80-100    | 77 166.5         | 24.0                  | 5.9              |

# 6. Comparison of ERS data position reporting with TCER and TCEPR data

The aim of the second objective of this project was to assess the effects of the footprint estimation methods used with less precise location data recorded on TCER and TCEPR data with the finer resolution start and finish data reported by ERS. In the footprint work reported on in the previous sections the groomed data were treated as described in the Methods section to generate tow polygons to represent the trackline of each trawl (assuming a straight line between start and end points), buffered

by the assigned doorspread: the TCEPR start and finish data were joined by a straight line, whereas the TCER data (with only start positions) required a speed x duration trawl distance (based on groomed reported data) and the generation of endpoints (see Methods section) to generate a trackline. The low precision in the position data reported on TCER and TCEPR gives an unrealistic regular patchiness of the trawl location data such that many of the tows appear to start in the same place, so the next step in the methodology in preparing data for spatial analysis is to jitter the start and finish positions to allow for some natural spread.

In contrast, there is no jittering of the ERS data because the finer resolution of these data better represents the start and end of trawling – although these data all represent the vessel location when the net reaches fishing depths (start of tow) and when the net leaves the fishing depth (end of tow). The resolution difference between the TCER and TCEPR data compared with the ERS data is evident in this example: the accuracy increases from about 111.12 km for 175.0° longitude, to 11.12 km for 175.1°, and 11.12 m for 175.0001°; the latter is the expected resolution of the ERS data.

**Comparison methods.** A subset of the tow data ready for spatial analysis, containing ERS data only, was used to assess the difference between the different levels of resolution. The resolution of these ERS data was reduced to the level of the TCER and TCEPR data and then the methods used for TCER and TCEPR data were applied to the ERS data:

- 1. the groomed ERS coordinates were rounded to the nearest minute of arc (i.e., the coordinates were moved up or down to the nearest 60<sup>th</sup> of a degree);
- 2. a random value +/- 0.0083333 was applied to the rounded coordinates (this is the jitter value);
- 3. the coordinates were joined to create tracklines, were shortened, or not, according to the 'long tow' rules, and buffered with the assigned doorspread value (half the width placed each side of the trackline) to create 'new' tow polygons. These were then joined to the cell grid data.

Comparison results. Of the data available, it was evident that the difference between the groomed reported ERS coordinates and the reduced (rounded) ERS coordinates changed the location of tows and this had an effect in the standard reporting measures: number of contacted cells, aggregate area, and footprint. This effect was more noticeable in some target fishstocks than others. At the level of a 25-km² cell, the example below shows a subset of two adjacent cells based on orange roughy tows reported in 2019 (Figure 28). The only thing to stay the same is the doorspread value, but the effect of changing the resolution will also change the tow length because of the straight-line rule used to develop a trackline. The tow polygons in Figure 28 show displacement of the rounded-coordinate tows relative to unchanged tows leading to different numbers of tows contacting cells, and variation in the aggregate area and the footprint.

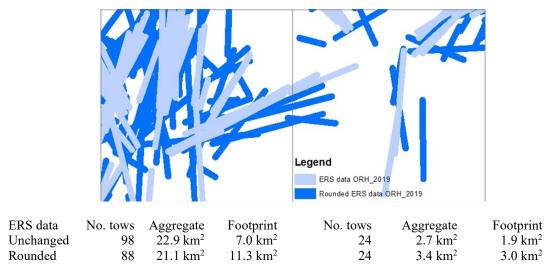



Figure 28: Rounded ERS orange roughy tow data overlaid by unchanged ERS data at the edge of some underwater features. Data given above on the left apply to the left cell; data on the right apply to the right cell.

For the deepwater data, there was generally less contact by the unchanged ERS data compared with rounded ERS data (Table F1 in Appendix F). Of the Tier 1 targets, the deeper water targets such as oreo species and orange roughy showed larger differences than those in middle depths such as hoki, hake, jack mackerels, ling, and southern blue whiting – some of which indicated larger swept areas based from the unchanged ERS data (Figure 29). Scampi and arrow squid data also showed less contact by the unchanged ERS tows. It may be that the fishery areas are better defined by the unchanged ERS data for the orange roughy, oreo, scampi, and arrow squid; these fisheries generally have patchier spatial distributions than the other Tier 1 target fisheries. Some Tier 2 targets that are fished on underwater features also showed smaller swept area values with the unchanged ERS data (alfonsino and black cardinalfish).

The introduction of ERS to the inshore fleet was implemented gradually during 2019, beginning with core vessels, and the available ERS data for the inshore fishstocks represent 44% of the 2019 aggregate area and 48% of the footprint. The comparison of unchanged and rounded ERS data for these fishstocks is shown in Figure 30. However, for some fishstocks there are few data (see Table F2). Rather than a comparison of the swept area data, the biggest effect on the use of ERS data for the inshore vessels that previously reported on TCERs, during 2008–2019, is the addition of tow end position data which means that a trackline can be developed between the start and end position ERS data, assuming a straight line (the method currently used for the TCEPR and ERS data) in contrast to the duration x speed distance used for the TCER trackline. The use of ERS data will provide some certainty to the direction of an inshore tow, with the availability of start and end positions, and reduce the number of tows that appear to trawl in waters beyond known depths for inshore targets and create the unrealistic edge effect seen in the inshore footprint.

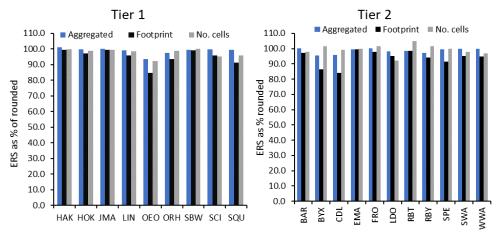



Figure 29: ERS data as a percent of rounded ERS data, for the deepwater Tier 1 target aggregate area, footprint area, and number of contacted cells, from 2018 and 2019 fishing years.

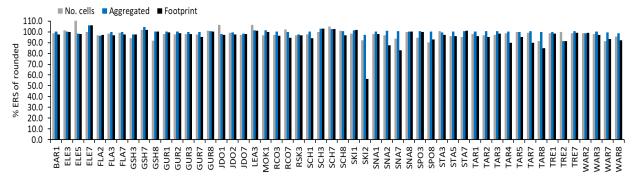



Figure 30: Unchanged ERS data as a percent of rounded ERS data, for the main inshore fishstock aggregate area, footprint, and number of contacted cells, during the 2019 fishing year.

# 7. DISCUSSION AND MANAGEMENT IMPLICATIONS

The nature of the data and the underlying assumptions mean that these relative measures reflect the fitness of the data and the relevance of the assumptions. The analyses presented here represent estimates of swept areas for bottom-contacting trawling within the EEZ+TS, with the main analyses restricted to the 'fishable area'; that is, a seafloor area that is open to trawling, to a maximum depth of 1600 m, that provides a comparable seafloor area across all years. This means that in some early years of the data, particularly in the deepwater water data, some legitimate effort is not included because the trawling took place before a closure was implemented (for example, closure of seamounts took place from 2001). In total, the retained data represented 98.7% of the All Stocks total aggregate area, and 93.9% of the footprint for all tows, including those totally in closed areas, on land, in depths over 1600 m, or portions of tows that crossed into closed areas or onto land (see Appendix C). For much of the non-retained portion, it is highly unlikely that the location data are correct, for either the whole tow or for either the start or end position; there is no way of knowing where this effort should be located.

For the All Stocks data, the 1990–2019 dataset represents different sets of data throughout the 30 years and includes only the effort collected on a tow-by-tow basis. Baird et al. (2011) indicated that for data between 1990 and 2005 fishing years, the footprint represented about 25% of the trawl and dredge effort for those years. During this period, the trawl footprint was based on TCEPRs only and predominantly represented the deepwater offshore trawling. At the same time, the inshore vessels mainly reported daily effort (number of tows) by main target and statistical area, on CELRs, and dredge activity (which was more prevalent in this period than in later years) was reported the same way on CELRs. Baird et al. (2011) summarised all the data at the statistical area level and showed that the areas of highest intensity were close inshore off the east coast of the North Island, mainly in FMA 2, and also in Statistical Area 038 in FMA 7 in inshore areas off the top of the South Island. The annual data summary given in Table A2 of Appendix A in this report indicates the large amount of data not able to be included in the trawl footprint analysis in the years in which CELR were used.

The most comparable years for the All Stocks data are for 2008–2019 — years in which the deepwater fleet trawl contact is represented mainly by TCEPR and also TCER during 2008-2017 and mainly by the ERS data in 2018 and 2019, and the inshore component is represented by the TCER in all years except for a small amount of effort in 2018 and under 50% in 2019 when ERS data collection replaced TCERs. The ERS data are comparable to the TCEPR other than the precision of the resolution of the start and end positions. The TCER data are comparable with the TCEPR data except the former reports only the start of tow data, and the estimated swept area of each TCER tow is developed using a tow distance calculated from the reported duration x speed that is then represented as a straight line to generate a potential tow endpoint (see Methods); whereas, the TCEPR tow is represented by a straight line distance (between reported start and end positions). This inevitably creates a disparity in the swept areas and a straight line may be more relevant for some target tows than others. The duration x speed distance may take into account the trackline that follows contours (a more realistic track), but when applied as a straight line the spatial representation may place parts of the tow in unlikely depths. Similarly, the straight-line representation of TCEPR and ERS data does not account for any trawling that includes u-turns. However, until data such as that collected by vessel monitoring systems or geospatial position reporting systems are available for this analysis (depending on the frequency of pings), as well as defining the tow location by the net location when it is fishing rather than the vessel location when fishing, the potential to better represent the distribution of trawl contact on the seafloor is limited. As with the effect of ERS data allowing better placement of trawl start and end positions, the footprint of targets that are usually fished in depths defined by the seafloor topography, such as underwater features, are likely to be benefit the most from better data collection.

The development of the footprint would also be enhanced by a better representation of the likely width of the trawl gear on the seafloor. Doorspread data by tow are not collected; the wingspread is the reported value. The use of electronic gear providing doorspread by tow is not universal, though most deepwater fleet vessels are likely to have this capability. When observers have been on commercial

trawlers the doorspread data they report generally is the same for every tow. An approach has been made to the deepwater and inshore industry in an attempt to improve the doorspread values currently applied. This would be especially valuable for the inshore data where the vessel size and potentially gears used vary between areas and target fisheries.

The All Stocks analysis for 2008–2019 contacted between about 81 000 and 95 500 km² each year, decreasing over the 12 years, with the lowest value estimated for 2019. These data reflect the decreasing amount of bottom-contacting trawl effort during these years; the numbers of tows in the TCEPR, TCER, and ERS data steadily dropped from 89 236 in 2010 to 66 039 in 2019. The annual aggregate areas for All Stocks decreased overall from a peak of 164 795 km² in 2010 to the nadir of 143 500 km² in 2019. Over these years, the intensity of trawling within cells was steady despite the decrease in aggregate area, implying that the contact was more concentrated. The All Stocks footprint contacted about 2% of the EEZ+TS seafloor annually for 2008–2019 and about 6% of the fishable area each year

In the 30-year time series for deepwater data, there was a steady increase in the footprint from under 50 000 km² in 1990 to a sustained period of contact during 1998 to 2003 (range 72 612 to 81 005 km²), followed by a steady decrease to 43 481 km² in 2019, the lowest of the full 30-year time series, with declines seen for most deepwater targets and the swept area data reflecting the drop in effort. The annual aggregate areas have decreased from 150 730–171 901 km² during 1997–2003 to under 100 000 km² after 2005, with a nadir in 2009 (79 650 km²), between about 80 300 and 89 500 km² during 2010–2017, before another peak at 97 045 km² in 2018, and a drop to 86 777 km² in 2019. In total, the deepwater analysis estimated a 30-year total of 3 475 450 km² aggregate area and 351 683 km² footprint, representing 8.6% of the EEZ+TS and 25.3% of the fishable area. Between 1990 and 2007, the annual footprint contacted between 1.2% and 2.0% of the EEZ+TS and 3.4% and 5.8% of the fishable area (peaks in 2002 and 2003); whereas, between 2008 and 2019, the annual footprint contacted 1.1–1.2% and 3.2–3.7% of the fishable area (lowest values in 2019).

The 2008–2019 inshore footprint also decreased, from a peak of about 47 220 km² in 2010 to a nadir of 38 131 km² in 2019. This contact was equivalent to 0.9–1.1% of the EEZ+TS seafloor area, and 2.7–3.4% of the fishable area, with the lowest values from 2019. The aggregate areas during these years ranged between the low in 2019 (56 611 km²) and the peak in 2014 (71 053 km²). As noted above, the decrease in swept areas seen for each group of fishstock reflects the drop in bottom-contacting effort.

The use of ERS trawl data in 2018 and 2019 has allowed for more precision in locating the start and end positions of tows and thus had an effect in the standard reporting measures: number of contacted cells, aggregate area, and footprint. The scale of this is indicated by the differences in accuracy depending on the data resolution; for example, at the equator, 11.12 km for 175.1° (predominant TCEPR/TCER resolution) and 11.12 m for 175.0001° (ERS resolution). This preliminary investigation used a relatively simple method to compare the effort location and indicated that some ERS tows may be shifted beyond the place of the tows based on a lower resolution. This effect is more likely to be seen in the footprint for tows in areas that are not regularly fished.

Although target fisheries that include short tows on underwater features were more likely to be better described by the ERS data, the footprint analysis (of these fisheries in particular) is affected by the fact the tow start and finish positions (from all data collection methods) represent the position of the vessel, not the trawl gear, when the gear has reached or left the fishing depth. For these targets, the added precision will still create difficulties when attempting to locate effort relative to underwater features, depending on the length of the sweep gear used.

It is also necessary to remember that the main assumptions that underlie the footprint generation still stand, with the use of ERS data; the tow path is not well understood and is treated in these analyses as being a straight line rather than one that may follow contours or include u-turns. For the latter, a more precise endpoint will not help to better describe the tow path or the swept area.

The greatest effect of the ERS data is in the inshore fishstock data because the ERS data provide both start and finish positions and therefore provide more certainty in the direction of a tow (with the assumption the tow is a straight line) and more comparability with the deepwater data. However, as noted above, the ERS data for inshore stocks will have the same concerns re the tow location being the vessel location and will not better describe the tow path. In the development of the TCER footprint, with only a start position provided, the duration x speed distance is used as the tow length to allow generation of the endpoint. Although this duration-speed distance may provide a more realistic tow length, when applied to the TCER tow start and new endpoint, it may create an artificially long tow; this is evident in some of the TCER tows which appear to go well beyond the likely target depth, some in a direction that appears to be unlikely. The use of ERS position data for inshore fisheries will decrease the number of tows with spurious directions and lengths and provide better placement of tow start and finish positions relative to the coastline.

These data bring together many different vessel and gear types and sizes, and comparison between years does not adequately reflect these differences, although there is likely to be better comparability from 2008 onwards.

The footprint overlap with various layers such as depth zones and BOMEC can be problematic because each of these layers is joined to the 25-km<sup>2</sup> cell grid and the cell midpoint is used to define the depth, or BOMEC class, etc. of that cell. For a cell that covers a range of depths, for example, the midpoint may not well represent the data within the cell.

However, the data behind these summaries are stored in a Ministry of Primary Industries Geographic Information System geodatabase at the level of each tow, with the potential to analyse data at regional or smaller scales by target or groups of targets, as well as at a 25-km<sup>2</sup> cell grid level for the broad analysis of the EEZ+TS given here.

Similarly, the data representing the dredge effort for scallop and oyster fisheries and Foveaux Strait swept area are held by the Ministry for Primary Industries Spatial Intelligence Team (see Appendix G). The development of the Foveaux Strait oyster dredge swept area based on the number of standardised tows in each 1 nautical mile grid cell provides a finer scale measure of contacted area (compared with the larger fishery-specific areas). There were no ERS data for scallop fisheries in the data extract; these fishers will be reporting on a scale different to what they are used to (now ERS, at a 1 nautical mile scale, as opposed to a fishery-specific area as required by CELR), unlike the Foveaux Strait oyster fishers who have reported to their industry using the 1 nautical mile grid for at least 15 years.

#### 8. ACKNOWLEDGMENTS

This project was funded by Fisheries New Zealand under project BEN2019-01. Thanks to Karen Tunley (Fisheries New Zealand), the MPI Spatial Intelligence team, Ian Tuck (NIWA), Keith Michael (NIWA), and members of the Aquatic Environment Working Group for constructive discussion throughout this project. Particular thanks to Kevin Mackay (NIWA) for the use of finer resolution inshore bathymetry data. Thanks to Ian Tuck of NIWA and Josh van Lier from Fisheries New Zealand for thorough reviews of this document.

## 9. REFERENCES

Anderson, O.F.; Edwards, C.T.T. (2018). Fish and invertebrate bycatch and discards in New Zealand arrow squid and scampi trawl fisheries from 2002–03 until 2015–16. *New Zealand Aquatic Environment and Biodiversity Report No. 199.* 135 p.

- Baird, S.J.; Hewitt, J.E.; Wood, B.A. (2015). Benthic habitat classes and trawl fishing disturbance in New Zealand waters shallower than 250 m. *New Zealand Aquatic Environment and Biodiversity Report No. 144.* 184 p.
- Baird, S.J.; Mules, R. (2019). Extent of bottom contact by New Zealand commercial trawl fishing for deepwater Tier 1 and Tier 2 target species determined using CatchMapper software, fishing years 2008–18. New Zealand Aquatic Environment and Biodiversity Report No. 229. 106 p.
- Baird, S.J.; Mules, R. (2021). Extent of bottom contact by commercial fishing activity in New Zealand waters, 1989–90 to 2017–18. *New Zealand Aquatic Environment and Biodiversity Report No. 259.* 143 p.
- Baird, S.J.; Wood, B.A. (2018). Extent of bottom contact by New Zealand commercial trawl fishing for deepwater Tier 1 and Tier 2 target fishstocks, 1989–90 to 2015–16. *New Zealand Aquatic Environment and Biodiversity Report No. 193.* 102 p.
- Baird, S.J.; Wood, B.A.; Bagley, N.W. (2011). Nature and extent of commercial fishing effort on or near the seafloor within the New Zealand 200 n. mile Exclusive Economic Zone, 1989–90 to 2004–05. *New Zealand Aquatic Environment and Biodiversity Report No. 73.* 143 p.
- Black, J.; Tilney, R. (2017). Monitoring New Zealand's trawl footprint for deepwater fisheries: 1989–90 to 2012–13. *New Zealand Aquatic Environment and Biodiversity Report No. 176.* 65 p.
- Black, J.; Wood, R.; Berthelsen, T.; Tilney, R. (2013). Monitoring New Zealand's trawl footprint for deepwater fisheries: 1989–1990 to 2009–2010. *New Zealand Aquatic Environment and Biodiversity Report No. 110.* 57 p.
- Bostock, H.; Jenkins, C.; Mackay, K.; Carter, L.; Nodder, S.; Orpin, A.; Pallentin, A.; Wysoczanski, R. (2019a). Distribution of surficial sediments in the ocean around New Zealand/Aotearoa. Part A: continental slope and deep ocean. *New Zealand Journal of Geology and Geophysics 62(1)*: 1–23. DOI: 10.1080/00288306.2018.1523198.
- Bostock, H.; Jenkins, C.; Mackay, K.; Carter, L.; Nodder, S.; Orpin, A.; Pallentin, A.; Wysoczanski, R. (2019b). Distribution of surficial sediments in the ocean around New Zealand/Aotearoa. Part B: continental shelf. *New Zealand Journal of Geology and Geophysics* 62(1): 24–45. DOI: 10.1080/00288306.2018.1523199.
- Cryer, M. (2001). Coromandel scallop stock assessment for 1999. *New Zealand Fisheries Assessment Report 2001/9*. 18 p.
- Fisheries New Zealand (2019a). Fisheries Assessment Plenary, May 2019: stock assessments and stock status. Compiled by the Fisheries Science and Information Group, Fisheries New Zealand, Wellington, New Zealand. 1641 p.
- Fisheries New Zealand (2019b). National Fisheries Plan for Deepwater and Middle-depth Fisheries 2019. Fisheries New Zealand Technical Paper No: 2019/03. 34 p.
- Fisheries New Zealand (2019c). Fisheries Assessment Plenary, November 2019: stock assessments and stock status. Compiled by the Fisheries Science and Information Group, Fisheries New Zealand, Wellington, New Zealand. 579 p.
- Fisheries New Zealand (2020). Fisheries Assessment Plenary, May 2020: stock assessments and stock status. Compiled by the Fisheries Science Group, Fisheries New Zealand, Wellington, New Zealand.
- Hartill, B.; Williams, J.R. (2014). Characterisation of the Northland Scallop fishery (SCA 1), 1989–90 to 2010–11. *New Zealand Fisheries Assessment Report 2014/26*. 43 p
- Leathwick, J.; Francis, M.; Julian, K. (2006). Development of a demersal fish community map for New Zealand's Exclusive Economic Zone. NIWA Client Report HAM2006-062. Online at: http://www.doc.govt.nz/Documents/conservation/marine-and-coastal/marine-protected-areas/MCU2.pdf
- Leathwick, J.R.; Rowden, A.; Nodder, S.; Gorman., R.; Bardsley, S.; Pinkerton, M.; Baird, S.J.; Hadfield, M.; Currie, K.; Goh, A. (2012). A Benthic-optimised Marine Environment Classification (BOMEC) for New Zealand waters. *New Zealand Aquatic Environment and Biodiversity Report No.* 88. 54 p.
- Ministry of Fisheries (2011). Draft National Fisheries Plan for Inshore Fisheries (July 2011). (Draft report held by Fisheries New Zealand, Wellington.) Available online at <a href="https://www.mpi.govt.nz/dmsdocument/20816-Draft-National-Fisheries-Plan-for-Inshore-Finfish">https://www.mpi.govt.nz/dmsdocument/20816-Draft-National-Fisheries-Plan-for-Inshore-Finfish</a>. 47 p.

- Ministry for Primary Industries (2015). Benthic Protection Areas and Seamount Closures. Compliance fact sheet 7. 2 p. Available online at https://www.mpi.govt.nz/protection-and-response/sustainable-fisheries/protected-areas/benthic-protection-areas/.
- Mitchell, J.S.; Mackay, K.A.; Neil, H.L.; Mackay, E.J.; Pallentin, A.; Notman, P. (2012). Undersea New Zealand, 1:5,000,000. NIWA Chart, Miscellaneous Series No. 92.
- Osborne, T.A. (2018). Forecasting quantity of displaced fishing Part 2: CatchMapper Mapping EEZ catch and effort. *New Zealand Aquatic Environment and Biodiversity Report No. 200.* 168 p.
- R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.
- Williams, J R; Hartill, B; Bian, R; Williams, C L (2014) Review of the Southern scallop fishery (SCA 7). New Zealand Fisheries Assessment Report 2014/07. 71 p.

#### APPENDIX A: TRAWL FISHERY DATA

The data extract for this work (RepLog 12910) included all trawling effort reported on Catch Effort Landing Returns (CELRs), Trawl Catch Effort Returns (TCERs), Trawl Catch Effort Processing Returns (TCEPRs), and via the Electronic Reporting System (ERS). This effort was reported for the fishing years 1990–2019. Note that the data from 1990–2007 are from TCEPRs and include the effort from offshore fisheries and also a smaller amount of effort from inshore fisheries (in particular in northern waters from the mid-1990s). Data for 2008 to 2017 are from TCEPRs and TCERs, and data for 2018 and 2019 are from TCERs, TCEPRs, and ERS.

From a total of 2 219 469 data records, 2 044 718 tows were reported on TCERs, TCEPRs, and via ERS, available as tow-by-tow data (Table A1), as opposed to the daily data (with more than one tow reported per record) provided by the CELRs.

The TCER/TCEPR/ERS data were groomed following the methods described by Baird & Mules (2019, 2021). These methods concentrate on the main variables required to generate the spatial output. Changes as described by Baird & Mules (2019, 2021) were made to less than 1% of the data and were related to reported target species, depths fished and bottom depths, and incorrect position data such as placement east or west of 180°.

The TCER/TCEPR/ERS dataset retained for the spatial analysis included 2 044 718 bottom-contacting tows (tows that used bottom trawl gear and midwater trawl gear within a metre of the seafloor, based on reported depth values. Of these tows, 59% were for deepwater Tier 1 and Tier 2 fishstocks (see Table 1) with Tier 1 targets accounting for 91% of deepwater targets. Inshore targets (Table 2) accounted for 41% of the TCER/TCEPR/ERS for 1990–2019. A total of 2172 tows were not assigned to a stock (1233 had no target species); these data represent 0.1% of the total tows.

Of the retained tows (essentially the All Stocks dataset for the spatial analysis), 87% used bottom trawl gear (78% of deepwater tows in the dataset used bottom trawl gear and 99% of the inshore tows) throughout the 30-year dataset.

The CELR data with 'trawl' as the reported fishing method comprised 448 109 daily fishing records in the data extract. These data are from small domestic vessels fishing inshore. These records are not summarised in this report, but a broad summary was made to indicate the amount of effectively missing data from the 1990–2007 period because the data are inadequate for spatial analysis, other than at the General Statistical Area level. Minimal grooming checks were applied to the number of tows reported for each record: records that were null or had over 6 tows a day were assigned a median 'number of tows' of 3 (3% of records). Of the CELR data, 2.4% reported midwater gear as the fishing method, with the remainder using bottom trawl or bottom pair trawl. At least 67 targets were reported in the CELR data, and 42% of the tows were for flatfish species, 12% red cod, 10% tarakihi, 8% red gurnard, 7% snapper, and 6% barracouta. These annual numbers of tows are can be compared with the numbers of tows in the dataset used to estimate the footprints (see Table A2).

Table A1: Number of bottom-contacting tows in the 1990–2019 TCER/TCEPR/ERS dataset for the spatial analysis, by form type. 'na' means not assigned to a stock.

| Form |         | I         |         |       |           |
|------|---------|-----------|---------|-------|-----------|
| type | Inshore | Tier 1    | Tier 2  | na    | All       |
| ERS  | 13 019  | 39 732    | 3 461   | 88    | 56 300    |
| TCE  | 501 943 | 17 408    | 14 301  | 1 215 | 534 867   |
| TCP  | 321 889 | 1 044 768 | 86 025  | 869   | 1 453 551 |
| All  | 836 851 | 1 101 908 | 103 787 | 2 172 | 2 044 718 |

Table A2: Number of records and number of tows reported as trawl tows on CELRs, and the number of tows in the dataset used for the spatial analysis (TCER/TCEPR/ERS data), for 1990–2019. \* CELR data are preliminary.

|              |                | CELR data*  | TCER/TCEPR/ERS |
|--------------|----------------|-------------|----------------|
| Fishing year | No. of records | No. of tows | No. of tows    |
| 1990         | 27 350         | 75 004      | 38 190         |
| 1991         | 30 043         | 83 547      | 45 784         |
| 1992         | 30 193         | 83 999      | 51 034         |
| 1993         | 32 218         | 90 778      | 56 662         |
| 1994         | 29 677         | 80 997      | 57 510         |
| 1995         | 28 785         | 78 113      | 65 542         |
| 1996         | 25 517         | 67 857      | 74 433         |
| 1997         | 26 711         | 73 364      | 76 486         |
| 1998         | 24 864         | 67 287      | 81 815         |
| 1999         | 25 599         | 69 438      | 76 046         |
| 2000         | 23 054         | 62 628      | 69 790         |
| 2001         | 21 240         | 59 779      | 66 501         |
| 2002         | 19 754         | 54 825      | 67 045         |
| 2003         | 20 792         | 58 221      | 65 880         |
| 2004         | 20 371         | 56 022      | 59 796         |
| 2005         | 21 196         | 58 795      | 56 700         |
| 2006         | 19 927         | 55 033      | 51 348         |
| 2007         | 19 122         | 52 899      | 46 603         |
| 2008         | 477            | 1 244       | 85 272         |
| 2009         | 622            | 1 690       | 82 615         |
| 2010         | 167            | 416         | 89 236         |
| 2011         | 60             | 130         | 81 838         |
| 2012         | 63             | 187         | 80 541         |
| 2013         | 63             | 160         | 79 820         |
| 2014         | 74             | 259         | 80 408         |
| 2015         | 38             | 99          | 73 887         |
| 2016         | 87             | 283         | 73 516         |
| 2017         | 39             | 154         | 73 686         |
| 2018         | 0              | _           | 70 695         |
| 2019         | 6              | 17          | 66 039         |
| All          | 448 109        | 1 233 225   | 2 044 718      |

# **APPENDIX B: SPATIAL OVERLAY LAYERS**

Table B1: Seafloor area (km²) of the full extent of the available data for the main overlap layers, within the EEZ+TS: depth zones, BOMEC, probability of occurrence for Tier 1 fish species and population extent for scampi and arrow squid, and surficial layers. The data are represented on a 25-km² cell grid.

| Data layer  | h               | Seafloor        | area (km²) | Data layer  |                 | Seafler each = $2.627$ | oor area (km²)    |
|-------------|-----------------|-----------------|------------|-------------|-----------------|------------------------|-------------------|
| 200-m dept  | n zones         |                 | 272 279    |             | ciass (total 10 | r eacn = 2 62          | ,                 |
| 0–200 m     |                 |                 | 272 378    | A           |                 |                        | 27 55.07          |
| 200–400 m   |                 |                 | 105 006    | В           |                 |                        | 12 420.0          |
| 400–600 m   |                 |                 | 283 302    | C           |                 |                        | 89 710.2          |
| 600–800 m   |                 |                 | 226 302    | D           |                 |                        | 27 267.9          |
| 800–1000 m  |                 |                 | 182 709    | Е           |                 |                        | 60 989.8          |
| 1000–1200 1 | m               |                 | 186 205    | F           |                 |                        | 38 608.5          |
| 1200–1400 1 | m               |                 | 210 881    | G           |                 |                        | 6 341.9           |
| 1400–1600 ı | m               |                 | 157 466    | H           |                 |                        | 138 551.4         |
| 0–1600 m    |                 |                 | 1 624 249  | I           |                 |                        | 52 223.9          |
| 50-m depth  | zones           |                 |            | J           |                 |                        | 311 360.4         |
| 0–50 m      |                 |                 | 62 497.0   | K           |                 |                        | 1 289.1           |
| 50–100 m    |                 |                 | 69 070.9   | L           |                 |                        | 198 577.0         |
| 100–150 m   |                 |                 | 97 181.4   | M           |                 |                        | 233 825.5         |
| 150–200 m   |                 |                 | 47 595.3   | N           |                 |                        | 493 034.7         |
| 200–250 m   |                 |                 | 22 458.9   | 0           |                 |                        | 935 315.2         |
|             | yers – seafloor | area (km²)      | 22 430.7   | O           |                 |                        | 755 515.2         |
| (%)         | yers – scarioor | Carbonate       |            | Gravel      | 1               | Mud                    | Sand              |
| 0–20        |                 | 926 764.1       | 2.53       | 35 379.0    | 762 5           |                        | 1 169 746.0       |
|             |                 |                 |            |             |                 |                        |                   |
| 20–40       |                 | 818 608.4       |            | 04 713.7    | 732 7           |                        | 1 099 216.0       |
| 40–60       |                 | 782 044.8       |            | 18 555.8    | 739 0           |                        | 944 924.3         |
| 60–80       |                 | 600 899.8       |            | 70 432.6    | 695 29          |                        | 370 066.2         |
| 80–100      |                 | 519 662.3       |            | 08 750.5    | 768 73          | 37.1                   | 116 733.9         |
| •           | of occurrence   |                 |            |             | ,               |                        |                   |
| %           | HAK             | HOK             | JMA        | LIN         | OEO             | ORH                    | SBW               |
| 0           | 202 097         | 204 964         | 1 418 074  | 26 441      | 706 800         | 994 473                | 1 197 845         |
| 0.1 - 1.0   | 244 964         | 330 294         | 33 410     | 718 182     | 171 801         | 141 916                | 240 707           |
| 1.1-5.0     | 577 217         | 291 969         | 67 480     | 205 226     | 260 248         | 156 027                | 201 706           |
| 5.1 - 10.0  | 204 473         | 111 676         | 49 148     | 81 338      | 124 020         | 67 560                 | 28 602            |
| 10.1 – 0.0  | 170 408         | 134 901         | 54 084     | 114 741     | 114 076         | 73 394                 | 22 369            |
| 20.1 - 30.0 | 103 565         | 59 165          | 49 732     | 77 477      | 70741           | 49 725                 | 15 581            |
| 30.1-40.0   | 79 792          | 42 155          | 42 506     | 47 409      | 48 614          | 36 247                 | 12 632            |
| 40.1-50.0   | 72 627          | 34 019          | 37 320     | 36 658      | 44 832          | 30 953                 | 11 644            |
| 50.1-60.0   | 67 559          | 32 943          | 33 291     | 40 624      | 45 664          | 31 241                 | 10 187            |
| 60.1–70.0   | 63 800          | 35 693          | 36 193     | 35 529      | 48 856          | 39 780                 | 9 455             |
| 70.1–80.0   | 56 649          | 39 001          | 28 729     | 48 160      | 62 442          | 49 936                 | 12 704            |
| 80.1–90.0   | 26 713          | 64 032          | 14 934     | 106 259     | 81 103          | 57 127                 | 26 675            |
| 90.1–95.0   | 2 827           | 138 827         | 5 123      | 141 069     | 45 309          | 34 929                 | 23 575            |
| 95.1–95.0   | 240             | 353 292         | 2 907      | 193 818     | 48 425          | 109 623                | 59 249            |
| 0.0–99.0    | 1 872 931       | 1 872 931       | 1 872 931  | 1 872 931   | 1 872 931       | 1 872 931              | 1 872 931         |
| I           | extent of popul |                 |            |             | 1 0/2 /31       | 1 0/2 931              | 10/4931           |
|             |                 | ativii – seali( | ,          | ,           | Uotamat         |                        | 50 501            |
| Scampi      | Hotspot         |                 | 15 122     | Arrow squid | -               |                        | 58 591<br>251 870 |
|             | 90%             |                 | 78 404     |             | 90%             |                        | 251 879           |
|             | 100%            |                 | 496 344    |             | 100%            | ,                      | 605 231           |
|             | Unknown/ no     | t exist         | 3 654 869  |             | Unknown/        | not exist              | 3 545 982         |

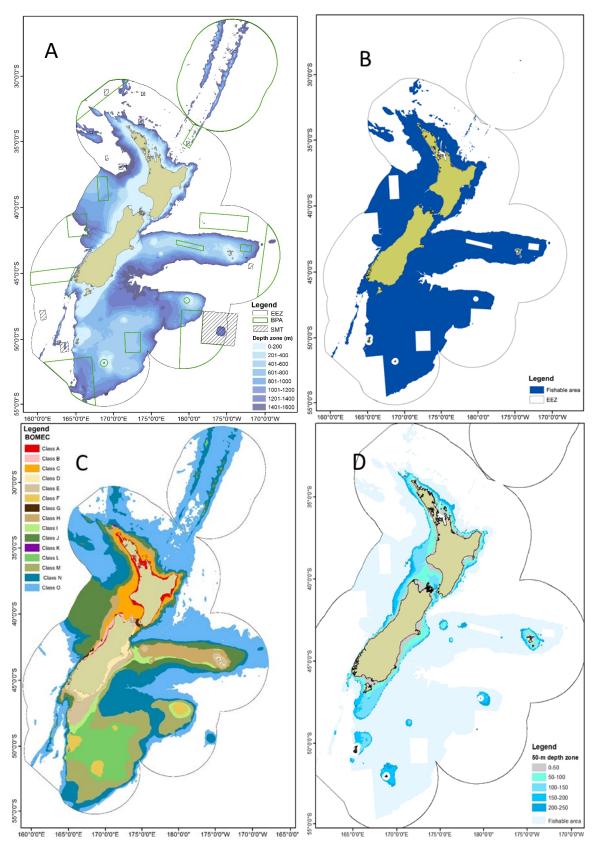



Figure B1: A. The extent of waters within the EEZ and Territorial Sea down to 1600 m depths, delineated by 200-m depth zones, showing the Benthic Protection Areas (BPAs) and closed seamounts. B. The 'fishable' area with areas closed to bottom trawling (including BPAs, closed seamounts, cable lanes, marine farms, and marine reserves) removed. C. The Benthic-optimised Marine Environment Classification (BOMEC) distribution (right), down to 3000 m (see Leathwick et al. 2012). D. Inshore 50-m depth zones. Note: the two EEZ occlusions are considered as part of the EEZ+TS; the outer boundary of the EEZ is shown.

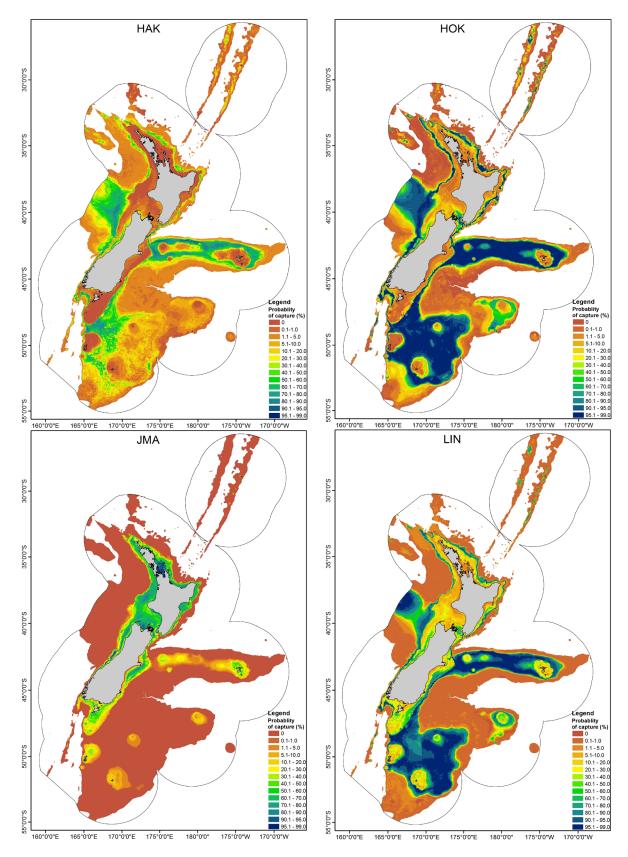



Figure B2a: The extent of the predicted distribution of the preferred habitat for hake (upper left), hoki (upper right), jack mackerels (lower left), and ling (lower right) (after Leathwick et al. 2006), where the preferred habitat represents the probability of capture of that species in a standardised trawl in waters down to 1950 m depth.

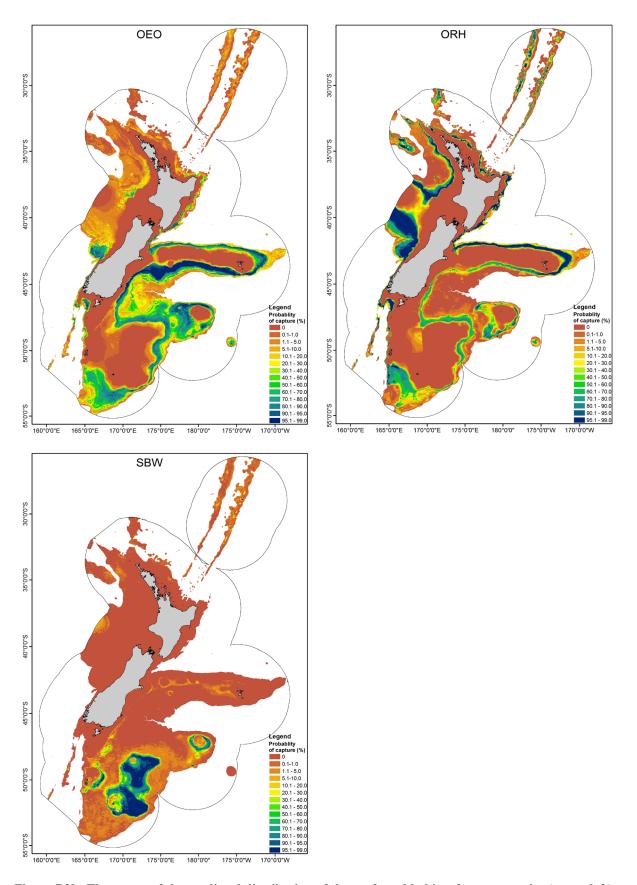



Figure B2b: The extent of the predicted distribution of the preferred habitat for oreo species (upper left), orange roughy (upper right), and southern blue whiting (lower left (after Leathwick et al. 2006), where the preferred habitat represents the probability of capture of that species in a standardised trawl in waters down to 1950 m depth.

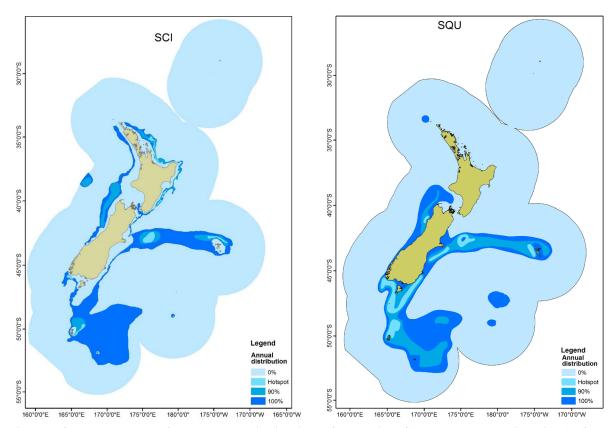



Figure B2c: The extent of the annual distribution of scampi (left) and arrow squid (right) (from <a href="https://www.nabis.govt.nz">www.nabis.govt.nz</a>.)

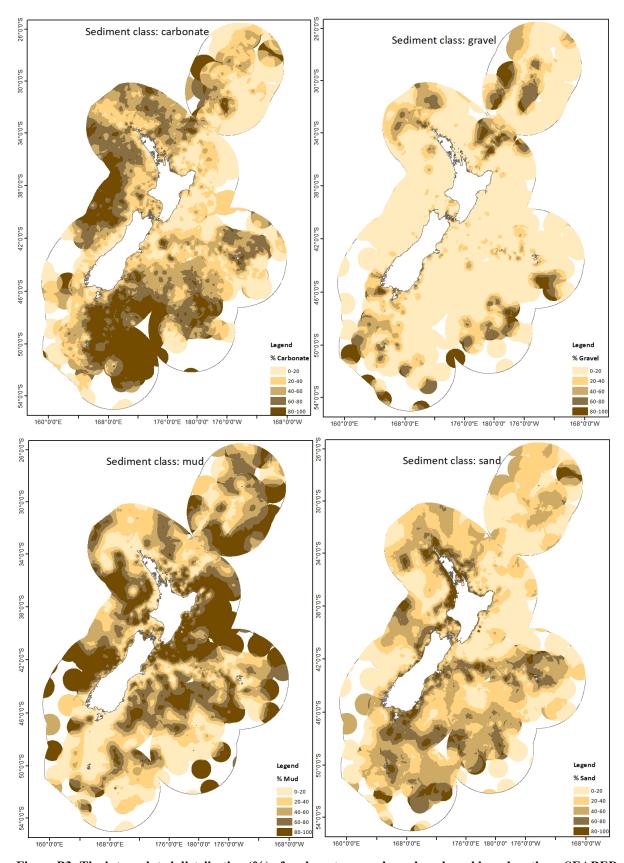



Figure B3: The interpolated distribution (%) of carbonate, gravel, mud, and sand based on the nzSEABED database (after Bostock et al. 2019a, 2019b).

## APPENDIX C: ALL STOCKS SUMMARY

## Fishable area analyses

When the tow data were imported into GIS for the spatial analysis, and any tows outside the EEZ outer boundary were ignored (e.g., tows fishing on features such as the Louisville Ridge, beyond the EEZ wasters), a total of 12 469 tows (less than 0.6% of tows retained for the spatial analysis) were identified as being either completely on land, completely in areas closed to trawling, or outside the depth considered the deepest at which trawl gear could be operated (1600 m) (Table C2). The largest number of tows, for any one year, that were not included in the spatial analysis was in 1999, and these tows represented 1.3% of the tows in that year. The total swept area not included because these tows were ignored was estimated at 14 053 km² for 1990–2019.

Other tows that crossed land, closed areas, or into depths beyond 1600 m were truncated or 'clipped' to the fishable area. Thus, parts of the tows were retained in the analyses and parts were cut out. It is likely that these tows had incorrect end position data which set them across land areas such as Farewell Spit or across closed areas such as marine mammal sanctuaries. The portions of these tows and the tows that were completely ignored (see above) are shown in Figure C1, and the associated swept areas are given in Table C3.

In total, 127 852 tows were affected by restricting the data to the fishable area: 12 469 tows that were completely ignored, as described above, and 107 790 that remained in the data but only where the tow was within the fishable area (6% of all bottom-contacting tows available for spatial analysis). About 77% of the affected tows targeted inshore species such as flatfish (35%), red gurnard (13%), snapper (12%), tarakihi (9%), trevally (6%), John dory (4%), and red cod (2%). For other targets, orange roughy/oreo/black cardinal fish tows accounted for 10.5% of all affected tows (mainly before 2001 when seamount closures were first implemented), and another 6% targeted barracouta, hoki, scampi, arrow squid, and common warehou. About 23% of these tows were in FMA 7 (especially Statistical Areas 038, 017, 033–035), 18% in FMA 2 (mainly 013, 014, 016, 011), 15% in FMA 1 (mainly 003, 009 005, 006, 008), 14% in FMA 3 (mainly 022, 020, 024, 026), 7% in FMA 9 (mainly 045, 047, 042, 046), 5% in FMA 5 (025, 028, 030, 032, 503), 3% in FMA 6 (601, 602), and 3% in FMA 4 (403, 406, 412, 050, 051).

There is no pragmatic way of knowing where to place the ignored tows and the portions of tows in closed areas or in depths beyond 1600 m. Over the years, the annual distribution of effort has shown defined trawling areas for many fishstocks and it is likely that the estimated swept area for these tows is within or close to the footprint of tows that can be spatially analysed. For some of the earlier effort, it may be that the tows are realistically placed inside a closed area, at a time before the closure legislation was enacted. For example, the marine mammal sanctuary around Auckland Island was implemented in 1993, the first seamount closures were implemented in 2001, the Benthic Protection Areas were closed in 2007, and the 2008 West Coast North Island Māui dolphin restrictions were extended in 2013.

Overall years, for the TCER, TCEPR, and ERS data, the retained aggregate area was estimated at 98.7% of the total aggregate area and 93.9% of the total footprint for effort within the EEZ outer boundary, for all years combined. Note that the years from 2008 best represent any patterns in these data. The effect of the addition of TCER data is evident and this is not unsurprising because of the resolution of the position data and the proximity of effort to the coastline and to closed areas such as marine reserves, marine mammal sanctuaries, or cable lanes.

Table C1: The number of contacted 25-km² cells, the aggregate area, and the footprint area for All Stocks in the fishable area, and the percent of the EEZ+TS seafloor and the fishable area seafloor that was contacted the footprint, by year and for 1990–2019.

| Fishing | No. of | Aggregate area | Footprint | EEZ+TS | Fishable |
|---------|--------|----------------|-----------|--------|----------|
| year    | cells  | $(km^2)$       | $(km^2)$  | (%)    | (%)      |
| 1990    | 13 747 | 110 358.5      | 52 690.0  | 1.3    | 3.8      |
| 1991    | 14 971 | 134 179.8      | 59 753.2  | 1.5    | 4.3      |
| 1992    | 16 765 | 147 696.1      | 73 195.0  | 1.8    | 5.3      |
| 1993    | 16 527 | 154 503.9      | 75 569.8  | 1.8    | 5.4      |
| 1994    | 15 985 | 133 380.8      | 64 830.4  | 1.6    | 4.7      |
| 1995    | 16 655 | 161 761.1      | 73 350.3  | 1.8    | 5.3      |
| 1996    | 16 899 | 171 825.0      | 79 873.8  | 1.9    | 5.7      |
| 1997    | 17 385 | 182 271.9      | 85 683.1  | 2.1    | 6.2      |
| 1998    | 18 778 | 202 434.8      | 95 120.3  | 2.3    | 6.8      |
| 1999    | 18 177 | 182 542.0      | 89 253.0  | 2.2    | 6.4      |
| 2000    | 18 304 | 175 234.7      | 90 525.4  | 2.2    | 6.5      |
| 2001    | 18 229 | 175 286.0      | 92 023.0  | 2.2    | 6.6      |
| 2002    | 20 008 | 179 588.2      | 97 683.1  | 2.4    | 7.0      |
| 2003    | 19 144 | 182 155.2      | 97 251.0  | 2.4    | 7.0      |
| 2004    | 17 756 | 158 914.5      | 85 667.5  | 2.1    | 6.2      |
| 2005    | 17 092 | 139 689.2      | 73 374.3  | 1.8    | 5.3      |
| 2006    | 16 131 | 120 888.4      | 68 281.4  | 1.7    | 4.9      |
| 2007    | 15 890 | 112 518.3      | 67 815.3  | 1.6    | 4.9      |
| 2008    | 18 606 | 156 006.2      | 93 220.2  | 2.3    | 6.7      |
| 2009    | 18 181 | 153 356.0      | 90 874.3  | 2.2    | 6.5      |
| 2010    | 18 103 | 164 795.5      | 95 488.5  | 2.3    | 6.9      |
| 2011    | 17 674 | 157 466.0      | 92 117.4  | 2.2    | 6.6      |
| 2012    | 17 276 | 154 317.6      | 88 931.1  | 2.2    | 6.4      |
| 2013    | 16 363 | 148 136.0      | 86 593.6  | 2.1    | 6.2      |
| 2014    | 17 425 | 153 953.5      | 91 430.4  | 2.2    | 6.6      |
| 2015    | 17 492 | 150 830.0      | 89 808.0  | 2.2    | 6.5      |
| 2016    | 17 627 | 148 274.7      | 87 220.0  | 2.1    | 6.3      |
| 2017    | 17 591 | 156 040.6      | 88 957.7  | 2.2    | 6.4      |
| 2018    | 17 289 | 160 150.8      | 89 431.7  | 2.2    | 6.4      |
| 2019    | 16 083 | 143 502.8      | 81 054.9  | 2.0    | 5.8      |
| All     | 41 424 | 4 672 058.1    | 460 627.2 | 11.2   | 33.1     |

Table C2: Number of tows not included in the fishable area analysis because they were inside closed areas, on the land, or beyond 1600 m, by form type for 1990–2019. Note some tows may be in more than category.

| Fishing |     | 0     | n land |     | In close | d areas |     | Beyond | 1600 m |     |       | Total  |
|---------|-----|-------|--------|-----|----------|---------|-----|--------|--------|-----|-------|--------|
| year    | ERS | TCE   | TCP    | ERS | TCE      | TCP     | ERS | TCE    | TCP    | ERS | TCE   | TCP    |
| 1990    | 0   | 0     | 82     | 0   | 0        | 65      | 0   | 0      | 131    | 0   | 0     | 278    |
| 1991    | 0   | 0     | 54     | 0   | 0        | 64      | 0   | 0      | 161    | 0   | 0     | 279    |
| 1992    | 0   | 0     | 83     | 0   | 0        | 99      | 0   | 0      | 180    | 0   | 0     | 362    |
| 1993    | 0   | 0     | 182    | 0   | 0        | 133     | 0   | 0      | 239    | 0   | 0     | 554    |
| 1994    | 0   | 0     | 115    | 0   | 0        | 316     | 0   | 0      | 262    | 0   | 0     | 693    |
| 1995    | 0   | 0     | 132    | 0   | 0        | 459     | 0   | 0      | 289    | 0   | 0     | 880    |
| 1996    | 0   | 0     | 47     | 0   | 0        | 409     | 0   | 0      | 275    | 0   | 0     | 731    |
| 1997    | 0   | 0     | 81     | 0   | 0        | 470     | 0   | 0      | 315    | 0   | 0     | 866    |
| 1998    | 0   | 0     | 80     | 0   | 0        | 411     | 0   | 0      | 408    | 0   | 0     | 899    |
| 1999    | 0   | 0     | 45     | 0   | 0        | 392     | 0   | 0      | 594    | 0   | 0     | 1 031  |
| 2000    | 0   | 0     | 22     | 0   | 0        | 377     | 0   | 0      | 382    | 0   | 0     | 781    |
| 2001    | 0   | 0     | 14     | 0   | 0        | 250     | 0   | 0      | 241    | 0   | 0     | 505    |
| 2002    | 0   | 0     | 6      | 0   | 0        | 189     | 0   | 0      | 132    | 0   | 0     | 327    |
| 2003    | 0   | 0     | 8      | 0   | 0        | 231     | 0   | 0      | 158    | 0   | 0     | 397    |
| 2004    | 0   | 0     | 3      | 0   | 0        | 184     | 0   | 0      | 77     | 0   | 0     | 264    |
| 2005    | 0   | 0     | 2      | 0   | 0        | 156     | 0   | 0      | 71     | 0   | 0     | 229    |
| 2006    | 0   | 0     | 1      | 0   | 0        | 100     | 0   | 0      | 125    | 0   | 0     | 226    |
| 2007    | 0   | 0     | 8      | 0   | 0        | 61      | 0   | 0      | 66     | 0   | 0     | 135    |
| 2008    | 0   | 183   | 1      | 0   | 67       | 15      | 0   | 97     | 78     | 0   | 346   | 94     |
| 2009    | 0   | 93    | 3      | 0   | 27       | 30      | 0   | 95     | 52     | 0   | 215   | 85     |
| 2010    | 0   | 95    | 3      | 0   | 59       | 20      | 0   | 89     | 61     | 0   | 243   | 84     |
| 2011    | 0   | 109   | 2      | 0   | 61       | 21      | 0   | 67     | 37     | 0   | 236   | 60     |
| 2012    | 0   | 98    | 1      | 0   | 54       | 17      | 0   | 65     | 46     | 0   | 217   | 64     |
| 2013    | 0   | 69    | 9      | 0   | 46       | 5       | 0   | 64     | 26     | 0   | 179   | 40     |
| 2014    | 0   | 79    | 3      | 0   | 46       | 12      | 0   | 76     | 47     | 0   | 201   | 62     |
| 2015    | 0   | 53    | 0      | 0   | 52       | 8       | 0   | 47     | 27     | 0   | 152   | 35     |
| 2016    | 0   | 68    | 0      | 0   | 35       | 4       | 0   | 45     | 29     | 0   | 148   | 33     |
| 2017    | 0   | 96    | 6      | 0   | 26       | 13      | 0   | 44     | 28     | 0   | 166   | 47     |
| 2018    | 0   | 43    | 1      | 0   | 16       | 7       | 3   | 47     | 3      | 3   | 106   | 11     |
| 2019    | 11  | 98    | 2      | 5   | 32       | 11      | 2   | 50     | 7      | 16  | 180   | 20     |
| All     | 11  | 1 084 | 996    | 5   | 521      | 4 529   | 5   | 786    | 4 547  | 19  | 2 389 | 10 072 |

Table C3:Swept areas for TCER, TCEPR, and ERS data were inside the EEZ outer boundary and the percentage retained for the 'fishable' area summaries for All Stocks, by fishing year, where 'Out' gives the swept area not included in the final spatial analysis (outside the fishable area), 'Fishable total' gives the estimated swept area within the fishable area, and '% kept' gives the percent retained in the 'fishable' area analyses.

| Fishing |          | Aggregate a    | rea (km²) |          | Footp          | orint (km²) |
|---------|----------|----------------|-----------|----------|----------------|-------------|
| year    | Out      | Fishable total | % kept    | Out      | Fishable total | % kept      |
|         |          |                |           |          |                |             |
| 1990    | 840.4    | 110 358.5      | 99.2      | 795.3    | 52 690.0       | 98.5        |
| 1991    | 727.9    | 134 179.8      | 99.5      | 689.4    | 59 753.2       | 98.9        |
| 1992    | 1 042.8  | 147 696.1      | 99.3      | 1 004.5  | 73 195.0       | 98.6        |
| 1993    | 1 476.8  | 154 503.9      | 99.1      | 1 345.8  | 75 569.8       | 98.3        |
| 1994    | 1 373.2  | 133 380.8      | 99.0      | 1 260.8  | 64 830.4       | 98.1        |
| 1995    | 1 663.4  | 161 761.1      | 99.0      | 1 543.1  | 73 350.3       | 97.9        |
| 1996    | 1 773.1  | 171 825.0      | 99.0      | 1 529.1  | 79 873.8       | 98.1        |
| 1997    | 1 651.3  | 182 271.9      | 99.1      | 1 489.4  | 85 683.1       | 98.3        |
| 1998    | 1 518.0  | 202 434.8      | 99.3      | 1 376.8  | 95 120.3       | 98.6        |
| 1999    | 1 565.5  | 182 542.0      | 99.1      | 1 363.8  | 89 253.0       | 98.5        |
| 2000    | 1 197.4  | 175 234.7      | 99.3      | 1 085.2  | 90 525.4       | 98.8        |
| 2001    | 910.9    | 175 286.0      | 99.5      | 799.7    | 92 023.0       | 99.1        |
| 2002    | 941.2    | 179 588.2      | 99.5      | 798.2    | 97 683.1       | 99.2        |
| 2003    | 809.9    | 182 155.2      | 99.6      | 710.5    | 97 251.0       | 99.3        |
| 2004    | 799.4    | 158 914.5      | 99.5      | 693.6    | 85 667.5       | 99.2        |
| 2005    | 817.6    | 139 689.2      | 99.4      | 665.0    | 73 374.3       | 99.1        |
| 2006    | 673.5    | 120 888.4      | 99.4      | 587.6    | 68 281.4       | 99.1        |
| 2007    | 588.4    | 112 518.3      | 99.5      | 521.2    | 67 815.3       | 99.2        |
| 2008    | 4 602.1  | 156 006.2      | 97.1      | 3 681.3  | 93 220.2       | 96.2        |
| 2009    | 4 245.0  | 153 356.0      | 97.3      | 3 357.7  | 90 874.3       | 96.4        |
| 2010    | 4 746.8  | 164 795.5      | 97.2      | 3 755.1  | 95 488.5       | 96.2        |
| 2011    | 4 286.9  | 157 466.0      | 97.3      | 3 467.8  | 92 117.4       | 96.4        |
| 2012    | 4 026.9  | 154 317.6      | 97.5      | 3 239.4  | 88 931.1       | 96.5        |
| 2013    | 3 920.8  | 148 136.0      | 97.4      | 3 170.0  | 86 593.6       | 96.5        |
| 2014    | 4 027.8  | 153 953.5      | 97.5      | 3 182.5  | 91 430.4       | 96.6        |
| 2015    | 3 246.6  | 150 830.0      | 97.9      | 2 655.9  | 89 808.0       | 97.1        |
| 2016    | 3 250.0  | 148 274.7      | 97.9      | 2 618.4  | 87 220.0       | 97.1        |
| 2017    | 3 456.3  | 156 040.6      | 97.8      | 2 808.0  | 88 957.7       | 96.9        |
| 2018    | 3 105.1  | 160 150.8      | 98.1      | 2 528.9  | 89 431.7       | 97.2        |
| 2019    | 2 525.3  | 143 502.8      | 98.3      | 2 118.7  | 81 054.9       | 97.5        |
|         |          |                |           |          |                |             |
| All     | 65 810.2 | 4 672 058.1    | 98.6      | 32 756.6 | 460 627.2      | 93.4        |

Table C4: For All Stocks data, the number of cells contacted in 1990–94 and the number of 'new' cells contacted in subsequent years and the aggregate area and footprint estimated for those new cells, where data for 1995 represent cells contacted in 1995 but not in 1990–94, and data for 1996 represent cells contacted in 1996 but not in 1990–95, etc.

| Number of cells of | contacted in 1990- | 94 = 27 820          |                              |
|--------------------|--------------------|----------------------|------------------------------|
| Fishing year       | No. new cells      | Aggregate area (km²) | Footprint (km <sup>2</sup> ) |
|                    |                    |                      |                              |
| 1995               | 1439               | 1400.4               | 1171.5                       |
| 1996               | 1469               | 995.1                | 909.7                        |
| 1997               | 1235               | 932.7                | 884.3                        |
| 1998               | 1519               | 1815.5               | 1471.4                       |
| 1999               | 1297               | 1074.1               | 1008.2                       |
| 2000               | 1147               | 1462.4               | 1306.9                       |
| 2001               | 740                | 744.6                | 637.5                        |
| 2002               | 958                | 906.1                | 869.3                        |
| 2003               | 560                | 649.4                | 576.9                        |
| 2004               | 293                | 295.7                | 271.5                        |
| 2005               | 553                | 578.7                | 513.1                        |
| 2006               | 227                | 112.3                | 107.6                        |
| 2007               | 224                | 131.8                | 122.1                        |
| 2008               | 528                | 1147.6               | 782.0                        |
| 2009               | 210                | 80.0                 | 76.7                         |
| 2010               | 149                | 56.3                 | 55.5                         |
| 2011               | 210                | 103.3                | 98.5                         |
| 2012               | 95                 | 27.9                 | 27.8                         |
| 2013               | 66                 | 30.4                 | 30.1                         |
| 2014               | 72                 | 25.9                 | 25.8                         |
| 2015               | 176                | 166.5                | 152.3                        |
| 2016               | 153                | 73.9                 | 72.8                         |
| 2017               | 118                | 59.6                 | 59.2                         |
| 2018               | 101                | 27.4                 | 27.4                         |
| 2019               | 65                 | 81.6                 | 78.4                         |
|                    |                    |                      |                              |

Table C5: Annual summary data for the number of tows that contact each cell, the footprint, and the aggregate area for All Stocks data, 1990–2019, giving the  $25^{th}$  percentile (1st Qu), median, mean,  $75^{th}$  percentile ( $3^{rd}$  Qu), and the maximum. The minimum number of tows that contacted each cell was 1 and the minimum values for the footprint and aggregate areas was < 0.0001.

| Fishing _ |        |        |      | No. o  | of tows |        |        |      | Footprin | t (km²) |        |        | A    | ggregate a | area (km²) |
|-----------|--------|--------|------|--------|---------|--------|--------|------|----------|---------|--------|--------|------|------------|------------|
| year      | 1st Qu | Median | Mean | 3rd Qu | Max     | 1st Qu | Median | Mean | 3rd Qu   | Max     | 1st Qu | Median | Mean | 3rd        | Max        |
| 1990      | 1      | 3      | 16.1 | 13     | 1099    | 0.5    | 1.3    | 3.8  | 4.8      | 25      | 0.5    | 1.4    | 8    | 5.5        | 725.5      |
| 1991      | 1      | 3      | 18.5 | 12     | 2427    | 0.6    | 1.4    | 4    | 4.8      | 25      | 0.6    | 1.5    | 9    | 5.5        | 1643.2     |
| 1992      | 1      | 4      | 18.7 | 15     | 1278    | 0.6    | 1.7    | 4.4  | 5.7      | 25      | 0.6    | 1.7    | 8.8  | 6.6        | 827.3      |
| 1993      | 2      | 5      | 19.2 | 16     | 1848    | 0.7    | 1.8    | 4.6  | 6.2      | 25      | 0.7    | 2      | 9.3  | 7.3        | 1392.4     |
| 1994      | 1      | 4      | 18.5 | 15     | 1288    | 0.6    | 1.6    | 4.1  | 5.2      | 25      | 0.6    | 1.6    | 8.3  | 6          | 808.2      |
| 1995      | 1      | 5      | 20.6 | 17     | 1124    | 0.6    | 1.8    | 4.4  | 5.9      | 25      | 0.6    | 1.9    | 9.7  | 6.9        | 874.8      |
| 1996      | 1      | 5      | 22.8 | 22     | 1313    | 0.6    | 1.8    | 4.7  | 6.7      | 25      | 0.6    | 1.9    | 10.2 | 8.2        | 621.2      |
| 1997      | 1      | 5      | 23.2 | 22     | 1419    | 0.7    | 2      | 4.9  | 7        | 25      | 0.7    | 2.1    | 10.5 | 8.7        | 546.7      |
| 1998      | 1      | 5      | 23.3 | 22     | 906     | 0.7    | 1.9    | 5.1  | 7.2      | 25      | 0.7    | 2      | 10.8 | 9          | 450.3      |
| 1999      | 1      | 5      | 22.2 | 21     | 1211    | 0.6    | 1.8    | 4.9  | 6.9      | 25      | 0.6    | 1.9    | 10   | 8.5        | 755.9      |
| 2000      | 2      | 5      | 21.1 | 22     | 823     | 0.7    | 1.9    | 4.9  | 7.1      | 25      | 0.7    | 2      | 9.6  | 8.9        | 408.2      |
| 2001      | 2      | 5      | 21.2 | 23     | 841     | 0.7    | 2      | 5    | 7.3      | 25      | 0.7    | 2.1    | 9.6  | 9.1        | 589.7      |
| 2002      | 2      | 5      | 20   | 20     | 1052    | 0.7    | 2      | 4.9  | 7        | 25      | 0.7    | 2.1    | 9    | 8.6        | 704.7      |
| 2003      | 2      | 6      | 20.6 | 21     | 992     | 0.8    | 2.2    | 5.1  | 7.4      | 25      | 0.8    | 2.4    | 9.5  | 9.2        | 680.8      |
| 2004      | 2      | 6      | 19.7 | 19     | 1458    | 0.7    | 2.1    | 4.8  | 7        | 25      | 0.7    | 2.3    | 8.9  | 8.5        | 933.7      |
| 2005      | 2      | 5      | 19.1 | 17     | 1486    | 0.7    | 1.8    | 4.3  | 5.7      | 25      | 0.7    | 1.9    | 8.2  | 6.9        | 959.1      |
| 2006      | 2      | 5      | 18   | 18     | 950     | 0.6    | 1.8    | 4.2  | 5.9      | 25      | 0.6    | 1.9    | 7.5  | 7.1        | 598.4      |
| 2007      | 2      | 5      | 17.1 | 19     | 574     | 0.6    | 1.9    | 4.3  | 6.1      | 25      | 0.7    | 2      | 7.1  | 7.5        | 281.6      |
| 2008      | 2      | 8      | 25.3 | 28     | 607     | 0.8    | 2.6    | 5    | 7.7      | 25      | 0.8    | 2.9    | 8.4  | 9.6        | 241        |
| 2009      | 2      | 8      | 24.8 | 28     | 542     | 0.7    | 2.5    | 5    | 7.6      | 25      | 0.7    | 2.7    | 8.4  | 9.6        | 285.8      |
| 2010      | 2      | 9      | 26.6 | 30     | 630     | 0.7    | 2.7    | 5.3  | 8.1      | 25      | 0.8    | 3      | 9.1  | 10.4       | 229.2      |
| 2011      | 2      | 9      | 25.7 | 30     | 641     | 0.7    | 2.7    | 5.2  | 8.1      | 25      | 0.8    | 2.9    | 8.9  | 10.4       | 287.4      |
| 2012      | 2      | 9      | 25.7 | 29     | 533     | 0.7    | 2.7    | 5.1  | 7.9      | 25      | 0.7    | 3      | 8.9  | 10.1       | 251.7      |
| 2013      | 2      | 9      | 26.8 | 31     | 695     | 0.8    | 2.9    | 5.3  | 8.1      | 25      | 0.8    | 3.1    | 9.1  | 10.6       | 297.2      |
| 2014      | 2      | 9      | 25.6 | 30     | 565     | 0.8    | 2.8    | 5.2  | 8        | 25      | 0.8    | 3.1    | 8.8  | 10.3       | 290.4      |
| 2015      | 2      | 9      | 24.2 | 29     | 535     | 0.8    | 2.7    | 5.1  | 7.8      | 25      | 0.8    | 3      | 8.6  | 9.9        | 324.2      |
| 2016      | 2      | 8      | 23.9 | 27     | 579     | 0.7    | 2.5    | 4.9  | 7.5      | 25      | 0.7    | 2.7    | 8.4  | 9.4        | 332.4      |
| 2017      | 2      | 8      | 24.5 | 28     | 631     | 0.8    | 2.7    | 5.1  | 7.6      | 25      | 0.8    | 2.9    | 8.9  | 9.5        | 208.5      |
| 2018      | 2      | 9      | 24.3 | 29     | 828     | 0.7    | 2.7    | 5.2  | 7.9      | 25      | 0.8    | 3      | 9.3  | 10.3       | 403.5      |
| 2019      | 2      | 8      | 24.2 | 28     | 609     | 0.7    | 2.7    | 5    | 7.7      | 25      | 0.8    | 3      | 8.9  | 10.2       | 298.1      |

Table C6: Estimated footprint (km²) for All Stocks bottom-contacting trawls, by the 200-m depth zones, for 1990–2019.

|              |           |          |           |          |          |           |           | Γ         | Depth zones (m) |
|--------------|-----------|----------|-----------|----------|----------|-----------|-----------|-----------|-----------------|
| Fishing year | 0-200     | 200-400  | 400–600   | 600-800  | 800-1000 | 1000-1200 | 1200-1400 | 1400-1600 | 0-1600          |
|              |           |          |           |          |          |           |           |           |                 |
| 1990         | 18 191.2  | 8 262.3  | 11 372.0  | 7 205.8  | 3 426.5  | 2 333.0   | 1 583.2   | 316.1     | 52 690.0        |
| 1991         | 16 333.3  | 9 919.3  | 14 609.0  | 11 935.0 | 4 406.6  | 1 697.5   | 652.6     | 199.9     | 59 753.2        |
| 1992         | 20 400.1  | 10 712.3 | 21 276.5  | 14 771.0 | 3 930.2  | 1 243.8   | 548.6     | 312.5     | 73 195.0        |
| 1993         | 23 300.8  | 9 969.5  | 21 385.8  | 14 211.1 | 4 277.1  | 1 401.0   | 696.8     | 327.6     | 75 569.8        |
| 1994         | 21 667.4  | 9 908.2  | 19 506.4  | 7 396.9  | 3 350.5  | 1 788.5   | 798.8     | 413.7     | 64 830.4        |
| 1995         | 23 688.8  | 9 751.8  | 23 755.2  | 10 223.7 | 3 320.6  | 1 609.5   | 650.4     | 350.4     | 73 350.3        |
| 1996         | 28 842.4  | 11 099.7 | 25 086.5  | 9 457.8  | 3 312.6  | 1 369.5   | 471.9     | 233.4     | 79 873.8        |
| 1997         | 27 233.0  | 10 920.6 | 27 997.7  | 12 420.1 | 4 473.3  | 1 876.0   | 489.7     | 272.5     | 85 683.1        |
| 1998         | 29 405.5  | 11 423.9 | 33 324.9  | 12 321.0 | 5 300.4  | 2 278.4   | 724.8     | 341.3     | 95 120.3        |
| 1999         | 25 889.2  | 9 562.2  | 33 475.2  | 10 611.3 | 5 646.8  | 2 851.1   | 878.5     | 338.7     | 89 253.0        |
| 2000         | 24 846.7  | 9 385.3  | 34 262.2  | 13 793.3 | 4 872.2  | 2 437.3   | 634.0     | 294.4     | 90 525.4        |
| 2001         | 25 554.5  | 9 711.8  | 35 718.3  | 14 622.9 | 3 679.5  | 1 985.1   | 539.0     | 212.0     | 92 023.0        |
| 2002         | 27 663.2  | 10 362.2 | 36 367.8  | 16 430.0 | 4 131.9  | 2 003.8   | 553.4     | 170.8     | 97 683.1        |
| 2003         | 27 934.1  | 10 120.7 | 38 645.2  | 15 122.4 | 2 881.1  | 1 884.9   | 485.8     | 176.9     | 97 251.0        |
| 2004         | 26 460.1  | 8 213.9  | 32 355.9  | 11 969.6 | 3 513.5  | 2 454.3   | 528.8     | 171.3     | 85 667.5        |
| 2005         | 28 787.9  | 8 263.4  | 24 200.2  | 6 559.0  | 2 784.4  | 2 096.7   | 509.2     | 173.5     | 73 374.3        |
| 2006         | 27 929.4  | 8 667.5  | 21 608.8  | 5 287.5  | 2 637.6  | 1 588.9   | 431.8     | 129.9     | 68 281.4        |
| 2007         | 27 487.0  | 9 117.6  | 21 518.0  | 5 092.5  | 2 379.9  | 1 605.3   | 464.0     | 151.0     | 67 815.3        |
| 2008         | 51 685.1  | 10 210.9 | 20 928.3  | 6 206.8  | 2 051.8  | 1 508.4   | 482.6     | 146.1     | 93 220.2        |
| 2009         | 51 690.4  | 9 046.3  | 20 292.1  | 5 331.1  | 2 060.6  | 1 868.6   | 460.2     | 125.3     | 90 874.3        |
| 2010         | 53 803.2  | 8 826.3  | 22 648.6  | 5 794.6  | 1 995.2  | 1 807.3   | 480.9     | 132.4     | 95 488.5        |
| 2011         | 50 681.9  | 9 154.6  | 23 076.4  | 6 310.2  | 1 727.6  | 761.8     | 280.6     | 124.2     | 92 117.4        |
| 2012         | 49 266.6  | 8 561.0  | 22 715.9  | 5 984.5  | 1 363.9  | 723.3     | 234.4     | 81.6      | 88 931.1        |
| 2013         | 49 036.6  | 7 557.7  | 21 408.8  | 6 338.8  | 1 230.7  | 703.6     | 233.9     | 83.6      | 86 593.6        |
| 2014         | 49 942.5  | 8 090.1  | 21 069.4  | 9 469.3  | 1 660.4  | 809.1     | 267.8     | 121.8     | 91 430.4        |
| 2015         | 46 710.4  | 8 193.9  | 23 117.7  | 8 032.0  | 2 547.3  | 861.4     | 244.5     | 101.1     | 89 808.0        |
| 2016         | 44 996.5  | 8 587.8  | 23 053.4  | 6 332.2  | 2 280.9  | 1 367.7   | 491.4     | 110.2     | 87 220.0        |
| 2017         | 46 696.1  | 8 078.4  | 22 409.5  | 6 889.2  | 2 942.9  | 1 354.3   | 445.8     | 141.4     | 88 957.7        |
| 2018         | 44 894.2  | 7 769.3  | 24 097.3  | 8 527.4  | 2 269.1  | 1 229.2   | 487.7     | 157.6     | 89 431.7        |
| 2019         | 42 645.1  | 7 490.7  | 21 278.9  | 5 670.5  | 2 515.4  | 1 033.3   | 341.2     | 79.8      | 81 054.9        |
| All          | 180 810.8 | 48 651.9 | 104 923.7 | 59 832.3 | 35 544.4 | 19 620.2  | 7 875.1   | 3 368.9   | 460 627.2       |

Table C7: Estimated aggregate area (km²) for All Stocks bottom-contacting trawls, by the 200-m depth zones, for 1990–2019.

|              |             |           |             |           |           |           |           |           | Depth zones (m) |
|--------------|-------------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------------|
| Fishing year | 0–200       | 200–400   | 400–600     | 600–800   | 800–1000  | 1000-1200 | 1200-1400 | 1400–1600 | 0-1600          |
| 1990         | 40 385.9    | 23 455.4  | 22 390.3    | 12 421.7  | 5 679.0   | 3 177.5   | 2 458.0   | 390.6     | 110 358.5       |
| 1991         | 44 757.6    | 25 549.0  | 29 917.1    | 23 546.8  | 7 003.3   | 2 244.7   | 914.3     | 247.0     | 134 179.8       |
| 1992         | 45 922.3    | 27 362.7  | 39 600.4    | 25 569.7  | 6 104.5   | 1 909.4   | 782.1     | 445.0     | 147 696.1       |
| 1993         | 53 942.6    | 23 156.3  | 42 572.8    | 24 922.1  | 6 242.3   | 2 154.4   | 1 064.0   | 449.4     | 154 503.9       |
| 1994         | 45 027.2    | 30 162.2  | 37 435.8    | 10 633.1  | 5 158.9   | 3 004.1   | 1 387.7   | 571.9     | 133 380.8       |
| 1995         | 56 253.9    | 27 873.6  | 52 926.7    | 15 409.4  | 5 277.5   | 2 502.5   | 975.4     | 542.1     | 161 761.1       |
| 1996         | 62 766.2    | 29 488.4  | 57 557.1    | 14 492.4  | 4 741.0   | 1 827.1   | 599.9     | 352.9     | 171 825.0       |
| 1997         | 53 356.5    | 30 916.0  | 65 639.5    | 22 343.5  | 6 362.5   | 2 596.5   | 621.3     | 435.9     | 182 271.9       |
| 1998         | 59 366.8    | 28 021.7  | 80 165.3    | 22 787.4  | 7 220.0   | 3 258.1   | 1 065.1   | 550.5     | 202 434.8       |
| 1999         | 56 384.5    | 22 103.5  | 72 466.4    | 18 274.2  | 7 522.3   | 4 064.0   | 1 231.1   | 496.0     | 182 542.0       |
| 2000         | 44 869.9    | 22 827.0  | 71 284.7    | 25 167.4  | 6 662.8   | 3 217.3   | 806.2     | 399.5     | 175 234.7       |
| 2001         | 48 322.8    | 23 011.5  | 69 245.1    | 26 236.0  | 5 057.3   | 2 454.4   | 682.9     | 276.2     | 175 286.0       |
| 2002         | 49 339.7    | 25 570.1  | 66 762.3    | 28 565.6  | 6 002.5   | 2 460.2   | 682.3     | 205.6     | 179 588.2       |
| 2003         | 50 697.6    | 26 198.6  | 75 138.5    | 23 095.8  | 3 748.1   | 2 397.7   | 658.3     | 220.5     | 182 155.2       |
| 2004         | 50 265.5    | 20 830.9  | 60 803.3    | 18 024.5  | 4 737.8   | 3 340.3   | 706.0     | 206.2     | 158 914.5       |
| 2005         | 59 485.1    | 19 249.6  | 44 054.9    | 9 617.1   | 3 604.9   | 2 770.5   | 665.3     | 241.7     | 139 689.2       |
| 2006         | 48 893.1    | 17 386.6  | 39 593.5    | 8 869.4   | 3 489.2   | 1 960.8   | 535.4     | 160.4     | 120 888.4       |
| 2007         | 43 229.5    | 17 363.8  | 37 869.5    | 8 191.5   | 3 110.6   | 1 990.2   | 580.4     | 182.9     | 112 518.3       |
| 2008         | 86 862.8    | 18 306.3  | 35 989.9    | 9 558.0   | 2 680.3   | 1 858.3   | 578.2     | 172.4     | 156 006.2       |
| 2009         | 86 260.2    | 15 355.7  | 37 371.7    | 8 855.4   | 2 611.5   | 2 200.4   | 556.9     | 144.1     | 153 356.0       |
| 2010         | 90 977.6    | 16 162.5  | 43 598.9    | 8 673.5   | 2 523.8   | 2 140.8   | 568.5     | 149.9     | 164 795.5       |
| 2011         | 83 510.2    | 16 854.8  | 44 183.8    | 9 312.4   | 2 230.9   | 910.4     | 320.9     | 142.6     | 157 466.0       |
| 2012         | 81 513.0    | 15 651.5  | 45 123.0    | 9 056.1   | 1 710.2   | 904.5     | 264.9     | 94.3      | 154 317.6       |
| 2013         | 79 593.7    | 13 754.9  | 41 784.0    | 10 292.9  | 1 467.9   | 896.5     | 252.1     | 93.9      | 148 136.0       |
| 2014         | 80 119.6    | 14 698.9  | 40 199.7    | 15 400.7  | 2 135.4   | 940.9     | 319.2     | 139.1     | 153 953.5       |
| 2015         | 73 383.6    | 14 457.3  | 45 525.3    | 12 701.8  | 3 339.9   | 1 021.2   | 284.2     | 116.6     | 150 830.0       |
| 2016         | 71 300.6    | 16 410.1  | 45 622.9    | 9 600.4   | 2 887.5   | 1 712.9   | 615.4     | 124.9     | 148 274.7       |
| 2017         | 74 911.2    | 15 156.9  | 48 579.0    | 11 477.3  | 3 559.0   | 1 671.7   | 526.2     | 159.2     | 156 040.6       |
| 2018         | 70 165.2    | 15 701.9  | 53 142.7    | 15 680.3  | 3 021.8   | 1 576.9   | 661.6     | 200.4     | 160 150.8       |
| 2019         | 70 133.7    | 15 406.8  | 43 873.6    | 9 047.0   | 3 195.2   | 1 286.1   | 461.2     | 99.4      | 143 502.8       |
| All          | 1 861 997.9 | 628 444.7 | 1 490 417.7 | 467 823.4 | 129 087.9 | 64 450.2  | 21 825.1  | 8 011.1   | 4 672 058.1     |

Table C8: The number of cells contacted by All Stocks bottom-contacting trawls, by the 200-m depth zones, for 1990–2019.

|              |        |         |                |         |          |           |            |           | Depth zones (m) |
|--------------|--------|---------|----------------|---------|----------|-----------|------------|-----------|-----------------|
| Fishing year | 0-200  | 200–400 | 400–600        | 600-800 | 800-1000 | 1000-1200 | 1200-1400  | 1400-1600 | 0–1600          |
| 1990         | 4 943  | 1 482   | 2 554          | 2 018   | 1 112    | 824       | 501        | 313       | 13 747          |
| 1990         | 4 865  | 1 668   | 3 023          | 2 590   | 1 365    | 837       | 388        | 235       | 14 971          |
| 1991         | 5 514  | 1 853   | 3 023<br>4 174 | 2 650   | 1 215    | 722       | 356        | 281       | 16 765          |
| 1992         | 5 855  | 1 904   | 3 398          | 2 590   | 1 322    | 773       | 412        | 273       | 16 527          |
| 1993         | 6 167  | 1 774   | 3 043          | 2 132   | 1 147    | 877       | 473        | 372       | 15 985          |
| 1994         | 6 421  | 1 840   | 3 249          | 2 342   | 1 263    | 787       | 431        | 372       | 16 655          |
| 1995         | 6 555  | 1 840   | 3 372          | 2 182   | 1 203    | 858       |            | 325       | 16 899          |
|              | 6 204  | 1 709   | 3 628          |         | 1 590    | 922       | 478<br>512 | 401       | 17 385          |
| 1997         | 6 316  | 1 709   |                | 2 418   | 1 892    | 1 052     | 513<br>518 | 401       | 18 778          |
| 1998         |        |         | 4 069          | 2 554   |          |           |            |           |                 |
| 1999         | 5 630  | 1 859   | 4 082          | 2 295   | 2 119    | 1 250     | 571        | 371       | 18 177          |
| 2000         | 5 613  | 1 875   | 4 288          | 2 561   | 1 882    | 1 216     | 500        | 369       | 18 304          |
| 2001         | 5 856  | 1 946   | 4 506          | 2 849   | 1 295    | 1 025     | 451        | 301       | 18 229          |
| 2002         | 6 398  | 2 073   | 5 329          | 3 114   | 1 361    | 1 001     | 436        | 296       | 20 008          |
| 2003         | 6 417  | 1 993   | 4 806          | 3 027   | 1 256    | 954       | 417        | 274       | 19 144          |
| 2004         | 6 103  | 1 563   | 4 495          | 2 699   | 1 257    | 940       | 420        | 279       | 17 756          |
| 2005         | 6 110  | 1 653   | 4 071          | 2 058   | 1 418    | 1 080     | 432        | 270       | 17 092          |
| 2006         | 6 268  | 1 881   | 3 509          | 1 653   | 1 318    | 862       | 386        | 254       | 16 131          |
| 2007         | 6 288  | 1 931   | 3 375          | 1 555   | 1 241    | 868       | 389        | 243       | 15 890          |
| 2008         | 8 404  | 2 053   | 3 465          | 1 761   | 1 216    | 932       | 491        | 284       | 18 606          |
| 2009         | 8 425  | 1 975   | 3 348          | 1 501   | 1 242    | 963       | 465        | 262       | 18 181          |
| 2010         | 8 505  | 1 947   | 3 253          | 1 543   | 1 167    | 976       | 456        | 256       | 18 103          |
| 2011         | 8 379  | 1 953   | 3 343          | 1 581   | 1 083    | 686       | 374        | 275       | 17 674          |
| 2012         | 8 304  | 1 936   | 3 328          | 1 568   | 992      | 665       | 304        | 179       | 17 276          |
| 2013         | 8 190  | 1 736   | 2 958          | 1 568   | 809      | 603       | 298        | 201       | 16 363          |
| 2014         | 8 289  | 1 797   | 3 187          | 1 855   | 950      | 767       | 333        | 247       | 17 425          |
| 2015         | 8 153  | 1 793   | 3 281          | 1 793   | 1 247    | 741       | 283        | 201       | 17 492          |
| 2016         | 8 113  | 1 750   | 3 233          | 1 677   | 1 301    | 880       | 444        | 229       | 17 627          |
| 2017         | 8 206  | 1 722   | 3 150          | 1 684   | 1 333    | 865       | 389        | 242       | 17 591          |
| 2018         | 7 921  | 1 690   | 3 425          | 1 833   | 1 088    | 777       | 356        | 199       | 17 289          |
| 2019         | 7 727  | 1 635   | 2 932          | 1 398   | 1 182    | 705       | 324        | 180       | 16 083          |
| All          | 10 382 | 3 651   | 8 779          | 5 890   | 4 673    | 3 374     | 2 611      | 2 064     | 41 424          |

Table C9: Estimated footprint (km²) for All Stocks bottom-contacting trawls, by BOMEC class A–O, for 1990–2019. Note: 41.5 km² (class K) and 44.7 km² (not assigned to a class) are not included in this table.

|              | ,        |          |          |          |          |         |         |          |          |          |          |          |          |       |           |
|--------------|----------|----------|----------|----------|----------|---------|---------|----------|----------|----------|----------|----------|----------|-------|-----------|
| Fishing year | A        | В        | C        | D        | Е        | F       | G       | Н        | I        | J        | L        | M        | N        | O     | Total     |
| 1990         | 259.8    | 90.1     | 6 559.5  | 2 071.0  | 5 967.4  | 1 493.6 | 268.9   | 10 099.0 | 5 632.8  | 12 777.6 | 4 751.8  | 908.1    | 1 789.1  | 20.8  | 52 690.0  |
| 1991         | 416.8    | 74.2     | 5 028.6  | 1 566.8  | 6 652.3  | 1 720.7 | 330.0   | 11 500.1 | 7 414.8  | 14 137.9 | 7 530.5  | 2 155.1  | 1 201.9  | 23.4  | 59 753.2  |
| 1992         | 1 048.6  | 97.8     | 8 025.6  | 1 621.2  | 6 913.2  | 1 332.4 | 312.1   | 14 356.5 | 12 929.3 | 12 009.8 | 10 333.5 | 2 930.6  | 1 234.3  | 49.0  | 73 195.0  |
| 1993         | 1 857.9  | 289.9    | 8 786.7  | 1 783.2  | 8 119.7  | 846.7   | 491.1   | 15 344.1 | 12 857.3 | 15 348.7 | 5 695.0  | 2 610.8  | 1 496.0  | 41.7  | 75 569.8  |
| 1994         | 1 606.2  | 332.8    | 8 949.9  | 1 317.6  | 6 220.6  | 1 299.1 | 540.9   | 14 269.9 | 10 012.5 | 12 709.6 | 4 677.6  | 997.9    | 1 838.6  | 56.5  | 64 830.4  |
| 1995         | 2 169.9  | 342.2    | 8 747.5  | 1 579.0  | 7 345.2  | 1 349.7 | 737.0   | 15 933.7 | 12 861.8 | 14 382.4 | 5 075.4  | 1 327.3  | 1 431.2  | 67.1  | 73 350.3  |
| 1996         | 3 867.7  | 179.1    | 10 721.1 | 1 930.8  | 7 884.4  | 1 640.1 | 1 083.5 | 17 451.8 | 14 269.7 | 13 378.8 | 5 150.3  | 1 311.7  | 946.3    | 55.1  | 79 873.8  |
| 1997         | 3 768.7  | 285.6    | 10 356.9 | 1 676.5  | 7 214.0  | 1 380.2 | 1 142.4 | 16 685.2 | 15 424.3 | 17 618.2 | 7 212.5  | 1 751.0  | 1 080.8  | 84.6  | 85 683.1  |
| 1998         | 3 607.3  | 214.0    | 12 425.5 | 1 825.3  | 8 247.9  | 1 134.1 | 866.5   | 19 525.2 | 18 665.5 | 18 161.4 | 6 947.1  | 1 919.0  | 1 499.6  | 76.8  | 95 120.3  |
| 1999         | 3 510.3  | 195.4    | 11 701.2 | 1 075.1  | 7 241.1  | 642.8   | 712.1   | 19 108.5 | 18 837.6 | 17 656.3 | 5 030.1  | 1 790.0  | 1 670.5  | 79.0  | 89 253.0  |
| 2000         | 3 272.6  | 264.6    | 10 166.9 | 1 116.8  | 7 058.0  | 596.0   | 745.2   | 18 895.8 | 18 504.2 | 17 979.9 | 8 064.5  | 2 453.2  | 1 327.6  | 73.7  | 90 525.4  |
| 2001         | 4 317.2  | 279.2    | 11 688.9 | 493.6    | 5 856.8  | 631.6   | 639.3   | 20 022.3 | 17 778.5 | 17 343.6 | 9 227.1  | 2 556.2  | 1 130.7  | 57.9  | 92 023.0  |
| 2002         | 4 260.6  | 472.7    | 12 741.2 | 875.2    | 6 323.0  | 1 115.7 | 569.7   | 18 836.0 | 16 950.1 | 17 477.2 | 11 956.2 | 4 844.3  | 1 182.6  | 78.3  | 97 683.1  |
| 2003         | 3 859.2  | 348.0    | 13 110.9 | 1 037.4  | 6 131.5  | 1 301.7 | 582.7   | 21 399.3 | 16 563.3 | 16 499.0 | 13 198.5 | 2 062.5  | 1 082.0  | 73.2  | 97 251.0  |
| 2004         | 4 357.2  | 291.7    | 12 797.4 | 912.2    | 4 948.1  | 1 471.2 | 662.3   | 17 074.8 | 13 670.0 | 15 444.8 | 10 577.8 | 2 277.5  | 1 116.6  | 63.9  | 85 667.5  |
| 2005         | 4 375.3  | 470.8    | 14 057.8 | 789.2    | 5 564.3  | 1 405.5 | 638.7   | 15 318.2 | 10 293.5 | 11 932.0 | 5 649.0  | 1 714.7  | 1 104.7  | 60.5  | 73 374.3  |
| 2006         | 3 270.9  | 425.5    | 13 350.4 | 806.8    | 6 364.9  | 1 626.2 | 462.1   | 14 930.3 | 9 968.3  | 11 543.4 | 3 578.3  | 1 128.0  | 784.1    | 41.1  | 68 281.4  |
| 2007         | 3 371.7  | 272.9    | 13 959.8 | 766.8    | 5 684.2  | 1 114.8 | 506.8   | 15 301.6 | 11 173.8 | 9 725.4  | 3 991.4  | 1 146.2  | 757.9    | 41.9  | 67 815.3  |
| 2008         | 7 467.7  | 4 754.3  | 21 471.9 | 7 115.3  | 6 261.8  | 972.4   | 1 537.8 | 16 713.0 | 9 841.1  | 10 882.7 | 4 531.1  | 811.8    | 801.0    | 49.5  | 93 220.2  |
| 2009         | 7 551.0  | 4 811.9  | 20 764.3 | 7 890.7  | 6 080.3  | 1 345.2 | 1 559.0 | 14 042.0 | 10 667.4 | 9 758.0  | 4 693.4  | 923.7    | 754.7    | 26.0  | 90 874.3  |
| 2010         | 7 848.9  | 5 430.1  | 20 455.8 | 8 657.8  | 7 318.4  | 1 399.7 | 1 682.7 | 13 412.9 | 12 354.3 | 10 267.0 | 4 632.4  | 1 124.8  | 864.8    | 30.6  | 95 488.5  |
| 2011         | 7 206.8  | 4 844.5  | 18 822.3 | 7 958.8  | 7 719.0  | 931.9   | 1 826.4 | 13 606.8 | 11 406.0 | 9 639.0  | 6 221.2  | 1 329.6  | 571.2    | 26.5  | 92 117.4  |
| 2012         | 7 447.8  | 5 290.8  | 18 158.0 | 8 029.7  | 6 746.1  | 671.6   | 1 656.7 | 13 560.9 | 11 793.8 | 9 679.2  | 4 646.5  | 698.4    | 525.8    | 17.2  | 88 931.1  |
| 2013         | 6 928.7  | 5 454.3  | 17 835.8 | 8 427.3  | 6 711.5  | 685.1   | 1 717.1 | 12 223.3 | 12 196.1 | 9 050.9  | 4 359.0  | 471.7    | 505.5    | 16.7  | 86 593.6  |
| 2014         | 6 912.0  | 5 374.0  | 17 894.5 | 8 522.1  | 7 251.3  | 431.9   | 1 773.4 | 13 033.4 | 11 594.2 | 10 706.5 | 6 251.1  | 1 049.8  | 593.4    | 32.0  | 91 430.4  |
| 2015         | 6 145.4  | 4 954.4  | 17 248.1 | 7 717.4  | 7 023.4  | 412.8   | 1 566.1 | 14 141.4 | 12 368.3 | 11 763.1 | 5 130.7  | 800.3    | 508.3    | 17.5  | 89 808.0  |
| 2016         | 6 353.8  | 5 071.8  | 16 423.0 | 7 191.9  | 6 278.5  | 473.1   | 1 472.8 | 14 878.7 | 10 855.5 | 11 347.7 | 5 185.5  | 787.5    | 859.0    | 28.9  | 87 220.0  |
| 2017         | 5 914.3  | 5 103.9  | 17 418.8 | 7 067.0  | 7 015.1  | 794.4   | 1 389.0 | 14 020.3 | 10 963.2 | 11 882.5 | 5 609.4  | 898.8    | 841.6    | 27.4  | 88 957.7  |
| 2018         | 5 560.1  | 4 704.1  | 17 016.7 | 7 329.9  | 6 325.5  | 385.8   | 1 289.4 | 14 551.5 | 10 884.9 | 11 585.5 | 7 531.3  | 1 464.3  | 769.7    | 22.8  | 89 431.7  |
| 2019         | 5 236.8  | 5 297.1  | 15 782.4 | 6 934.7  | 6 316.9  | 316.7   | 1 092.4 | 12 987.0 | 9 906.8  | 10 365.4 | 5 518.0  | 719.9    | 555.4    | 19.7  | 81 054.9  |
| All          | 17 481.6 | 11 374.4 | 74 461.7 | 21 748.7 | 34 431.6 | 6 900.9 | 5 173.3 | 78 072.4 | 38 811.1 | 81 921.7 | 56 638.2 | 19 138.8 | 13 771.8 | 614.7 | 460 627.2 |

Table C10: Estimated aggregate area (km²) for All Stocks bottom-contacting trawls, by BOMEC class A-O, for 1990–2019. Note: 44.4 km² (class K) and 117.5 km² (not assigned to a class) are not included in this table. Annual totals are given in Table C1. Year is fishing year.

| Year | A         | В         | C         | D         | Е         | F        | G        | Н         | I         | J         | L         | M        | N        | O       |
|------|-----------|-----------|-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|-----------|----------|----------|---------|
| 1990 | 280.1     | 94.5      | 8 269.0   | 2 817.5   | 14 746.0  | 8 950.7  | 431.9    | 20 885.9  | 11 589.4  | 25 323.5  | 13 315.5  | 1 029.5  | 2 601.1  | 23.4    |
| 1991 | 448.1     | 77.3      | 6 297.0   | 1 930.1   | 29 440.9  | 4 267.6  | 884.7    | 23 913.1  | 16 648.3  | 30 207.0  | 15 162.0  | 3 214.4  | 1 660.0  | 29.2    |
| 1992 | 1 327.9   | 107.9     | 10 996.5  | 2 253.3   | 25 469.3  | 3 545.9  | 690.9    | 30 449.1  | 25 963.2  | 22 102.7  | 17 783.7  | 5 132.6  | 1 786.4  | 85.7    |
| 1993 | 3 015.5   | 375.5     | 12 582.5  | 2 195.2   | 32 536.4  | 1 435.1  | 1 278.8  | 30 327.9  | 27 847.8  | 28 663.7  | 8 194.8   | 3 717.9  | 2 268.6  | 62.9    |
| 1994 | 2 022.3   | 366.3     | 11 634.4  | 1 678.0   | 19 274.2  | 9 819.3  | 1 205.7  | 29 580.5  | 18 603.8  | 25 293.6  | 9 608.6   | 1 245.8  | 2 959.5  | 87.9    |
| 1995 | 2 736.5   | 370.8     | 10 913.7  | 2 059.7   | 28 515.5  | 8 489.7  | 1 910.0  | 34 149.8  | 28 103.5  | 30 002.6  | 10 444.0  | 1 804.3  | 2 126.8  | 133.3   |
| 1996 | 6 303.9   | 249.4     | 13 725.4  | 2 672.7   | 25 871.6  | 9 127.5  | 4 392.9  | 35 118.9  | 33 073.5  | 26 009.3  | 12 081.5  | 1 787.0  | 1 280.0  | 128.1   |
| 1997 | 6 221.2   | 369.8     | 13 612.1  | 2 309.9   | 22 499.0  | 4 351.0  | 4 157.3  | 35 818.0  | 36 260.8  | 36 274.0  | 15 968.2  | 2 707.3  | 1 492.1  | 229.0   |
| 1998 | 6 003.3   | 243.6     | 17 858.1  | 2 769.1   | 28 475.6  | 3 022.2  | 2 615.7  | 41 011.3  | 45 935.8  | 37 682.5  | 11 491.6  | 2 878.2  | 2 252.8  | 189.8   |
| 1999 | 5 865.8   | 220.2     | 16 493.1  | 1 351.3   | 28 916.3  | 1 162.5  | 2 113.1  | 39 595.2  | 43 170.9  | 31 251.0  | 7 059.1   | 2 837.8  | 2 367.4  | 135.2   |
| 2000 | 5 182.3   | 298.0     | 14 577.6  | 1 350.5   | 18 839.6  | 948.9    | 2 276.2  | 37 359.3  | 41 400.9  | 33 302.5  | 14 268.5  | 3 471.3  | 1 829.9  | 122.6   |
| 2001 | 7 080.2   | 343.2     | 16 845.0  | 561.5     | 20 592.6  | 915.8    | 1 650.7  | 39 817.1  | 35 876.1  | 32 988.4  | 13 422.9  | 3 611.2  | 1 484.1  | 97.1    |
| 2002 | 6 673.2   | 557.1     | 17 567.6  | 1 029.1   | 19 231.7  | 2 720.9  | 1 421.2  | 37 695.7  | 33 200.7  | 31 003.7  | 18 529.8  | 8 302.5  | 1 548.5  | 106.1   |
| 2003 | 5 916.8   | 408.9     | 18 592.5  | 1 205.5   | 20 006.7  | 3 083.3  | 1 602.3  | 43 004.1  | 32 794.8  | 31 004.8  | 20 484.2  | 2 448.2  | 1 501.8  | 99.5    |
| 2004 | 7 087.8   | 352.2     | 17 627.9  | 1 077.8   | 18 481.4  | 4 593.9  | 1 914.6  | 33 180.2  | 25 162.5  | 26 687.2  | 18 324.2  | 2 815.5  | 1 523.9  | 83.5    |
| 2005 | 7 436.7   | 589.8     | 19 967.8  | 958.5     | 23 741.4  | 4 618.2  | 1 883.6  | 27 640.5  | 20 381.9  | 19 074.3  | 9 814.3   | 1 988.3  | 1 491.5  | 102.3   |
| 2006 | 4 780.3   | 472.9     | 17 939.0  | 990.2     | 19 189.9  | 3 412.2  | 1 084.0  | 24 793.7  | 19 614.8  | 19 246.7  | 6 847.1   | 1 411.0  | 1 045.1  | 60.5    |
| 2007 | 4 812.2   | 308.4     | 18 408.1  | 895.2     | 14 009.9  | 1 894.4  | 1 159.9  | 24 448.6  | 22 317.4  | 14 476.1  | 7 334.5   | 1 454.8  | 937.9    | 60.7    |
| 2008 | 13 105.3  | 9 707.1   | 30 875.6  | 12 522.3  | 13 784.9  | 2 162.7  | 2 836.9  | 26 081.7  | 18 672.9  | 17 052.0  | 7 001.9   | 1 123.1  | 1 004.9  | 65.7    |
| 2009 | 13 150.9  | 8 922.5   | 30 982.2  | 13 990.7  | 11 652.6  | 2 929.2  | 2 842.9  | 21 493.5  | 22 320.3  | 15 315.6  | 7 564.4   | 1 207.9  | 937.7    | 37.7    |
| 2010 | 14 268.6  | 10 629.4  | 29 934.8  | 16 023.6  | 14 742.9  | 2 217.5  | 2 884.6  | 21 865.4  | 26 419.8  | 16 094.6  | 7 100.1   | 1 530.0  | 1 037.3  | 36.0    |
| 2011 | 12 513.4  | 8 372.6   | 26 366.2  | 14 220.3  | 15 404.0  | 1 657.0  | 3 145.9  | 22 294.4  | 23 044.7  | 16 749.8  | 11 164.3  | 1 808.6  | 683.4    | 32.4    |
| 2012 | 12 878.3  | 9 880.4   | 24 997.0  | 14 571.2  | 13 544.9  | 978.1    | 2 884.8  | 23 137.7  | 24 403.3  | 16 806.7  | 8 665.0   | 906.9    | 628.1    | 24.8    |
| 2013 | 11 626.8  | 9 744.3   | 24 677.2  | 15 826.7  | 11 947.7  | 969.0    | 3 035.6  | 20 846.9  | 26 210.4  | 14 543.2  | 7 448.4   | 648.3    | 575.4    | 22.4    |
| 2014 | 11 925.5  | 9 851.3   | 24 450.6  | 15 916.9  | 12 389.5  | 514.7    | 3 367.1  | 22 002.9  | 23 334.9  | 17 938.0  | 9 878.0   | 1 622.6  | 706.9    | 42.4    |
| 2015 | 10 103.2  | 9 101.6   | 24 258.3  | 13 223.3  | 11 701.1  | 646.1    | 2 674.2  | 24 311.3  | 26 356.7  | 19 277.9  | 7 447.5   | 1 091.4  | 603.7    | 21.2    |
| 2016 | 10 406.1  | 9 118.8   | 22 017.5  | 13 376.0  | 10 363.2  | 1 008.0  | 2 663.8  | 26 833.2  | 22 390.6  | 18 667.2  | 9 296.3   | 1 014.5  | 1 067.6  | 38.5    |
| 2017 | 9 533.2   | 9 881.0   | 23 470.0  | 13 259.8  | 12 146.6  | 1 521.2  | 2 472.1  | 24 303.4  | 23 648.2  | 23 657.0  | 9 849.5   | 1 207.4  | 1 043.3  | 34.4    |
| 2018 | 8 722.8   | 8 095.5   | 23 344.3  | 12 473.7  | 11 649.9  | 524.5    | 2 221.2  | 26 685.8  | 22 945.4  | 24 259.1  | 15 453.4  | 2 631.8  | 1 095.6  | 36.3    |
| 2019 | 8 185.8   | 9 120.3   | 21 718.6  | 11 767.3  | 14 400.4  | 445.6    | 1 837.9  | 23 988.1  | 23 014.1  | 16 983.5  | 10 231.0  | 975.0    | 795.7    | 33.0    |
| All  | 219 614.0 | 118 230.6 | 570 999.6 | 197 276.7 | 563 565.9 | 91 932.6 | 65 540.2 | 872 633.1 | 800 707.4 | 717 938.5 | 341 234.4 | 67 624.8 | 42 336.8 | 2 261.6 |

Table C11: The number of cells contacted by All Stocks bottom-contacting trawls, by BOMEC class A-O, for 1990-2019. Out gives cells not assigned to a class.

| Fishing year | Out | A     | В   | С       | D     | Е     | F   | G   | Н       | I     | J     | K  | L     | M     | N     | О   | Total  |
|--------------|-----|-------|-----|---------|-------|-------|-----|-----|---------|-------|-------|----|-------|-------|-------|-----|--------|
| 1990         | 4   | 269   | 108 | 1 931   | 628   | 1 322 | 295 | 99  | 2 038   | 1 082 | 2 973 | _  | 1 501 | 623   | 823   | 51  | 13 747 |
| 1991         | 3   | 346   | 85  | 1 878   | 587   | 1 314 | 389 | 100 | 2 182   | 1 293 | 3 262 | _  | 1 915 | 855   | 720   | 42  | 14 971 |
| 1992         | 4   | 449   | 107 | 2 166   | 627   | 1 436 | 371 | 106 | 2 5 1 5 | 1 609 | 2 975 | 1  | 2 742 | 897   | 716   | 44  | 16 765 |
| 1993         | 6   | 498   | 198 | 2 224   | 705   | 1 523 | 308 | 137 | 2 819   | 1 593 | 3 361 | 2  | 1 613 | 730   | 740   | 70  | 16 527 |
| 1994         | 6   | 678   | 249 | 2 464   | 648   | 1 330 | 294 | 162 | 2 639   | 1 510 | 3 121 | 2  | 1 401 | 481   | 933   | 67  | 15 985 |
| 1995         | 4   | 757   | 260 | 2 485   | 615   | 1 473 | 307 | 177 | 2 923   | 1 499 | 3 436 | 2  | 1 335 | 492   | 813   | 77  | 16 655 |
| 1996         | 8   | 798   | 129 | 2 578   | 683   | 1 446 | 332 | 167 | 2 829   | 1 551 | 3 241 | 7  | 1 584 | 604   | 866   | 76  | 16 899 |
| 1997         | 8   | 799   | 165 | 2 485   | 526   | 1 336 | 275 | 185 | 2 784   | 1 517 | 3 891 | 5  | 1 666 | 672   | 969   | 102 | 17 385 |
| 1998         | 11  | 778   | 179 | 2 545   | 562   | 1 434 | 258 | 175 | 3 217   | 1 588 | 4 262 | 8  | 1 793 | 857   | 1 007 | 104 | 18 778 |
| 1999         | 10  | 722   | 195 | 2 2 3 0 | 462   | 1 272 | 248 | 162 | 3 089   | 1 634 | 4 478 | 1  | 1 716 | 734   | 1 094 | 130 | 18 177 |
| 2000         | 8   | 605   | 229 | 2 249   | 431   | 1 303 | 256 | 135 | 3 100   | 1 603 | 4 153 | 10 | 2 148 | 954   | 1 004 | 116 | 18 304 |
| 2001         | 4   | 735   | 151 | 2 647   | 340   | 1 202 | 227 | 151 | 3 247   | 1 568 | 3 516 | _  | 2 441 | 1 048 | 875   | 77  | 18 229 |
| 2002         | 1   | 769   | 298 | 2 846   | 401   | 1 211 | 295 | 155 | 3 315   | 1 589 | 3 371 | 2  | 3 272 | 1 472 | 905   | 106 | 20 008 |
| 2003         | 3   | 742   | 260 | 2 933   | 448   | 1 203 | 244 | 142 | 3 473   | 1 540 | 3 422 | 6  | 2 794 | 1 002 | 834   | 98  | 19 144 |
| 2004         | 2   | 770   | 207 | 2 817   | 440   | 1 085 | 253 | 144 | 2 952   | 1 466 | 3 362 | 7  | 2 365 | 982   | 816   | 88  | 17 756 |
| 2005         | 3   | 751   | 240 | 2 826   | 376   | 1 102 | 216 | 132 | 3 079   | 1 370 | 3 040 | _  | 1 776 | 1 190 | 911   | 80  | 17 092 |
| 2006         | 1   | 678   | 283 | 2 855   | 330   | 1 257 | 266 | 142 | 3 230   | 1 370 | 3 000 | 2  | 1 136 | 748   | 764   | 69  | 16 131 |
| 2007         | 2   | 739   | 268 | 2 900   | 344   | 1 222 | 240 | 161 | 3 207   | 1 333 | 2 877 | 1  | 1 086 | 714   | 720   | 76  | 15 890 |
| 2008         | 41  | 1 078 | 546 | 3 315   | 1 111 | 1 405 | 239 | 248 | 3 407   | 1 359 | 3 276 | 7  | 1 070 | 577   | 844   | 83  | 18 606 |
| 2009         | 41  | 1 076 | 540 | 3 355   | 1 111 | 1 389 | 284 | 243 | 3 063   | 1 351 | 3 080 | 1  | 1 137 | 656   | 790   | 64  | 18 181 |
| 2010         | 54  | 1078  | 544 | 3 318   | 1 115 | 1 457 | 318 | 251 | 2 950   | 1 328 | 3 028 | _  | 1 171 | 585   | 832   | 74  | 18 103 |
| 2011         | 47  | 1 072 | 550 | 3 297   | 1 122 | 1 324 | 277 | 257 | 3 002   | 1 260 | 2 666 | 1  | 1 345 | 651   | 734   | 69  | 17 674 |
| 2012         | 46  | 1 089 | 543 | 3 279   | 1 128 | 1 342 | 232 | 255 | 2 932   | 1 343 | 2 791 | 1  | 1 201 | 446   | 602   | 46  | 17 276 |
| 2013         | 45  | 1 059 | 550 | 3 282   | 1 120 | 1 278 | 216 | 257 | 2 664   | 1 325 | 2 635 | _  | 1 020 | 278   | 589   | 45  | 16 363 |
| 2014         | 41  | 1 055 | 543 | 3 316   | 1 133 | 1 278 | 220 | 254 | 2 840   | 1 345 | 2 994 | 7  | 1 331 | 332   | 661   | 75  | 17 425 |
| 2015         | 46  | 1 027 | 547 | 3 183   | 1 131 | 1 371 | 140 | 255 | 2 966   | 1 261 | 3 415 | 10 | 1 236 | 281   | 578   | 45  | 17 492 |
| 2016         | 43  | 1 024 | 541 | 3 181   | 1 097 | 1 331 | 162 | 241 | 2 924   | 1 295 | 3 326 | 12 | 1 224 | 372   | 796   | 58  | 17 627 |
| 2017         | 40  | 1 032 | 540 | 3 282   | 1 077 | 1 327 | 192 | 242 | 2 789   | 1 284 | 3 309 | 11 | 1 311 | 346   | 759   | 50  | 17 591 |
| 2018         | 41  | 1 004 | 547 | 3 216   | 1 098 | 1 146 | 168 | 253 | 2 801   | 1 308 | 3 099 | 13 | 1 458 | 438   | 657   | 42  | 17 289 |
| 2019         | 35  | 954   | 539 | 3 120   | 1 071 | 1 213 | 143 | 236 | 2 653   | 1 150 | 2 931 | 1  | 1 096 | 298   | 591   | 52  | 16 083 |
| All          | 93  | 1 180 | 554 | 3 601   | 1 203 | 2 322 | 845 | 264 | 5 080   | 2 008 | 9 188 | 25 | 5 725 | 3 997 | 4 867 | 472 | 41 424 |

Table C12: The estimated footprint (km²) for All Stocks during 1990–2019 and 2019 by the surficial layers representing the percent of carbonate, gravel, mud, and sand. 'unk' is where there was no overlap.

|              |           |           | 1990–2019 foc | otprint (km²) |              |           |          | 2019 footp | orint (km²) |
|--------------|-----------|-----------|---------------|---------------|--------------|-----------|----------|------------|-------------|
| Sediment (%) | Carbonate | Gravel    | Mud           | Sand          | Sediment (%) | Carbonate | Gravel   | Mud        | Sand        |
| 0–20         | 87 682.8  | 358 985.2 | 149 884.1     | 41 265.5      | 0–20         | 23 508.4  | 65 619.4 | 24 467.2   | 6 623.8     |
| 20-40        | 135 047.6 | 69 668.0  | 110 723.2     | 91 271.7      | 20–40        | 26 543.9  | 11 745.4 | 18 007.5   | 17 914.1    |
| 40–60        | 91 710.7  | 20 072.8  | 102 242.8     | 163 863.7     | 40–60        | 14 348.9  | 2 447.6  | 20 366.6   | 27 997.3    |
| 60-80        | 65 283.0  | 5 769.8   | 64 197.9      | 121 048.2     | 60–80        | 8 382.8   | 380.3    | 13 177.7   | 20 427.9    |
| 80-100       | 76 777.3  | 1 636.0   | 29 122.7      | 39 053.9      | 80–100       | 7 791.4   | 379.4    | 4 553.1    | 7 612.3     |
| unk          | 4 125.7   | 4 495.4   | 4 456.5       | 4 124.3       | unk          | 479.5     | 482.8    | 482.8      | 479.5       |
| Total        | 460 627.2 | 460 627.2 | 460 627.2     | 460 627.2     | Total        | 81 054.9  | 81 054.9 | 81 054.9   | 81 054.9    |

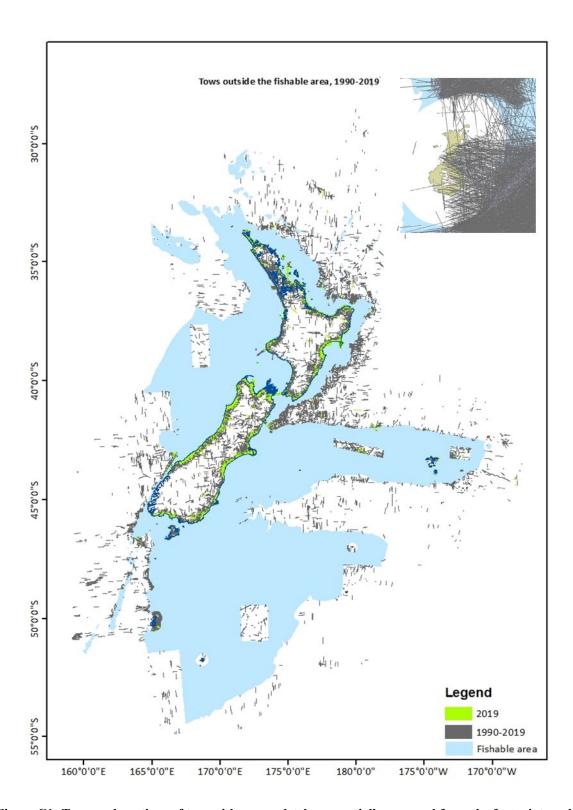



Figure C1: Tows and portions of tows either completely or partially removed from the footprint analyses, for 1990–2019 fishing years combined, and for 2019. The coastline is defined by a blue line. The inset shows where portions of tows that are outside the fishable area are removed from the footprint analyses; these tows cross the marine mammal sanctuary extent (12 nm beyond land, established in 1978) and the Auckland Islands.

## APPENDIX D: DEEPWATER FISHSTOCKS TOW DATA

Table D1: Percent of deepwater tows by data collection method, the number of tows, and number of vessels (based on unique vessel key), by deepwater stock and fishing year for 1990–2019. ERS is Electronic Reporting System, TCE is Trawl Catch Effort Return, and TCP is Trawl Catch Effort Processing Return.

|              |         |         |         |           | Tier 1      |         |         |         |          | Tier 2      | Tier 1 & Tier 2 |
|--------------|---------|---------|---------|-----------|-------------|---------|---------|---------|----------|-------------|-----------------|
| Fishing year | ERS (%) | TCE (%) | TCP (%) | No. tows  | No. vessels | ERS (%) | TCE (%) | TCP (%) | No. tows | No. vessels | No. vessels     |
| 1990         | 0       | 0       | 100.0   | 31 222    | 127         | 0       | 0       | 100.0   | 3 368    | 50          | 127             |
| 1991         | 0       | 0       | 100.0   | 39 617    | 147         | 0       | 0       | 100.0   | 2 912    | 53          | 148             |
| 1992         | 0       | 0       | 100.0   | 43 170    | 150         | 0       | 0       | 100.0   | 2 659    | 58          | 150             |
| 1993         | 0       | 0       | 100.0   | 46 103    | 137         | 0       | 0       | 100.0   | 3 297    | 64          | 138             |
| 1994         | 0       | 0       | 100.0   | 47 796    | 144         | 0       | 0       | 100.0   | 3 038    | 75          | 149             |
| 1995         | 0       | 0       | 100.0   | 51 133    | 158         | 0       | 0       | 100.0   | 4 306    | 82          | 162             |
| 1996         | 0       | 0       | 100.0   | 51 087    | 150         | 0       | 0       | 100.0   | 4 569    | 86          | 156             |
| 1997         | 0       | 0       | 100.0   | 53 313    | 160         | 0       | 0       | 100.0   | 3 447    | 76          | 168             |
| 1998         | 0       | 0       | 100.0   | 57 598    | 150         | 0       | 0       | 100.0   | 2 947    | 75          | 152             |
| 1999         | 0       | 0       | 100.0   | 54 086    | 134         | 0       | 0       | 100.0   | 3 465    | 74          | 139             |
| 2000         | 0       | 0       | 100.0   | 50 053    | 103         | 0       | 0       | 100.0   | 3 309    | 63          | 112             |
| 2001         | 0       | 0       | 100.0   | 46 893    | 100         | 0       | 0       | 100.0   | 3 016    | 59          | 103             |
| 2002         | 0       | 0       | 100.0   | 47 433    | 98          | 0       | 0       | 100.0   | 3 434    | 57          | 104             |
| 2003         | 0       | 0       | 100.0   | 45 986    | 94          | 0       | 0       | 100.0   | 3 979    | 55          | 101             |
| 2004         | 0       | 0       | 100.0   | 40 311    | 92          | 0       | 0       | 100.0   | 2 594    | 50          | 95              |
| 2005         | 0       | 0       | 100.0   | 36 771    | 81          | 0       | 0       | 100.0   | 3 454    | 57          | 87              |
| 2006         | 0       | 0       | 100.0   | 33 363    | 77          | 0       | 0       | 100.0   | 4 027    | 54          | 80              |
| 2007         | 0       | 0       | 100.0   | 29 424    | 70          | 0       | 0       | 100.0   | 4 149    | 50          | 72              |
| 2008         | 0       | 4.8     | 95.2    | 28 810    | 94          | 0       | 32.6    | 67.4    | 5 186    | 81          | 112             |
| 2009         | 0       | 4.1     | 95.9    | 25 509    | 88          | 0       | 29.4    | 70.6    | 4 283    | 80          | 106             |
| 2010         | 0       | 5.3     | 94.7    | 26 495    | 95          | 0       | 31.7    | 68.3    | 4 113    | 88          | 114             |
| 2011         | 0       | 4.9     | 95.1    | 24 495    | 93          | 0       | 31.4    | 68.6    | 3 818    | 88          | 114             |
| 2012         | 0       | 5.4     | 94.6    | 23 717    | 92          | 0       | 33.3    | 66.7    | 3 545    | 79          | 104             |
| 2013         | 0       | 6.5     | 93.5    | 22 883    | 87          | 0       | 48.8    | 51.2    | 3 060    | 78          | 101             |
| 2014         | 0       | 7.5     | 92.5    | 23 521    | 87          | 0       | 41.3    | 58.8    | 3 440    | 83          | 105             |
| 2015         | 0       | 7.1     | 92.9    | 23 469    | 89          | 0       | 36.7    | 63.3    | 3 262    | 78          | 103             |
| 2016         | 0       | 7.1     | 92.9    | 24 197    | 96          | 0       | 36.4    | 63.6    | 2 953    | 72          | 105             |
| 2017         | 0       | 6.1     | 93.9    | 23 597    | 90          | 0       | 29.3    | 70.7    | 2 852    | 73          | 97              |
| 2018         | 75.7    | 6.3     | 18.0    | 24 973    | 88          | 55.8    | 37.0    | 7.2     | 2 652    | 63          | 96              |
| 2019         | 83.7    | 5.9     | 10.4    | 24 883    | 89          | 74.7    | 25.2    | 0.1     | 2 653    | 61          | 93              |
| Total        | 3.6     | 1.6     | 94.8    | 1 101 908 | 549         | 3.3     | 13.8    | 82.9    | 103 787  | 363         | 570             |

Table D2: Total number of bottom-contacting Tier 1 tows and percentage by target species, for each fishing year during 1990–2019. Target species codes are defined in Table 1.

| Fishing | No. of      |     |      |     |     | Percer | tage of t | otal Tier | 1 tows by | / target |
|---------|-------------|-----|------|-----|-----|--------|-----------|-----------|-----------|----------|
| year    | Tier 1 tows | HAK | HOK  | JMA | LIN | OEO    | ORH       | SBW       | SCI       | SQU      |
| 1990    | 31 222      | 0.8 | 26.2 | 7.2 | 2.2 | 6.8    | 20.0      | 3.1       | 7.2       | 26.6     |
| 1991    | 39 617      | 0.2 | 33.8 | 4.0 | 2.5 | 6.6    | 12.8      | 3.5       | 10.6      | 26.0     |
| 1992    | 43 170      | 1.3 | 36.3 | 6.3 | 1.5 | 3.0    | 15.3      | 5.5       | 13.4      | 17.4     |
| 1993    | 46 103      | 2.1 | 36.5 | 5.8 | 1.2 | 4.4    | 21.5      | 1.1       | 11.6      | 15.9     |
| 1994    | 47 796      | 1.2 | 28.3 | 5.9 | 0.9 | 3.4    | 28.9      | 0.9       | 10.9      | 19.6     |
| 1995    | 51 133      | 1.5 | 34.4 | 4.0 | 0.5 | 3.5    | 28.2      | 0.4       | 7.6       | 19.9     |
| 1996    | 51 087      | 1.0 | 42.9 | 3.9 | 0.8 | 6.0    | 19.3      | 0.7       | 6.8       | 18.6     |
| 1997    | 53 313      | 0.9 | 47.7 | 3.0 | 0.6 | 6.5    | 15.4      | 0.6       | 6.7       | 18.5     |
| 1998    | 57 598      | 0.8 | 48.4 | 5.7 | 0.6 | 5.5    | 17.9      | 1.4       | 6.1       | 13.7     |
| 1999    | 54 086      | 1.3 | 44.9 | 4.7 | 0.7 | 6.3    | 19.8      | 1.4       | 7.5       | 13.4     |
| 2000    | 50 053      | 0.8 | 50.6 | 3.4 | 0.9 | 6.8    | 16.5      | 1.1       | 9.2       | 10.6     |
| 2001    | 46 893      | 1.2 | 51.1 | 3.4 | 0.7 | 6.9    | 11.0      | 1.0       | 10.2      | 14.6     |
| 2002    | 47 433      | 1.7 | 46.6 | 5.0 | 0.9 | 5.7    | 9.7       | 1.8       | 13.8      | 14.8     |
| 2003    | 45 986      | 2.0 | 47.3 | 5.4 | 0.8 | 5.4    | 10.8      | 0.8       | 9.9       | 17.5     |
| 2004    | 40 311      | 4.0 | 42.7 | 4.7 | 0.9 | 5.6    | 12.0      | 1.2       | 9.2       | 19.7     |
| 2005    | 36 771      | 3.8 | 30.8 | 5.2 | 1.8 | 6.4    | 12.4      | 1.1       | 12.6      | 25.9     |
| 2006    | 33 363      | 3.8 | 27.6 | 6.7 | 3.0 | 6.1    | 13.9      | 0.9       | 14.6      | 23.3     |
| 2007    | 29 424      | 4.2 | 28.8 | 6.8 | 4.6 | 7.2    | 13.5      | 1.2       | 17.4      | 16.4     |
| 2008    | 28 810      | 5.3 | 27.4 | 6.9 | 7.0 | 8.6    | 12.8      | 1.5       | 16.7      | 13.8     |
| 2009    | 25 509      | 6.7 | 27.9 | 6.2 | 4.6 | 8.5    | 13.9      | 2.4       | 15.6      | 14.2     |
| 2010    | 26 495      | 3.1 | 32.3 | 7.2 | 3.8 | 9.6    | 11.0      | 2.8       | 16.0      | 14.2     |
| 2011    | 24 495      | 3.3 | 34.2 | 5.1 | 3.9 | 7.7    | 7.7       | 2.8       | 18.2      | 17.1     |
| 2012    | 23 717      | 2.7 | 37.9 | 6.4 | 3.5 | 7.0    | 6.7       | 2.1       | 19.0      | 14.6     |
| 2013    | 22 883      | 3.0 | 41.1 | 6.0 | 4.4 | 5.6    | 7.0       | 1.7       | 19.8      | 11.5     |
| 2014    | 23 521      | 3.3 | 44.1 | 5.7 | 4.1 | 5.4    | 8.6       | 1.3       | 18.8      | 8.7      |
| 2015    | 23 469      | 4.0 | 43.4 | 4.1 | 4.2 | 5.4    | 10.0      | 1.9       | 18.8      | 8.2      |
| 2016    | 24 197      | 2.0 | 39.3 | 3.7 | 4.0 | 3.3    | 12.9      | 1.4       | 21.5      | 11.8     |
| 2017    | 23 597      | 2.3 | 42.3 | 3.3 | 4.3 | 3.0    | 12.6      | 1.3       | 19.9      | 11.0     |
| 2018    | 24 973      | 1.0 | 43.3 | 3.7 | 4.0 | 3.4    | 13.7      | 1.4       | 18.3      | 11.3     |
| 2019    | 24 883      | 0.6 | 34.9 | 3.5 | 4.8 | 3.2    | 12.6      | 1.6       | 21.6      | 17.2     |
| All     | 1 101 908   | 2.1 | 39.4 | 5.0 | 2.1 | 5.7    | 15.3      | 1.6       | 12.3      | 16.6     |

Table D3: Total number of bottom-contacting Tier 2 tows and percentage by target species, for each fishing year during 1990–2019. Target species codes are defined in Table 1.

| Fishing | No. of      |      |      |      |     |     |     |     |     |     |     |     |     |     | Percentag |      |      | ,    |
|---------|-------------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----------|------|------|------|
| year    | Tier 2 tows | BAR  | BYX  | CDL  | EMA | FRO | GSH | LDO | PRK | PTO | RBT | RBY | RIB | SKI | SPD       | SPE  | SWA  | WWA  |
| 1990    | 3 368       | 51.8 | 5.9  | 3.1  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 4.6 | 0.9       | 0.4  | 27.7 | 5.4  |
| 1991    | 2 912       | 51.7 | 8.4  | 13.2 | 0.4 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 2.3 | 1.0       | 0.5  | 20.7 | 1.5  |
| 1992    | 2 659       | 45.6 | 12.9 | 6.4  | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 4.1 | 0.3       | 1.2  | 27.2 | 0.6  |
| 1993    | 3 297       | 45.5 | 11.2 | 6.1  | 0.0 | 0.2 | 0.0 | 0.3 | 0.1 | 0.0 | 0.0 | 2.4 | 0.0 | 4.6 | 0.0       | 1.2  | 28.2 | 0.1  |
| 1994    | 3 038       | 34.7 | 20.4 | 12.4 | 0.2 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 1.7 | 0.0 | 0.8 | 0.0       | 1.4  | 28.0 | 0.3  |
| 1995    | 4 306       | 41.3 | 16.0 | 13.2 | 0.0 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3 | 0.0 | 0.4 | 0.0       | 1.0  | 25.1 | 0.1  |
| 1996    | 4 569       | 36.1 | 15.9 | 20.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.9 | 0.0 | 1.6 | 0.0 | 0.4 | 0.0       | 0.4  | 18.3 | 0.0  |
| 1997    | 3 447       | 36.1 | 22.3 | 27.4 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 | 0.8 | 0.1       | 0.3  | 11.5 | 0.0  |
| 1998    | 2 947       | 36.7 | 22.7 | 24.4 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.5 | 0.0       | 1.6  | 12.2 | 0.2  |
| 1999    | 3 465       | 22.2 | 37.1 | 26.2 | 1.3 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 0.0 | 0.0 | 0.0       | 0.1  | 6.7  | 1.8  |
| 2000    | 3 309       | 24.7 | 26.6 | 32.7 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.4 | 0.0 | 0.5 | 0.0       | 0.0  | 10.5 | 2.2  |
| 2001    | 3 016       | 31.8 | 24.4 | 24.6 | 0.0 | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.2 | 0.0 | 0.0 | 0.0       | 0.1  | 9.4  | 3.1  |
| 2002    | 3 434       | 30.1 | 16.5 | 22.2 | 0.0 | 2.2 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 2.4 | 0.0 | 0.0 | 1.1       | 2.4  | 15.5 | 6.8  |
| 2003    | 3 979       | 24.2 | 23.1 | 28.5 | 0.2 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 1.2 | 0.0 | 0.5 | 0.0       | 7.6  | 6.0  | 8.4  |
| 2004    | 2 594       | 23.6 | 28.8 | 22.8 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.1 | 0.1       | 5.3  | 4.8  | 11.8 |
| 2005    | 3 454       | 22.5 | 28.5 | 22.5 | 0.3 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 0.2 | 0.0 | 0.2       | 0.3  | 11.7 | 10.3 |
| 2006    | 4 027       | 14.4 | 32.2 | 24.8 | 0.9 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 3.8 | 0.3 | 0.0 | 1.0       | 0.8  | 15.3 | 6.1  |
| 2007    | 4 149       | 23.0 | 20.0 | 25.1 | 0.3 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 2.7 | 0.0 | 0.0 | 0.3       | 3.9  | 19.3 | 5.2  |
| 2008    | 5 186       | 42.4 | 12.5 | 10.4 | 0.3 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.1 | 1.9 | 0.0 | 0.2 | 3.3       | 2.4  | 21.8 | 4.3  |
| 2009    | 4 283       | 30.7 | 18.1 | 9.7  | 0.6 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.4 | 1.5 | 0.0 | 0.2 | 5.7       | 0.7  | 24.6 | 7.6  |
| 2010    | 4 113       | 24.8 | 22.7 | 12.8 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 | 0.2 | 4.9 | 0.0 | 0.4 | 6.3       | 3.8  | 18.0 | 5.0  |
| 2011    | 3 818       | 24.1 | 23.0 | 10.1 | 0.1 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.1 | 4.6 | 0.0 | 1.9 | 3.9       | 5.8  | 21.8 | 3.1  |
| 2012    | 3 545       | 32.7 | 22.2 | 10.7 | 0.7 | 0.0 | 0.1 | 1.3 | 0.0 | 0.0 | 0.6 | 3.2 | 0.0 | 2.3 | 3.2       | 1.3  | 17.3 | 4.3  |
| 2013    | 3 060       | 36.5 | 8.4  | 7.5  | 0.2 | 0.0 | 0.4 | 3.5 | 0.0 | 0.0 | 1.3 | 4.0 | 0.0 | 2.4 | 1.7       | 6.3  | 22.9 | 5.1  |
| 2014    | 3 440       | 34.4 | 15.2 | 9.0  | 0.0 | 0.1 | 0.1 | 1.3 | 0.0 | 0.0 | 1.0 | 3.3 | 0.0 | 1.1 | 2.1       | 4.2  | 21.1 | 7.1  |
| 2015    | 3 262       | 35.7 | 15.8 | 5.9  | 0.0 | 0.1 | 0.0 | 2.2 | 0.0 | 0.0 | 0.5 | 3.2 | 0.0 | 1.4 | 2.6       | 10.0 | 19.3 | 3.1  |
| 2016    | 2 953       | 34.9 | 14.1 | 4.9  | 0.0 | 0.4 | 0.1 | 2.2 | 0.0 | 0.0 | 0.2 | 8.5 | 0.0 | 1.4 | 0.0       | 10.1 | 19.7 | 3.5  |
| 2017    | 2 852       | 39.0 | 16.0 | 4.1  | 0.0 | 0.4 | 0.0 | 1.5 | 0.0 | 0.0 | 0.5 | 5.0 | 0.0 | 0.7 | 0.0       | 7.7  | 21.3 | 3.9  |
| 2018    | 2 652       | 34.7 | 18.4 | 3.1  | 0.0 | 0.5 | 0.0 | 2.1 | 0.0 | 0.0 | 0.1 | 3.8 | 0.1 | 0.5 | 0.0       | 11.1 | 22.4 | 3.3  |
| 2019    | 2 653       | 36.5 | 25.0 | 6.6  | 0.6 | 0.8 | 0.0 | 1.3 | 0.0 | 0.0 | 0.2 | 3.2 | 0.0 | 0.2 | 0.0       | 10.6 | 12.6 | 2.5  |
| All     | 103 787     | 33.1 | 19.5 | 15.3 | 0.2 | 0.4 | 0.0 | 0.6 | 0.0 | 0.3 | 0.2 | 2.7 | 0.0 | 1.0 | 1.3       | 3.2  | 18.2 | 3.9  |

Table D4: The annual number of cells contacted and the estimated aggregate and footprint areas for Deepwater Tier 1 and Tier 2 fishstocks combined, within the fishable area, for 1990–2019.

|              |        | Co         | ntacted cells |                         | Ag         | gregate area |            |            | Footprint  |
|--------------|--------|------------|---------------|-------------------------|------------|--------------|------------|------------|------------|
| Fishing year | No.    | Tier 1 (%) | Tier 2 (%)    | Area (km <sup>2</sup> ) | Tier 1 (%) | Tier 2 (%)   | Area (km2) | Tier 1 (%) | Tier 2 (%) |
| 1990         | 12 345 | 93.1       | 25.0          | 101 844.5               | 88.8       | 11.2         | 47 584.0   | 88.4       | 17.1       |
| 1991         | 13 324 | 94.9       | 19.3          | 126 457.5               | 93.8       | 6.2          | 55 058.4   | 93.5       | 10.3       |
| 1992         | 14 567 | 95.3       | 17.5          | 137 294.0               | 94.0       | 6.0          | 66 617.1   | 94.4       | 8.9        |
| 1993         | 14 133 | 93.5       | 21.0          | 140 106.8               | 92.7       | 7.3          | 66 927.0   | 93.4       | 10.4       |
| 1994         | 13 413 | 93.8       | 20.4          | 122 080.2               | 93.2       | 6.8          | 56 931.5   | 94.4       | 9.6        |
| 1995         | 13 651 | 92.3       | 25.6          | 144 635.0               | 91.9       | 8.1          | 61 830.5   | 92.8       | 12.2       |
| 1996         | 13 647 | 91.6       | 22.8          | 144 433.7               | 93.7       | 6.3          | 62 726.2   | 93.9       | 10.1       |
| 1997         | 14 070 | 96.2       | 15.7          | 155 222.9               | 96.5       | 3.5          | 68 756.4   | 96.4       | 6.1        |
| 1998         | 15 443 | 96.0       | 15.0          | 171 901.7               | 97.0       | 3.0          | 77 090.5   | 97.2       | 5.1        |
| 1999         | 15 166 | 95.2       | 15.1          | 156 834.9               | 97.1       | 2.9          | 72 611.9   | 97.5       | 4.9        |
| 2000         | 15 360 | 95.1       | 13.9          | 150 733.1               | 96.9       | 3.1          | 74 023.2   | 97.0       | 4.7        |
| 2001         | 15 325 | 94.1       | 15.8          | 151 150.7               | 96.9       | 3.1          | 76 256.1   | 96.5       | 4.8        |
| 2002         | 17 070 | 92.2       | 18.8          | 155 213.9               | 96.2       | 3.8          | 81 004.8   | 95.7       | 6.0        |
| 2003         | 16 017 | 92.8       | 18.4          | 157 211.9               | 95.7       | 4.3          | 80 616.7   | 95.1       | 6.4        |
| 2004         | 14 133 | 94.0       | 14.5          | 131 779.7               | 97.1       | 2.9          | 67 794.8   | 96.3       | 4.6        |
| 2005         | 13 345 | 94.1       | 18.2          | 110 887.0               | 94.7       | 5.3          | 54 221.3   | 94.3       | 8.4        |
| 2006         | 12 399 | 93.8       | 20.9          | 95 332.0                | 93.5       | 6.5          | 50 099.2   | 93.8       | 9.7        |
| 2007         | 12 204 | 91.6       | 26.6          | 88 362.0                | 91.1       | 8.9          | 50 347.7   | 91.2       | 12.4       |
| 2008         | 13 192 | 83.3       | 36.3          | 85 589.0                | 87.6       | 12.4         | 51 022.2   | 85.7       | 16.9       |
| 2009         | 12 313 | 84.3       | 31.9          | 79 650.3                | 89.3       | 10.7         | 46 228.7   | 87.4       | 14.9       |
| 2010         | 12 477 | 85.3       | 32.6          | 87 835.8                | 92.1       | 7.9          | 49 886.4   | 90.2       | 12.1       |
| 2011         | 12 038 | 82.5       | 34.9          | 87 477.9                | 91.8       | 8.2          | 48 678.5   | 89.4       | 12.8       |
| 2012         | 11 447 | 83.0       | 33.1          | 86 230.0                | 92.6       | 7.4          | 46 923.5   | 90.2       | 11.9       |
| 2013         | 10 721 | 83.0       | 33.0          | 80 303.6                | 91.6       | 8.4          | 44 784.3   | 89.3       | 12.9       |
| 2014         | 11 755 | 82.1       | 34.0          | 82 825.1                | 91.8       | 8.2          | 47 578.7   | 90.0       | 12.4       |
| 2015         | 11 494 | 84.2       | 30.9          | 85 902.4                | 92.0       | 8.0          | 48 183.6   | 90.9       | 11.4       |
| 2016         | 11 557 | 84.6       | 30.7          | 84 765.1                | 93.3       | 6.7          | 46 678.6   | 91.2       | 10.4       |
| 2017         | 11 524 | 84.2       | 30.3          | 89 567.8                | 93.1       | 6.9          | 46 983.6   | 91.3       | 10.5       |
| 2018         | 11 092 | 87.4       | 27.8          | 97 044.7                | 94.1       | 5.9          | 48 027.3   | 92.1       | 9.6        |
| 2019         | 10 352 | 84.8       | 27.9          | 86 777.0                | 93.6       | 6.4          | 43 841.0   | 92.7       | 9.2        |
| All          | 38 872 | 96.1       | 40.1          | 3 475 450.1             | 93.9       | 6.1          | 351 683.5  | 92.6       | 21.1       |

Table D5: Estimated footprint (km²) for Deepwater Tier 1 bottom-contacting trawls, by target, for 1990–2019. Codes are defined in Table 1.

| Fishing year | HAK      | НОК       | JMA      | LIN      | OEO      | ORH      | SBW      | SCI      | SQU      | Tier 1    |
|--------------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| 1990         | 627.9    | 16 834.2  | 7 345.4  | 2 054.0  | 2 094.9  | 5 578.2  | 1 685.0  | 1 172.9  | 6 565.8  | 42 043.8  |
| 1991         | 248.9    | 26 860.2  | 5 844.6  | 2 627.3  | 1 626.8  | 3 816.1  | 2 519.1  | 2 251.0  | 7 939.2  | 51 474.2  |
| 1992         | 1 587.1  | 33 165.3  | 8 791.9  | 2 107.5  | 796.5    | 3 326.2  | 5 248.6  | 3 848.0  | 7 058.5  | 62 885.8  |
| 1993         | 2 403.2  | 35 209.1  | 8 492.0  | 1 810.4  | 1 108.8  | 3 707.2  | 1 083.7  | 3 906.0  | 7 337.6  | 62 534.1  |
| 1994         | 1 678.7  | 26 466.5  | 8 652.7  | 1 432.8  | 1 313.1  | 4 558.8  | 735.8    | 3 953.0  | 7 646.7  | 53 747.6  |
| 1995         | 1 396.1  | 34 680.3  | 6 102.9  | 838.9    | 1 017.1  | 3 924.4  | 403.3    | 3 177.7  | 9 464.5  | 57 368.4  |
| 1996         | 1 286.6  | 36 689.0  | 6 480.6  | 1 313.0  | 1 654.2  | 2 742.8  | 684.7    | 2 786.1  | 8 530.1  | 58 903.4  |
| 1997         | 1 442.0  | 42 968.7  | 4 830.5  | 1 062.7  | 1 958.7  | 3 925.3  | 846.0    | 3 044.5  | 9 450.1  | 66 306.7  |
| 1998         | 1 461.1  | 48 321.1  | 7 556.4  | 1 151.7  | 1 500.7  | 5 665.1  | 1 742.3  | 3 021.8  | 7 930.4  | 74 906.1  |
| 1999         | 1 655.1  | 45 043.0  | 5 711.7  | 1 104.8  | 2 245.2  | 6 328.0  | 1 530.5  | 3 332.1  | 7 137.1  | 70 781.9  |
| 2000         | 1 576.5  | 49 069.3  | 4 086.7  | 1 518.7  | 2 094.1  | 4 508.6  | 1 217.5  | 3 795.1  | 7 485.7  | 71 806.9  |
| 2001         | 1 795.6  | 50 830.2  | 3 818.9  | 1 161.9  | 1 448.4  | 3 149.2  | 1 172.2  | 3 753.6  | 9 235.6  | 73 572.9  |
| 2002         | 2 477.8  | 50 925.5  | 5 926.1  | 1 316.4  | 1 455.0  | 3 182.3  | 2 428.4  | 4 593.8  | 7 820.6  | 77 529.4  |
| 2003         | 2 965.9  | 51 949.3  | 5 990.4  | 1 099.4  | 988.9    | 2 844.8  | 667.8    | 4 346.8  | 8 468.7  | 76 651.1  |
| 2004         | 3 938.1  | 41 192.5  | 4 335.8  | 1 042.5  | 1 192.7  | 3 764.6  | 845.8    | 4 071.8  | 7 439.4  | 65 281.3  |
| 2005         | 3 819.5  | 25 818.9  | 4 667.1  | 1 749.4  | 1 625.9  | 3 026.5  | 760.2    | 3 792.2  | 8 142.7  | 51 125.6  |
| 2006         | 2 921.5  | 21 429.4  | 5 519.8  | 2 510.5  | 1 260.9  | 2 687.2  | 657.7    | 4 180.1  | 7 827.4  | 46 987.5  |
| 2007         | 3 229.9  | 20 232.2  | 5 669.6  | 3 289.5  | 1 218.4  | 2 597.9  | 727.0    | 4 385.6  | 6 363.1  | 45 894.1  |
| 2008         | 4 383.7  | 18 180.4  | 5 646.7  | 4 843.7  | 951.9    | 2 072.4  | 855.8    | 4 329.9  | 4 175.7  | 43 735.2  |
| 2009         | 3 941.0  | 18 655.8  | 4 545.2  | 2 510.7  | 1 013.5  | 2 589.7  | 1 121.8  | 3 684.2  | 4 263.3  | 40 405.4  |
| 2010         | 1 879.8  | 23 284.6  | 5 442.0  | 1 826.3  | 1 093.6  | 2 522.7  | 1 487.7  | 3 881.4  | 4 794.8  | 45 010.7  |
| 2011         | 2 312.2  | 24 378.2  | 3 986.0  | 1 514.3  | 837.9    | 1 055.8  | 1 439.7  | 4 259.3  | 5 442.3  | 43 502.5  |
| 2012         | 1 999.1  | 24 722.1  | 4 609.0  | 1 542.0  | 724.9    | 831.1    | 1 039.9  | 4 184.2  | 4 281.4  | 42 312.9  |
| 2013         | 1 594.2  | 24 217.6  | 4 325.8  | 1 096.2  | 559.5    | 904.3    | 855.9    | 4 108.7  | 3 440.9  | 39 997.7  |
| 2014         | 2 007.0  | 26 882.8  | 4 036.1  | 1 602.2  | 475.3    | 1 317.0  | 670.5    | 4 086.5  | 2 944.8  | 42 819.7  |
| 2015         | 2 420.5  | 27 766.2  | 2 965.4  | 1 190.3  | 588.2    | 2 191.1  | 960.0    | 4 021.2  | 3 004.5  | 43 819.6  |
| 2016         | 1 438.7  | 25 325.0  | 2 838.4  | 1 683.9  | 407.2    | 2 864.5  | 858.0    | 4 814.7  | 3 374.8  | 42 548.8  |
| 2017         | 1 241.2  | 26 314.8  | 2 602.7  | 1 365.2  | 316.9    | 3 595.3  | 594.4    | 4 640.9  | 3 549.9  | 42 905.9  |
| 2018         | 598.6    | 29 083.7  | 2 697.7  | 1 422.1  | 386.5    | 2 911.8  | 731.8    | 4 586.8  | 3 018.2  | 44 228.9  |
| 2019         | 374.4    | 24 392.1  | 2 825.0  | 1 645.4  | 300.6    | 3 008.2  | 757.3    | 4 598.1  | 3 925.5  | 40 631.7  |
| All          | 21 049.2 | 167 648.6 | 46 697.5 | 27 852.5 | 17 481.0 | 41 174.6 | 23 348.2 | 20 937.6 | 41 848.2 | 325 828.8 |

Table D6: Estimated aggregate area (km²) for Deepwater Tier 1 bottom-contacting trawls, by target, for 1990-2019. Codes are defined in Table 1.

| Fishing | HAK     | НОК       | JMA       | LIN     | OEO     | ORH     | SBW     | SCI      | SQU       | Tier 1      |
|---------|---------|-----------|-----------|---------|---------|---------|---------|----------|-----------|-------------|
| 1990    | 943.8   | 30 685.6  | 9 311.5   | 2 705.6 | 2 596.9 | 8 692.9 | 2 283.6 | 2 138.9  | 31 098.8  | 90 457.7    |
| 1991    | 283.1   | 52 615.6  | 7 353.2   | 3 901.7 | 2 057.2 | 5 402.3 | 3 198.6 | 4 982.3  | 38 793.8  | 118 587.7   |
| 1992    | 2 579.7 | 58 956.6  | 11 959.3  | 2 622.3 | 1 098.0 | 4 975.6 | 6 342.3 | 7 584.7  | 32 903.9  | 129 022.6   |
| 1993    | 5 119.1 | 63 416.9  | 12 293.0  | 2 169.6 | 1 460.0 | 5 814.8 | 1 197.0 | 6 686.2  | 31 689.5  | 129 846.1   |
| 1994    | 2 455.0 | 47 547.5  | 11 580.9  | 1 751.2 | 1 747.3 | 7 627.6 | 822.6   | 7 249.1  | 33 048.8  | 113 829.9   |
| 1995    | 2 601.2 | 67 326.6  | 7 933.2   | 963.3   | 1 260.7 | 6 493.5 | 415.9   | 5 182.0  | 40 784.8  | 132 961.1   |
| 1996    | 1 751.3 | 76 059.0  | 8 589.5   | 1 514.7 | 2 154.9 | 3 638.5 | 737.0   | 4 555.7  | 36 355.0  | 135 355.6   |
| 1997    | 2 015.5 | 92 159.2  | 5 906.3   | 1 185.2 | 2 813.0 | 5 090.0 | 946.1   | 4 969.2  | 34 682.4  | 149 767.0   |
| 1998    | 1 708.7 | 107 903.8 | 11 760.5  | 1 263.3 | 1 847.9 | 7 674.9 | 2 031.6 | 4 821.0  | 27 731.6  | 166 743.1   |
| 1999    | 2 075.3 | 92 598.0  | 8 527.3   | 1 217.6 | 2 907.4 | 8 448.2 | 1 754.3 | 5 500.9  | 29 210.3  | 152 239.3   |
| 2000    | 1 885.3 | 98 135.9  | 5 794.7   | 1 680.2 | 2 720.1 | 5 693.4 | 1 377.1 | 7 037.1  | 21 669.0  | 145 992.8   |
| 2001    | 2 246.4 | 95 510.9  | 5 141.9   | 1 298.8 | 1 770.5 | 3 963.2 | 1 287.3 | 7 306.7  | 27 963.5  | 146 489.2   |
| 2002    | 4 118.2 | 90 927.3  | 7 802.2   | 1 507.0 | 1 735.1 | 3 849.6 | 2 659.0 | 10 249.4 | 26 396.8  | 149 244.6   |
| 2003    | 4 126.9 | 93 754.5  | 8 162.3   | 1 280.9 | 1 176.3 | 3 643.3 | 792.6   | 7 905.5  | 29 682.4  | 150 524.9   |
| 2004    | 7 781.2 | 70 265.0  | 6 055.4   | 1 189.0 | 1 427.6 | 4 957.9 | 1 063.2 | 7 134.8  | 28 120.1  | 127 994.2   |
| 2005    | 6 031.3 | 43 837.8  | 6 355.1   | 2 223.7 | 1 823.9 | 4 092.9 | 865.7   | 6 826.6  | 32 979.5  | 105 036.5   |
| 2006    | 5 076.0 | 36 616.8  | 7 049.8   | 3 473.7 | 1 526.1 | 3 487.8 | 722.9   | 7 160.0  | 24 026.4  | 89 139.5    |
| 2007    | 4 409.1 | 34 565.5  | 7 109.3   | 4 339.3 | 1 449.6 | 3 296.3 | 820.0   | 7 579.2  | 16 919.6  | 80 487.9    |
| 2008    | 7 012.9 | 30 076.4  | 6 626.5   | 6 383.3 | 1 269.9 | 2 526.7 | 986.3   | 7 974.2  | 12 143.5  | 74 999.7    |
| 2009    | 6 469.9 | 33 043.9  | 5 303.8   | 3 354.7 | 1 245.0 | 3 075.5 | 1 223.8 | 6 424.3  | 11 024.5  | 71 165.4    |
| 2010    | 3 105.4 | 42 795.1  | 7 012.1   | 2 274.3 | 1 395.4 | 2 984.6 | 1 660.4 | 7 418.0  | 12 279.7  | 80 925.2    |
| 2011    | 3 527.1 | 43 760.9  | 4 841.4   | 1 991.6 | 1 010.6 | 1 261.3 | 1 713.0 | 8 076.3  | 14 156.7  | 80 339.2    |
| 2012    | 3 144.2 | 45 918.4  | 5 759.4   | 1 976.5 | 901.3   | 1 010.0 | 1 141.4 | 7 695.7  | 12 320.9  | 79 867.7    |
| 2013    | 2 177.4 | 45 186.1  | 5 209.5   | 2 002.5 | 666.2   | 1 124.9 | 1 021.1 | 7 540.3  | 8 604.9   | 73 533.0    |
| 2014    | 2 702.4 | 49 266.2  | 4 842.8   | 2 414.0 | 560.5   | 1 546.9 | 757.5   | 7 273.2  | 6 637.4   | 76 000.9    |
| 2015    | 3 610.8 | 51 549.6  | 3 532.3   | 1 973.2 | 713.4   | 2 785.2 | 1 092.2 | 7 535.5  | 6 249.8   | 79 041.9    |
| 2016    | 1 831.7 | 48 588.6  | 3 273.4   | 2 300.7 | 472.8   | 3 668.7 | 947.8   | 9 521.0  | 8 508.4   | 79 113.0    |
| 2017    | 1 781.7 | 54 076.5  | 2 987.6   | 1 940.3 | 347.3   | 4 314.0 | 651.9   | 8 436.7  | 8 850.8   | 83 386.9    |
| 2018    | 693.0   | 62 113.1  | 3 304.2   | 2 083.3 | 484.2   | 3 675.4 | 807.7   | 8 310.5  | 9 877.3   | 91 348.7    |
| 2019    | 417.1   | 47 266.7  | 3 309.4   | 2 578.4 | 369.1   | 3 775.3 | 860.2   | 8 445.8  | 14 203.5  | 81 225.4    |
| All     | 93      | 1 806     | 204 687.7 | 67      | 43      | 128     | 42      | 209      | 668 913.7 | 3 264 666.6 |

Table D7: The number of 25-km<sup>2</sup> cells contacted by Deepwater Tier 1 bottom-contacting trawls, by target, for 1990–2019. Codes are defined in Table 1.

| Fishing year | HAK   | НОК     | JMA   | LIN   | OEO   | ORH   | SBW   | SCI   | SQU   | Tier 1 |
|--------------|-------|---------|-------|-------|-------|-------|-------|-------|-------|--------|
| 1990         | 457   | 4 474   | 2 262 | 1 050 | 1 054 | 2 072 | 598   | 807   | 1 858 | 11 498 |
| 1991         | 188   | 5 927   | 1 818 | 1 229 | 1 050 | 1 812 | 831   | 1 064 | 2 147 | 12 638 |
| 1992         | 726   | 6 212   | 2 117 | 1 232 | 528   | 1 578 | 2 132 | 1 568 | 1 731 | 13 886 |
| 1993         | 840   | 6 698   | 2 038 | 945   | 665   | 1 737 | 711   | 1 979 | 1 716 | 13 219 |
| 1994         | 506   | 5 857   | 2 168 | 738   | 747   | 2 166 | 535   | 1 464 | 2 244 | 12 575 |
| 1995         | 519   | 6 955   | 2 057 | 611   | 648   | 1 824 | 443   | 1 316 | 2 634 | 12 597 |
| 1996         | 501   | 6 884   | 2 100 | 758   | 955   | 1 599 | 539   | 1 116 | 2 150 | 12 504 |
| 1997         | 535   | 7 760   | 1 816 | 691   | 1 190 | 1 861 | 509   | 1 125 | 2 344 | 13 529 |
| 1998         | 753   | 8 109   | 2 236 | 849   | 1 079 | 2 503 | 670   | 1 335 | 2 178 | 14 822 |
| 1999         | 880   | 7 137   | 1 688 | 687   | 1 293 | 2 750 | 850   | 1 581 | 1 967 | 14 431 |
| 2000         | 718   | 8 029   | 1 554 | 995   | 1 198 | 2 403 | 572   | 1 206 | 2 390 | 14 607 |
| 2001         | 778   | 8 839   | 1 287 | 777   | 1 103 | 1 609 | 619   | 1 006 | 2 372 | 14 421 |
| 2002         | 855   | 8 647   | 1 849 | 763   | 1 123 | 1 651 | 1 219 | 1 375 | 2 089 | 15 732 |
| 2003         | 949   | 8 588   | 2 011 | 749   | 886   | 1 509 | 406   | 1 198 | 2 224 | 14 866 |
| 2004         | 896   | 7 755   | 1 399 | 564   | 960   | 1 665 | 423   | 961   | 1 718 | 13 292 |
| 2005         | 976   | 5 679   | 1 462 | 900   | 1 406 | 1 629 | 486   | 1 300 | 1 805 | 12 561 |
| 2006         | 723   | 4 301   | 1 752 | 1 263 | 1 140 | 1 413 | 410   | 1 256 | 2 110 | 11 635 |
| 2007         | 1 078 | 3 963   | 1 726 | 1 505 | 1 200 | 1 280 | 427   | 1 145 | 1 681 | 11 176 |
| 2008         | 1 012 | 4 146   | 1 685 | 2 072 | 885   | 1 293 | 365   | 1 075 | 1 183 | 10 992 |
| 2009         | 1 109 | 3 801   | 1 541 | 1 348 | 909   | 1 444 | 663   | 945   | 1 044 | 10 382 |
| 2010         | 504   | 3 991   | 1 496 | 1 413 | 864   | 1 437 | 729   | 1 018 | 1 291 | 10 641 |
| 2011         | 598   | 4 360   | 1 387 | 1 105 | 758   | 832   | 602   | 1 038 | 1 281 | 9 936  |
| 2012         | 460   | 4 295   | 1 356 | 883   | 667   | 765   | 629   | 942   | 1 137 | 9 499  |
| 2013         | 505   | 4 3 1 0 | 1 426 | 739   | 494   | 698   | 344   | 1 016 | 842   | 8 898  |
| 2014         | 572   | 4 664   | 1 499 | 879   | 486   | 1 116 | 326   | 1 083 | 745   | 9 647  |
| 2015         | 617   | 4 748   | 1 148 | 719   | 475   | 1 323 | 385   | 1 055 | 826   | 9 673  |
| 2016         | 469   | 4 293   | 1 149 | 877   | 477   | 1 684 | 463   | 1 104 | 1 063 | 9 781  |
| 2017         | 378   | 4 430   | 1 064 | 773   | 422   | 1 715 | 368   | 1 063 | 1 062 | 9 701  |
| 2018         | 284   | 4 610   | 1 107 | 858   | 438   | 1 518 | 356   | 1 246 | 756   | 9 689  |
| 2019         | 266   | 3 906   | 1 119 | 778   | 416   | 1 549 | 334   | 1 033 | 912   | 8 776  |
| All          | 4 411 | 21 740  | 6 268 | 6 660 | 5 618 | 9 186 | 4 034 | 6 753 | 8 150 | 37 352 |

Table D8: Estimated footprint (km²) for Deepwater Tier 2 bottom-contacting trawls, by target, for 1990–2019. Codes are defined in Table 2. Not included in the table: 9.6 km² for PRK, 73.7 km² for PTO.

| Fishing year | BAR      | BYX     | CDL     | EMA   | FRO     | GSH  | LDO     | RBT   | RBY     | RIB   | SKI     | SPD     | SPE     | SWA      | WWA     | All      |
|--------------|----------|---------|---------|-------|---------|------|---------|-------|---------|-------|---------|---------|---------|----------|---------|----------|
| 1990         | 4 756.6  | 80.5    | 44.9    |       | 5.0     | 2.0  |         |       | 12.4    |       | 513.0   | 110.7   | 29.5    | 2 653.8  | 492.0   | 8 700.4  |
| 1991         | 3 230.6  | 54.8    | 131.8   | 36.7  | 11.3    |      |         |       | 6.1     |       | 224.3   | 97.6    | 34.6    | 2 006.7  | 158.4   | 5 993.0  |
| 1992         | 3 297.3  | 162.4   | 91.8    | 0.9   | 7.5     |      |         | 0.6   | 30.0    |       | 439.9   | 26.5    | 26.6    | 2 037.8  | 49.5    | 6 170.8  |
| 1993         | 3 525.0  | 261.3   | 97.9    | 4.2   | 40.1    |      | 25.2    |       | 35.7    |       | 412.1   |         | 24.2    | 2 780.5  | 8.2     | 7 224.0  |
| 1994         | 2 495.1  | 317.5   | 182.1   | 29.3  | 0.4     |      | 5.2     |       | 24.1    |       | 72.2    |         | 29.4    | 2 486.6  |         | 5 642.0  |
| 1995         | 4 080.1  | 302.3   | 140.0   |       | 96.7    |      |         |       | 56.5    |       | 48.9    |         | 25.2    | 3 141.2  | 9.1     | 7 899.9  |
| 1996         | 3 415.2  | 249.5   | 273.7   |       |         |      |         |       | 27.4    |       | 88.1    | 5.8     | 14.5    | 2 406.8  |         | 6 554.8  |
| 1997         | 2 486.6  | 257.7   | 178.7   | 49.3  |         |      |         |       | 23.4    |       | 98.0    | 18.3    | 30.1    | 1 084.0  | 3.0     | 4 229.1  |
| 1998         | 2 390.0  | 239.0   | 254.7   |       | 73.1    |      |         |       | 49.7    |       | 47.5    |         | 81.0    | 859.1    | 13.0    | 4 007.1  |
| 1999         | 1 851.1  | 250.9   | 400.7   | 125.7 | 250.5   |      |         |       | 58.9    |       |         |         | 5.1     | 643.6    | 77.7    | 3 664.2  |
| 2000         | 1 721.8  | 256.3   | 435.0   |       | 32.7    |      |         |       | 77.8    |       | 61.5    |         |         | 909.7    | 107.6   | 3 602.2  |
| 2001         | 1 885.0  | 218.9   | 225.0   |       | 241.2   |      |         |       | 119.7   |       |         |         | 7.0     | 900.5    | 170.7   | 3 768.0  |
| 2002         | 2 253.2  | 163.7   | 191.5   |       | 229.0   | 1.7  | 47.8    |       | 61.4    |       |         | 94.9    | 302.5   | 1 395.4  | 305.7   | 5 046.8  |
| 2003         | 2 192.2  | 229.7   | 260.6   | 12.5  | 10.2    |      | 7.1     |       | 29.9    |       | 130.4   |         | 1 247.5 | 793.0    | 343.7   | 5 256.8  |
| 2004         | 1 482.9  | 203.3   | 135.7   |       | 10.5    |      |         |       | 53.2    |       | 16.9    | 16.4    | 650.6   | 311.8    | 309.1   | 3 190.4  |
| 2005         | 2 104.7  | 291.3   | 169.5   | 28.3  | 6.1     |      |         | 0.9   | 60.9    | 38.6  |         | 37.7    | 40.9    | 1 492.1  | 417.7   | 4 688.8  |
| 2006         | 1 411.3  | 366.2   | 208.0   | 91.4  | 37.6    |      |         | 38.8  | 75.0    | 60.6  | 2.1     | 125.7   | 166.4   | 1 956.1  | 389.2   | 4 928.4  |
| 2007         | 2 222.3  | 301.4   | 261.1   | 26.4  | 8.2     | 1.6  |         | 3.3   | 92.8    |       |         | 49.8    | 612.5   | 2 537.1  | 289.5   | 6 406.1  |
| 2008         | 3 887.3  | 272.7   | 164.7   | 46.4  |         |      | 73.3    | 22.1  | 77.5    |       | 21.2    | 130.5   | 412.2   | 3 430.9  | 247.2   | 8 786.1  |
| 2009         | 2 633.3  | 217.9   | 114.4   | 52.9  |         |      | 13.0    | 43.8  | 41.9    |       | 37.6    | 225.2   | 45.4    | 3 199.2  | 329.7   | 6 954.5  |
| 2010         | 1 997.5  | 355.8   | 162.0   | 1.5   |         |      | 86.3    | 28.4  | 154.1   |       | 34.8    | 243.8   | 243.5   | 2 444.2  | 336.8   | 6 088.8  |
| 2011         | 1 781.3  | 351.2   | 134.5   | 5.1   |         |      | 126.6   | 7.0   | 139.0   |       | 126.5   | 162.0   | 505.8   | 2 770.7  | 150.1   | 6 260.0  |
| 2012         | 2 223.1  | 401.3   | 92.1    | 47.7  |         | 16.1 | 99.4    | 34.4  | 123.6   |       | 150.8   | 105.9   | 123.3   | 1 975.4  | 214.0   | 5 607.1  |
| 2013         | 2 198.7  | 142.8   | 58.7    | 10.9  |         | 42.8 | 257.6   | 106.3 | 128.4   |       | 157.1   | 48.8    | 248.2   | 2 191.9  | 260.7   | 5 852.8  |
| 2014         | 2 523.3  | 273.6   | 90.4    |       | 2.2     | 20.3 | 121.9   | 87.3  | 97.6    |       | 84.2    | 79.9    | 205.4   | 1 998.1  | 353.7   | 5 937.9  |
| 2015         | 2 694.6  | 293.7   | 84.4    |       | 11.5    | 4.7  | 184.5   | 25.2  | 70.9    | 0.4   | 88.3    | 100.0   | 269.6   | 1 479.3  | 195.4   | 5 502.3  |
| 2016         | 2 186.0  | 210.0   | 54.3    |       | 39.2    | 11.3 | 154.6   | 5.8   | 133.1   |       | 83.1    |         | 261.7   | 1 552.9  | 192.3   | 4 884.3  |
| 2017         | 2 414.2  | 229.3   | 58.8    |       | 24.4    |      | 90.2    | 31.0  | 72.0    |       | 44.5    | 0.7     | 217.7   | 1 615.1  | 183.6   | 4 981.3  |
| 2018         | 2 024.7  | 154.3   | 35.5    |       | 23.2    |      | 157.0   | 12.9  | 107.8   | 5.6   | 19.8    |         | 214.6   | 1 752.6  | 137.6   | 4 645.6  |
| 2019         | 2 082.1  | 321.0   | 70.1    | 24.4  | 68.3    |      | 89.7    | 9.1   | 72.1    |       | 15.1    |         | 247.3   | 958.4    | 112.1   | 4 069.5  |
| All          | 35 422.5 | 3 847.5 | 2 213.6 | 570.2 | 1 032.2 | 88.5 | 1 113.2 | 440.6 | 1 564.0 | 104.2 | 2 579.5 | 1 428.5 | 4877.4  | 26 149.5 | 3 689.3 | 74 217.1 |

Table D9: Estimated aggregate area (km²) for Deepwater Tier 2 bottom-contacting trawls, by target, for 1990–2019. Codes are defined in Table 2. Not included in the table: 10.4 km² for PRK, 74.6 km² for PTO.

| Fishing year | BAR      | BYX      | CDL     | EMA   | FRO     | GSH   | LDO     | RBT   | RBY     | RIB   | SKI     | SPD     | SPE     | SWA      | WWA     | All       |
|--------------|----------|----------|---------|-------|---------|-------|---------|-------|---------|-------|---------|---------|---------|----------|---------|-----------|
| 1990         | 6 262.9  | 123.8    | 65.3    |       | 5.0     | 2.0   |         |       | 12.4    |       | 612.9   | 111.5   | 29.8    | 3 590.2  | 571.1   | 11 386.9  |
| 1991         | 4 419.1  | 109.0    | 261.1   | 36.9  | 11.3    |       |         |       | 6.3     |       | 242.8   | 101.3   | 34.7    | 2 484.2  | 163.1   | 7 869.7   |
| 1992         | 4 402.6  | 281.9    | 119.4   | 0.9   | 7.5     |       |         | 0.6   | 31.8    |       | 484.9   | 27.3    | 27.9    | 2 835.6  | 50.9    | 8 271.4   |
| 1993         | 5 123.8  | 374.6    | 116.4   | 4.2   | 40.2    |       | 30.5    |       | 36.9    |       | 443.4   |         | 25.7    | 4 046.4  | 8.2     | 10 260.8  |
| 1994         | 3 620.6  | 405.8    | 253.7   | 29.4  | 0.4     |       | 5.2     |       | 25.7    |       | 75.5    |         | 30.0    | 3 804.0  |         | 8 250.3   |
| 1995         | 6 439.2  | 385.4    | 213.9   |       | 105.4   |       |         |       | 66.3    |       | 49.3    |         | 26.6    | 4 378.9  | 9.1     | 11 673.9  |
| 1996         | 4 948.1  | 320.4    | 403.5   |       |         |       |         |       | 29.0    |       | 89.7    | 5.8     | 14.5    | 3 192.5  |         | 9 078.1   |
| 1997         | 3 205.6  | 355.8    | 330.4   | 50.1  |         |       |         |       | 24.7    |       | 103.0   | 19.1    | 30.5    | 1 333.7  | 3.0     | 5 455.9   |
| 1998         | 3 179.7  | 317.9    | 350.9   |       | 76.3    |       |         |       | 51.7    |       | 48.7    |         | 84.1    | 1 036.0  | 13.2    | 5 158.6   |
| 1999         | 2 357.0  | 333.4    | 569.3   | 131.6 | 300.6   |       |         |       | 61.4    |       |         |         | 5.1     | 742.1    | 95.0    | 4 595.6   |
| 2000         | 2 422.6  | 342.7    | 590.2   |       | 35.0    |       |         |       | 82.0    |       | 63.8    |         |         | 1 074.1  | 129.8   | 4 740.3   |
| 2001         | 2 452.2  | 287.7    | 291.9   |       | 275.1   |       |         |       | 135.5   |       |         |         | 7.0     | 1 002.4  | 209.9   | 4 661.5   |
| 2002         | 2 597.5  | 205.6    | 270.6   |       | 254.3   | 1.7   | 52.0    |       | 66.6    |       |         | 97.5    | 327.2   | 1 707.4  | 388.7   | 5 969.3   |
| 2003         | 3 024.0  | 317.7    | 383.1   | 12.6  | 10.2    |       | 7.1     |       | 30.8    |       | 135.5   |         | 1 463.5 | 871.5    | 431.1   | 6 687.1   |
| 2004         | 1 761.9  | 274.6    | 176.5   |       | 10.5    |       |         |       | 56.3    |       | 16.9    | 16.4    | 762.9   | 335.7    | 373.8   | 3 785.5   |
| 2005         | 2 570.5  | 451.7    | 242.0   | 28.4  | 6.1     |       |         | 0.9   | 67.2    | 38.8  |         | 37.7    | 41.1    | 1 841.8  | 524.2   | 5 850.5   |
| 2006         | 1 720.8  | 562.9    | 319.2   | 93.3  | 41.1    |       |         | 41.0  | 82.0    | 60.6  | 2.1     | 128.0   | 169.6   | 2 493.6  | 478.1   | 6 192.4   |
| 2007         | 2 650.6  | 427.9    | 405.2   | 26.8  | 8.5     | 1.6   |         | 3.3   | 100.7   |       |         | 50.2    | 665.6   | 3 185.7  | 347.8   | 7 874.0   |
| 2008         | 4 620.2  | 352.1    | 213.1   | 47.4  |         |       | 77.5    | 22.4  | 84.6    |       | 21.3    | 136.4   | 435.3   | 4 275.3  | 303.7   | 10 589.3  |
| 2009         | 3 000.0  | 324.6    | 144.6   | 54.9  |         |       | 13.1    | 44.9  | 43.9    |       | 37.8    | 240.2   | 46.6    | 4 113.0  | 421.2   | 8 484.9   |
| 2010         | 2 190.6  | 469.6    | 204.3   | 1.5   |         |       | 89.9    | 28.7  | 167.3   |       | 35.5    | 277.0   | 250.8   | 2 815.1  | 380.3   | 6 910.6   |
| 2011         | 1 962.7  | 465.5    | 163.8   | 5.2   |         |       | 141.2   | 7.0   | 158.8   |       | 140.5   | 177.1   | 564.7   | 3 186.1  | 166.2   | 7 138.8   |
| 2012         | 2 472.3  | 532.9    | 112.2   | 49.7  |         | 16.3  | 112.0   | 34.6  | 135.2   |       | 160.6   | 115.3   | 124.7   | 2 234.5  | 262.3   | 6 362.3   |
| 2013         | 2 490.2  | 169.2    | 69.6    | 11.0  |         | 46.5  | 289.8   | 109.0 | 142.9   |       | 164.9   | 52.9    | 280.8   | 2 636.6  | 307.2   | 6 770.6   |
| 2014         | 2 783.4  | 339.4    | 106.9   |       | 2.2     | 20.7  | 130.5   | 90.9  | 112.6   |       | 86.0    | 84.6    | 230.6   | 2 394.6  | 441.8   | 6 824.2   |
| 2015         | 3 300.0  | 369.7    | 95.9    |       | 11.5    | 4.7   | 202.2   | 25.3  | 87.3    | 0.4   | 94.5    | 104.1   | 383.6   | 1 959.4  | 221.9   | 6 860.4   |
| 2016         | 2 607.2  | 250.4    | 63.1    |       | 40.7    | 12.1  | 164.8   | 5.8   | 175.8   |       | 86.5    |         | 302.2   | 1 736.3  | 207.1   | 5 652.2   |
| 2017         | 3 192.6  | 280.5    | 73.0    |       | 25.6    |       | 93.6    | 31.3  | 77.8    |       | 45.6    | 0.7     | 292.9   | 1 861.4  | 206.0   | 6 180.9   |
| 2018         | 2 644.7  | 215.2    | 46.8    |       | 23.4    |       | 165.1   | 12.9  | 114.8   | 5.6   | 20.5    |         | 289.0   | 2 004.7  | 153.4   | 5 696.0   |
| 2019         | 3 076.8  | 437.9    | 91.9    | 24.7  | 74.7    |       | 94.6    | 9.1   | 77.4    |       | 15.1    |         | 323.4   | 1 196.5  | 129.5   | 5 551.5   |
| All          | 97 499.5 | 10 085.5 | 6 747.9 | 608.7 | 1 365.7 | 105.6 | 1 669.0 | 467.8 | 2 345.6 | 105.4 | 3 277.5 | 1 783.0 | 7 270.5 | 70 369.2 | 6 997.6 | 210 783.5 |

Table D10: The number of 25-km<sup>2</sup> cells contacted by Deepwater Tier 2 bottom-contacting trawls, by target, for 1990–2019. Codes are defined in Table 2.

| Fishing year | BAR   | BYX   | CDL   | EMA | FRO | GSH | LDO | PRK | PTO | RBT | RBY | RIB | SKI   | SPD | SPE   | SWA   | WWA   | All    |
|--------------|-------|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-------|-------|-------|--------|
| 1990         | 1 792 | 57    | 33    |     | 8   | 5   |     |     |     |     | 15  |     | 326   | 129 | 56    | 1 227 | 336   | 3 090  |
| 1991         | 1 393 | 39    | 92    | 52  | 16  |     |     |     |     |     | 13  |     | 166   | 103 | 61    | 1 070 | 186   | 2 567  |
| 1992         | 1 351 | 104   | 80    | 2   | 14  |     |     |     |     | 2   | 39  |     | 193   | 43  | 47    | 1 126 | 63    | 2 551  |
| 1993         | 1 456 | 165   | 108   | 6   | 48  |     | 33  | 17  |     |     | 65  |     | 325   |     | 37    | 1 271 | 15    | 2 972  |
| 1994         | 1 192 | 264   | 157   | 48  | 1   |     | 15  |     |     |     | 37  |     | 113   |     | 54    | 1 283 |       | 2 739  |
| 1995         | 1 789 | 292   | 132   |     | 55  |     |     |     |     |     | 60  |     | 77    |     | 44    | 1 516 | 15    | 3 491  |
| 1996         | 1 670 | 260   | 209   |     |     |     |     |     | 120 |     | 47  |     | 99    | 11  | 46    | 1 151 |       | 3 107  |
| 1997         | 1 187 | 218   | 133   | 53  |     |     |     |     |     |     | 61  |     | 74    | 23  | 38    | 646   | 6     | 2 212  |
| 1998         | 1 230 | 219   | 191   |     | 63  |     |     |     |     |     | 75  |     | 68    |     | 94    | 661   | 21    | 2 321  |
| 1999         | 1 080 | 265   | 291   | 100 | 137 |     |     |     |     |     | 82  |     |       |     | 11    | 594   | 67    | 2 293  |
| 2000         | 1 068 | 237   | 293   |     | 32  |     |     |     |     |     | 115 |     | 55    |     |       | 621   | 70    | 2 133  |
| 2001         | 1 259 | 207   | 209   |     | 111 |     |     |     |     |     | 144 |     |       |     | 14    | 723   | 102   | 2 420  |
| 2002         | 1 665 | 180   | 177   |     | 146 | 5   | 39  |     |     |     | 135 |     |       | 102 | 187   | 865   | 190   | 3 207  |
| 2003         | 1 345 | 204   | 234   | 22  | 20  |     | 24  |     |     |     | 63  |     | 120   |     | 491   | 562   | 226   | 2 947  |
| 2004         | 971   | 203   | 180   |     | 15  |     |     |     |     |     | 76  |     | 16    | 28  | 249   | 345   | 180   | 2 048  |
| 2005         | 1 078 | 236   | 190   | 53  | 15  |     |     |     |     | 3   | 91  | 43  |       | 71  | 68    | 707   | 223   | 2 425  |
| 2006         | 790   | 293   | 153   | 104 | 32  |     |     |     |     | 41  | 141 | 84  | 7     | 155 | 194   | 943   | 210   | 2 594  |
| 2007         | 1 277 | 243   | 195   | 43  | 14  | 6   |     |     |     | 7   | 141 |     |       | 66  | 427   | 1 187 | 219   | 3 249  |
| 2008         | 2 322 | 235   | 155   | 70  |     |     | 55  |     |     | 34  | 121 |     | 49    | 168 | 403   | 1 688 | 208   | 4 787  |
| 2009         | 1 795 | 182   | 117   | 65  |     |     | 31  |     |     | 46  | 78  |     | 65    | 205 | 124   | 1 441 | 307   | 3 925  |
| 2010         | 1 564 | 307   | 161   | 3   |     |     | 88  |     |     | 51  | 218 |     | 42    | 204 | 392   | 1 322 | 225   | 4 068  |
| 2011         | 1 678 | 307   | 144   | 6   |     |     | 135 |     |     | 9   | 158 |     | 127   | 157 | 400   | 1 490 | 151   | 4 198  |
| 2012         | 1 668 | 312   | 113   | 64  |     | 18  | 106 |     |     | 58  | 133 |     | 149   | 117 | 193   | 1 230 | 139   | 3 786  |
| 2013         | 1 604 | 148   | 81    | 22  |     | 28  | 185 |     |     | 128 | 134 |     | 170   | 73  | 242   | 1 178 | 206   | 3 539  |
| 2014         | 1 884 | 249   | 101   |     | 4   | 16  | 128 |     |     | 71  | 114 |     | 118   | 106 | 244   | 1 193 | 255   | 3 991  |
| 2015         | 1 680 | 255   | 109   |     | 17  | 10  | 154 |     |     | 42  | 72  | 2   | 108   | 129 | 208   | 984   | 191   | 3 551  |
| 2016         | 1 633 | 209   | 84    |     | 41  | 9   | 172 |     |     | 15  | 143 |     | 108   |     | 285   | 1 085 | 191   | 3 550  |
| 2017         | 1 695 | 255   | 80    |     | 29  |     | 112 |     |     | 39  | 132 |     | 61    | 2   | 231   | 1 093 | 175   | 3 490  |
| 2018         | 1 279 | 194   | 55    |     | 36  |     | 173 |     |     | 26  | 176 | 17  | 42    |     | 205   | 1 127 | 140   | 3 082  |
| 2019         | 1 329 | 367   | 85    | 34  | 61  |     | 122 |     |     | 19  | 122 |     | 28    |     | 188   | 727   | 138   | 2 884  |
| All          | 7 371 | 1 844 | 1 039 | 474 | 374 | 56  | 476 | 17  | 120 | 369 | 922 | 118 | 1 196 | 834 | 1 789 | 6 556 | 1 571 | 15 587 |

Table D11: The number of contacted 25-km<sup>2</sup> cells, estimated aggregate area, and footprint for combined targets HAK/HOK/LIN/SWA/WWA bottom-contacting trawls, for 1990–2019. Codes are defined in Tables 1 and 2.

| Fishing year | No. cells | Aggregate area (km²) | Footprint (km <sup>2</sup> ) | EEZ+TS (%) | Fishable (%) |
|--------------|-----------|----------------------|------------------------------|------------|--------------|
| 1990         | 5 302     | 38 600.3             | 20 934.0                     | 0.5        | 1.5          |
| 1991         | 6 617     | 59 749.7             | 30 331.8                     | 0.7        | 2.2          |
| 1992         | 7 049     | 67 330.3             | 36 875.8                     | 0.9        | 2.6          |
| 1993         | 7 464     | 74 947.4             | 40 209.1                     | 1.0        | 2.9          |
| 1994         | 6 642     | 55 727.6             | 30 517.4                     | 0.7        | 2.2          |
| 1995         | 7 617     | 75 409.9             | 38 453.3                     | 0.9        | 2.8          |
| 1996         | 7 537     | 82 681.8             | 40 290.4                     | 1.0        | 2.9          |
| 1997         | 8 150     | 96 940.6             | 45 394.0                     | 1.1        | 3.3          |
| 1998         | 8 559     | 112 327.2            | 50 788.5                     | 1.2        | 3.6          |
| 1999         | 7 622     | 96 883.0             | 47 357.7                     | 1.2        | 3.4          |
| 2000         | 8 612     | 103 132.9            | 51 587.4                     | 1.3        | 3.7          |
| 2001         | 9 154     | 100 577.9            | 53 308.8                     | 1.3        | 3.8          |
| 2002         | 9 391     | 99 116.2             | 54 775.9                     | 1.3        | 3.9          |
| 2003         | 9 291     | 100 903.0            | 55 618.5                     | 1.4        | 4.0          |
| 2004         | 8 281     | 80 309.8             | 45 439.5                     | 1.1        | 3.3          |
| 2005         | 6 508     | 54 725.2             | 31 589.8                     | 0.8        | 2.3          |
| 2006         | 5 512     | 48 210.7             | 27 314.3                     | 0.7        | 2.0          |
| 2007         | 5 546     | 46 909.1             | 27 777.8                     | 0.7        | 2.0          |
| 2008         | 6 408     | 48 186.4             | 29 169.4                     | 0.7        | 2.1          |
| 2009         | 5 535     | 47 527.5             | 26 748.8                     | 0.7        | 1.9          |
| 2010         | 5 393     | 51 472.4             | 28 416.5                     | 0.7        | 2.0          |
| 2011         | 5 734     | 52 844.5             | 29 538.6                     | 0.7        | 2.1          |
| 2012         | 5 529     | 53 617.5             | 29 042.4                     | 0.7        | 2.1          |
| 2013         | 5 449     | 52 432.2             | 28 193.6                     | 0.7        | 2.0          |
| 2014         | 5 843     | 57 544.0             | 31 467.6                     | 0.8        | 2.3          |
| 2015         | 5 863     | 59 537.3             | 31 854.5                     | 0.8        | 2.3          |
| 2016         | 5 498     | 54 859.8             | 29 214.3                     | 0.7        | 2.1          |
| 2017         | 5 543     | 60 012.8             | 29 601.9                     | 0.7        | 2.1          |
| 2018         | 5 690     | 67 380.6             | 31 993.3                     | 0.8        | 2.3          |
| 2019         | 4 753     | 51 822.6             | 26 704.5                     | 0.6        | 1.9          |
| All          | 23 636    | 2 051 720.2          | 188 823.8                    | 4.6        | 13.6         |

Table D12: Estimated footprint (km²) for HAK/HOK/LIN/SWA/WWA bottom-contacting trawls, by Bycatch Assessment Area (see Figure 16), for 1990–2019.

| Fishing year | CHAT4    | COOK8   | EAST2   | NORTH1  | PUYS5   | SQUAK6  | STEW5    | SUBA6    | WCNI9 | WCSI7    | All       |
|--------------|----------|---------|---------|---------|---------|---------|----------|----------|-------|----------|-----------|
| 1990         | 7 507.6  | 135.5   | 11.1    |         | 1 288.2 | 150.2   | 6 008.9  | 810.1    | 9.9   | 5 012.5  | 20 934.0  |
| 1991         | 11 612.6 | 261.7   | 43.6    |         | 1 187.8 | 167.4   | 8 882.9  | 1 848.4  | 15.9  | 6 311.5  | 30 331.8  |
| 1992         | 15 375.8 | 298.0   | 38.4    |         | 1 290.3 | 190.6   | 11 999.5 | 2 090.3  | 13.0  | 5 579.9  | 36 875.8  |
| 1993         | 18 319.6 | 473.3   | 127.3   | 46.5    | 1 008.4 | 286.8   | 11 607.1 | 630.1    | 13.8  | 7 696.0  | 40 209.1  |
| 1994         | 13 115.1 | 543.1   | 434.9   | 32.8    | 885.9   | 395.3   | 6 836.8  | 559.3    | 11.0  | 7 703.1  | 30 517.4  |
| 1995         | 20 635.3 | 579.6   | 212.3   | 84.1    | 791.0   | 347.7   | 8 124.9  | 427.3    | 13.0  | 7 238.1  | 38 453.3  |
| 1996         | 20 995.1 | 1 292.5 | 838.4   | 430.4   | 1 029.6 | 516.1   | 8 276.7  | 540.0    | 15.1  | 6 356.7  | 40 290.4  |
| 1997         | 23 298.1 | 1 489.1 | 1 608.6 | 843.5   | 1 091.8 | 717.7   | 9 124.5  | 460.5    | 37.8  | 6 722.4  | 45 394.0  |
| 1998         | 29 287.7 | 1 091.0 | 1 611.9 | 731.8   | 1 167.0 | 1 531.0 | 9 077.6  | 623.6    | 33.9  | 5 633.0  | 50 788.5  |
| 1999         | 29 670.5 | 816.6   | 578.3   | 543.7   | 931.5   | 717.4   | 7 481.2  | 553.8    | 31.3  | 6 033.4  | 47 357.7  |
| 2000         | 28 677.6 | 910.4   | 463.5   | 315.9   | 1 212.4 | 1 419.1 | 9 474.6  | 3 275.9  | 104.2 | 5 733.9  | 51 587.4  |
| 2001         | 28 665.7 | 673.7   | 628.9   | 162.0   | 1 406.6 | 1 695.7 | 9 135.9  | 4 263.8  | 79.9  | 6 596.6  | 53 308.8  |
| 2002         | 26 282.4 | 519.1   | 297.1   | 306.8   | 945.5   | 1 576.4 | 10 631.1 | 5 667.0  | 50.6  | 8 499.9  | 54 775.9  |
| 2003         | 28 733.1 | 619.3   | 403.4   | 151.3   | 792.5   | 1 621.3 | 8 029.4  | 7 385.4  | 10.0  | 7 872.8  | 55 618.5  |
| 2004         | 25 142.8 | 651.3   | 396.8   | 326.6   | 531.4   | 1 094.1 | 6 060.9  | 4 666.9  | 44.4  | 6 524.2  | 45 439.5  |
| 2005         | 17 484.1 | 618.4   | 293.3   | 185.5   | 790.9   | 652.2   | 3 943.2  | 2 198.4  | 1.6   | 5 422.2  | 31 589.8  |
| 2006         | 15 180.3 | 449.1   | 150.1   | 264.1   | 812.0   | 112.7   | 3 764.9  | 393.7    | 6.8   | 6 180.4  | 27 314.3  |
| 2007         | 16 528.7 | 406.1   | 138.4   | 228.5   | 656.8   | 130.9   | 4 387.0  | 815.5    |       | 4 485.9  | 27 777.8  |
| 2008         | 16 439.9 | 409.6   | 150.8   | 123.4   | 770.7   | 391.7   | 3 867.4  | 1 153.9  | 2.1   | 5 859.8  | 29 169.4  |
| 2009         | 15 187.0 | 363.0   | 238.7   | 141.6   | 424.6   | 367.6   | 4 479.9  | 961.3    | 17.1  | 4 568.2  | 26 748.8  |
| 2010         | 16 705.3 | 408.3   | 240.4   | 352.1   | 406.7   | 209.7   | 5 062.8  | 678.3    | 8.8   | 4 344.2  | 28 416.5  |
| 2011         | 16 274.1 | 309.0   | 411.6   | 350.7   | 570.8   | 370.9   | 5 053.9  | 1 202.8  | 5.4   | 4 989.4  | 29 538.6  |
| 2012         | 16 663.4 | 292.9   | 261.1   | 394.9   | 658.8   | 222.9   | 5 029.9  | 631.2    | 46.6  | 4 840.6  | 29 042.4  |
| 2013         | 16 101.1 | 383.2   | 316.2   | 433.0   | 463.9   | 237.7   | 4 910.9  | 839.9    | 11.7  | 4 496.0  | 28 193.6  |
| 2014         | 15 095.3 | 445.8   | 570.0   | 356.7   | 610.8   | 588.5   | 6 881.1  | 1 645.9  | 8.0   | 5 265.5  | 31 467.6  |
| 2015         | 16 272.7 | 405.6   | 334.5   | 381.3   | 458.6   | 556.1   | 6 588.9  | 932.0    | 1.8   | 5 923.1  | 31 854.5  |
| 2016         | 17 103.8 | 347.3   | 351.0   | 256.5   | 723.8   | 362.1   | 4 226.8  | 615.5    | 1.2   | 5 226.0  | 29 214.3  |
| 2017         | 15 885.2 | 362.5   | 337.6   | 321.8   | 465.9   | 414.0   | 5 328.4  | 845.6    | 2.6   | 5 638.3  | 29 601.9  |
| 2018         | 16 189.9 | 283.9   | 479.0   | 464.0   | 357.5   | 594.1   | 6 092.1  | 1 717.7  | 3.3   | 5 811.7  | 31 993.3  |
| 2019         | 14 976.9 | 222.2   | 485.2   | 651.4   | 526.1   | 369.7   | 4 089.9  | 1 023.3  | 3.6   | 4 356.4  | 26 704.5  |
| All          | 83 210.1 | 3 398.4 | 5 121.5 | 3 432.2 | 3 905.2 | 7 243.8 | 36 590.0 | 23 112.5 | 579.1 | 22 231.0 | 188 823.8 |

Table D13: Estimated aggregate area (km²) for HAK/HOK/LIN/SWA/WWA bottom-contacting trawls, by Bycatch Assessment Area (see Figure 16), for 1990–2019.

| Fishing year | CHAT4      | COOK8    | EAST2    | NORTH1   | PUYS5    | SQUAK6   | STEW5     | SUBA6    | WCNI9 | WCSI7     | All         |
|--------------|------------|----------|----------|----------|----------|----------|-----------|----------|-------|-----------|-------------|
| 1990         | 10 951.6   | 280.9    | 11.5     | _        | 2 509.5  | 163.1    | 10 415.8  | 909.1    | 9.9   | 13 348.9  | 38 600.3    |
| 1991         | 22 774.9   | 878.9    | 52.3     | _        | 3 232.5  | 185.0    | 15 737.7  | 2 514.4  | 16.2  | 14 357.8  | 59 749.7    |
| 1992         | 27 107.0   | 774.9    | 41.0     | _        | 3 781.5  | 229.3    | 21 525.6  | 2 679.6  | 13.0  | 11 178.4  | 67 330.3    |
| 1993         | 33 242.8   | 1 409.4  | 138.3    | 51.1     | 2 058.1  | 367.9    | 21 263.1  | 779.7    | 14.8  | 15 622.2  | 74 947.4    |
| 1994         | 19 889.5   | 1 306.0  | 503.2    | 33.8     | 1 393.3  | 525.6    | 11 409.0  | 706.3    | 11.0  | 19 949.9  | 55 727.6    |
| 1995         | 39 485.6   | 1 903.0  | 283.0    | 86.7     | 1 283.1  | 482.7    | 12 084.0  | 494.9    | 13.4  | 19 293.5  | 75 409.9    |
| 1996         | 43 544.2   | 5 175.3  | 1 322.2  | 544.6    | 2 018.0  | 622.5    | 13 802.3  | 611.9    | 15.6  | 15 025.3  | 82 681.8    |
| 1997         | 51 445.2   | 5 434.0  | 2 460.3  | 1 259.1  | 2 017.4  | 889.3    | 15 832.2  | 531.0    | 39.2  | 17 032.8  | 96 940.6    |
| 1998         | 66 542.3   | 3 252.8  | 2 666.4  | 912.8    | 2 220.9  | 2 200.0  | 17 167.1  | 921.9    | 37.4  | 16 405.6  | 112 327.2   |
| 1999         | 60 542.4   | 2 595.6  | 1 167.3  | 717.1    | 1 700.1  | 879.8    | 13 453.1  | 1 143.3  | 31.4  | 14 652.9  | 96 883.0    |
| 2000         | 56 365.4   | 2 862.2  | 962.3    | 377.3    | 2 523.3  | 2 016.9  | 19 146.4  | 4 371.3  | 110.2 | 14 397.6  | 103 132.9   |
| 2001         | 52 486.3   | 1 911.8  | 995.4    | 175.3    | 2 628.7  | 2 235.2  | 17 417.6  | 5 794.9  | 82.0  | 16 850.8  | 100 577.9   |
| 2002         | 46 782.2   | 1 487.5  | 434.0    | 417.0    | 1 464.5  | 2 277.0  | 20 395.6  | 7 747.8  | 51.2  | 18 059.3  | 99 116.2    |
| 2003         | 53 499.6   | 1 775.1  | 655.5    | 179.8    | 1 117.0  | 2 126.3  | 12 126.3  | 9 765.7  | 10.6  | 19 647.0  | 100 903.0   |
| 2004         | 44 498.8   | 2 063.3  | 624.4    | 425.4    | 644.3    | 1 384.9  | 9 075.3   | 5 962.0  | 46.5  | 15 584.8  | 80 309.8    |
| 2005         | 30 264.8   | 2 089.1  | 514.5    | 226.7    | 1 148.2  | 812.6    | 6 297.7   | 2 857.7  | 1.9   | 10 512.2  | 54 725.2    |
| 2006         | 26 083.6   | 1 191.0  | 260.5    | 301.6    | 1 391.9  | 131.5    | 6 220.2   | 432.6    | 6.8   | 12 190.9  | 48 210.7    |
| 2007         | 28 323.2   | 1 120.4  | 180.6    | 285.2    | 881.9    | 164.2    | 7 738.7   | 975.3    |       | 7 239.5   | 46 909.1    |
| 2008         | 26 554.5   | 1 196.9  | 184.7    | 136.7    | 1 055.1  | 595.2    | 6 125.7   | 1 751.4  | 2.1   | 10 584.1  | 48 186.4    |
| 2009         | 27 595.6   | 1 055.7  | 307.9    | 147.1    | 553.3    | 546.9    | 7 762.6   | 1 513.9  | 17.2  | 8 027.3   | 47 527.5    |
| 2010         | 31 056.3   | 933.9    | 275.4    | 381.9    | 497.4    | 307.7    | 8 991.7   | 937.8    | 9.2   | 8 081.3   | 51 472.4    |
| 2011         | 29 251.1   | 707.9    | 577.7    | 381.0    | 811.8    | 774.3    | 8 326.8   | 2 227.8  | 5.4   | 9 780.7   | 52 844.5    |
| 2012         | 31 417.9   | 774.9    | 301.3    | 464.9    | 897.8    | 276.8    | 8 774.1   | 800.8    | 47.1  | 9 862.0   | 53 617.5    |
| 2013         | 30 536.8   | 1 135.5  | 388.7    | 506.0    | 632.1    | 306.6    | 9 230.6   | 1 051.1  | 11.7  | 8 632.9   | 52 432.2    |
| 2014         | 27 881.9   | 1 350.0  | 781.2    | 404.2    | 973.1    | 941.5    | 12 378.0  | 2 186.5  | 8.1   | 10 639.5  | 57 544.0    |
| 2015         | 30 908.4   | 1 117.6  | 432.4    | 449.6    | 572.9    | 863.9    | 12 266.8  | 1 219.4  | 1.8   | 11 704.6  | 59 537.3    |
| 2016         | 33 341.5   | 1 184.0  | 436.4    | 292.2    | 1 024.2  | 503.7    | 6 333.6   | 959.4    | 1.4   | 10 783.6  | 54 859.8    |
| 2017         | 32 380.0   | 1 062.1  | 426.4    | 392.6    | 613.0    | 494.3    | 8 461.9   | 1 038.9  | 2.6   | 15 140.9  | 60 012.8    |
| 2018         | 33 305.0   | 934.3    | 566.5    | 609.4    | 488.7    | 975.9    | 11 265.0  | 2 661.3  | 3.4   | 16 571.1  | 67 380.6    |
| 2019         | 30 321.5   | 572.3    | 604.7    | 1 257.9  | 810.5    | 548.5    | 7 040.1   | 1 662.5  | 3.6   | 9 000.9   | 51 822.6    |
| All          | 1078 380.0 | 49 536.3 | 18 555.6 | 11 416.9 | 42 944.1 | 24 829.1 | 358 064.6 | 67 210.2 | 625.0 | 400 158.5 | 2 051 720.2 |

Table D14: The number of 25-km<sup>2</sup> cells contacted by HAK/HOK/LIN/SWA/WWA trawls, by Bycatch Assessment Area (see Figure 16), for 1990–2019.

| Fishing year | CHAT4 | COOK8 | EAST2 | NORTH1 | PUYS5 | SQUAK6 | STEW5 | SUBA6 | WCNI9 | WCSI7 | All    |
|--------------|-------|-------|-------|--------|-------|--------|-------|-------|-------|-------|--------|
| 1990         | 1 975 | 69    | 11    | 0      | 206   | 115    | 1 534 | 739   | 17    | 680   | 5 302  |
| 1991         | 2 459 | 100   | 32    | 0      | 157   | 171    | 1 677 | 1 119 | 26    | 940   | 6 617  |
| 1992         | 2 900 | 117   | 60    | 0      | 181   | 100    | 1 970 | 827   | 24    | 935   | 7 049  |
| 1993         | 3 313 | 153   | 149   | 44     | 177   | 161    | 2 106 | 298   | 14    | 1 116 | 7 464  |
| 1994         | 2 786 | 183   | 322   | 40     | 176   | 216    | 1 658 | 276   | 22    | 1 021 | 6 642  |
| 1995         | 3 574 | 177   | 230   | 110    | 176   | 101    | 1 876 | 246   | 24    | 1 148 | 7 617  |
| 1996         | 3 226 | 259   | 401   | 305    | 173   | 247    | 1 739 | 385   | 42    | 822   | 7 537  |
| 1997         | 3 579 | 305   | 592   | 319    | 188   | 254    | 1 655 | 338   | 75    | 923   | 8 150  |
| 1998         | 3 983 | 248   | 521   | 311    | 187   | 419    | 1 598 | 545   | 63    | 772   | 8 559  |
| 1999         | 3 789 | 186   | 258   | 306    | 140   | 263    | 1 553 | 315   | 58    | 810   | 7 622  |
| 2000         | 3 608 | 187   | 240   | 193    | 183   | 466    | 1 677 | 1 237 | 91    | 795   | 8 612  |
| 2001         | 3 859 | 163   | 376   | 126    | 200   | 536    | 1 633 | 1 433 | 108   | 817   | 9 154  |
| 2002         | 3 434 | 152   | 203   | 154    | 160   | 520    | 1 722 | 2 095 | 93    | 959   | 9 391  |
| 2003         | 3 619 | 168   | 218   | 93     | 159   | 519    | 1 521 | 1 957 | 23    | 1 119 | 9 291  |
| 2004         | 3 621 | 155   | 163   | 164    | 143   | 403    | 1 298 | 1 453 | 57    | 916   | 8 281  |
| 2005         | 2 897 | 128   | 154   | 119    | 155   | 326    | 1 048 | 965   | 3     | 790   | 6 508  |
| 2006         | 2 891 | 134   | 75    | 168    | 141   | 112    | 964   | 211   | 19    | 835   | 5 512  |
| 2007         | 2 899 | 149   | 107   | 120    | 151   | 67     | 1 047 | 290   |       | 754   | 5 546  |
| 2008         | 3 403 | 131   | 139   | 133    | 171   | 207    | 1 001 | 332   | 7     | 928   | 6 408  |
| 2009         | 2 863 | 119   | 151   | 175    | 133   | 134    | 921   | 275   | 32    | 774   | 5 535  |
| 2010         | 2 703 | 158   | 188   | 262    | 133   | 63     | 926   | 205   | 22    | 770   | 5 393  |
| 2011         | 2 720 | 109   | 235   | 271    | 207   | 98     | 986   | 360   | 14    | 780   | 5 734  |
| 2012         | 2 605 | 103   | 253   | 285    | 164   | 124    | 947   | 197   | 97    | 795   | 5 529  |
| 2013         | 2 474 | 137   | 255   | 254    | 168   | 93     | 921   | 381   | 28    | 776   | 5 449  |
| 2014         | 2 354 | 153   | 315   | 257    | 148   | 180    | 1 142 | 566   | 18    | 771   | 5 843  |
| 2015         | 2 613 | 145   | 257   | 253    | 152   | 175    | 1 112 | 306   | 9     | 901   | 5 863  |
| 2016         | 2 628 | 124   | 232   | 205    | 167   | 148    | 1 107 | 166   | 5     | 767   | 5 498  |
| 2017         | 2 360 | 133   | 254   | 198    | 141   | 178    | 1 109 | 389   | 6     | 833   | 5 543  |
| 2018         | 2 432 | 91    | 321   | 244    | 129   | 165    | 1 087 | 497   | 9     | 770   | 5 690  |
| 2019         | 2 159 | 85    | 294   | 304    | 132   | 118    | 850   | 274   | 8     | 579   | 4 753  |
| All          | 7 918 | 379   | 1 041 | 987    | 445   | 945    | 3 685 | 5 139 | 598   | 2 697 | 23 626 |

Table D15: The number of contacted 25-km<sup>2</sup> cells, estimated aggregate area (km<sup>2</sup>), and footprint (km<sup>2</sup>) for combined targets ORH/OEO bottom-contacting trawls, for 1990–2019. Areas are shown in Figure 17.

| Fishing |           |           | ORH7A     |           |           | NWCR      |           |           | ESCR      |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| year    | No. cells | Aggregate | Footprint | No. cells | Aggregate | Footprint | No. cells | Aggregate | Footprint |
| 1990    | 132       | 829.1     | 486.6     | 462       | 1 535.4   | 1 148.1   | 879       | 5 820.4   | 3 435.9   |
| 1991    | 137       | 835.4     | 581.1     | 305       | 868.2     | 714.8     | 723       | 2 327.7   | 1 601.8   |
| 1992    | 156       | 853.9     | 604.2     | 88        | 105.1     | 96.6      | 352       | 1 020.5   | 679.0     |
| 1993    | 184       | 1 327.2   | 910.2     | 138       | 178.9     | 143.0     | 273       | 462.5     | 321.5     |
| 1994    | 162       | 979.6     | 674.8     | 195       | 344.5     | 262.7     | 309       | 798.6     | 478.9     |
| 1995    | 168       | 758.0     | 559.1     | 186       | 465.8     | 373.9     | 364       | 898.3     | 600.9     |
| 1996    | 201       | 992.0     | 768.2     | 181       | 357.8     | 291.5     | 314       | 637.6     | 482.3     |
| 1997    | 349       | 1 824.5   | 1 458.4   | 297       | 1 112.7   | 851.1     | 366       | 733.4     | 585.7     |
| 1998    | 587       | 2 627.4   | 2 172.3   | 327       | 1 063.7   | 886.2     | 488       | 1 103.2   | 856.9     |
| 1999    | 888       | 2 735.4   | 2 393.4   | 353       | 1 485.2   | 1 151.2   | 489       | 1 278.2   | 959.3     |
| 2000    | 714       | 1 247.2   | 1 154.7   | 246       | 807.3     | 678.3     | 395       | 807.5     | 636.3     |
| 2001    | 7         | 2.6       | 1.4       | 356       | 1 590.2   | 1 273.6   | 352       | 714.2     | 570.7     |
| 2002    |           |           |           | 430       | 1 658.8   | 1 376.9   | 508       | 1 256.5   | 984.5     |
| 2003    |           |           |           | 394       | 1 603.4   | 1 277.6   | 373       | 1 167.4   | 803.7     |
| 2004    | 2         | 0.9       | 0.4       | 430       | 2 048.6   | 1 623.0   | 521       | 2 001.6   | 1 391.1   |
| 2005    | 58        | 29.9      | 27.4      | 349       | 889.2     | 769.0     | 508       | 2 049.7   | 1 334.7   |
| 2006    | 47        | 21.7      | 21.5      | 321       | 674.5     | 597.9     | 554       | 1 820.1   | 1 402.1   |
| 2007    |           |           |           | 71        | 58.4      | 50.5      | 780       | 2 567.6   | 2 065.2   |
| 2008    |           |           |           | 185       | 256.8     | 212.7     | 653       | 1 740.6   | 1 414.4   |
| 2009    | 50        | 23.5      | 23.3      | 216       | 263.9     | 235.1     | 666       | 2 066.7   | 1 719.0   |
| 2010    | 54        | 26.9      | 26.6      | 301       | 575.0     | 514.6     | 562       | 1 776.2   | 1 465.6   |
| 2011    | 57        | 108.2     | 95.8      | 16        | 10.0      | 6.3       | 252       | 388.8     | 339.6     |
| 2012    | 60        | 83.0      | 75.8      | 16        | 5.6       | 5.0       | 306       | 509.7     | 428.5     |
| 2013    | 74        | 107.3     | 94.5      | 15        | 5.5       | 5.5       | 241       | 449.1     | 380.4     |
| 2014    | 142       | 275.0     | 229.1     | 225       | 282.6     | 235.2     | 345       | 509.8     | 429.7     |
| 2015    | 472       | 1 599.1   | 1 187.4   | 269       | 401.3     | 345.8     | 292       | 611.7     | 498.3     |
| 2016    | 373       | 948.2     | 755.1     | 332       | 760.8     | 643.5     | 474       | 857.6     | 702.5     |
| 2017    | 552       | 1 697.0   | 1 492.6   | 372       | 1 116.2   | 888.0     | 439       | 919.2     | 736.2     |
| 2018    | 320       | 987.1     | 868.3     | 368       | 915.6     | 712.0     | 421       | 1 116.2   | 842.4     |
| 2019    | 494       | 1 546.4   | 1 366.0   | 278       | 570.3     | 486.2     | 415       | 1 118.5   | 780.2     |
| All     | 1 481     | 22 466.5  | 8 975.1   | 859       | 22 011.2  | 6 882.1   | 1 505     | 39 529.2  | 11 209.5  |

Table D16: For deepwater Tier 1 and Tier 2 fishstocks, the number of 25-km<sup>2</sup> cells contacted during 1990–1994 and the number of 'new' cells contacted for the first time in subsequent years and the aggregate area (km<sup>2</sup>) and footprint (km<sup>2</sup>) estimated for those new cells, where data for 1995 represent cells contacted in 1995 but not in 1990–1994, and data for 1996 represent cells contacted in 1996 but not in 1990–1995, etc.

| Fishing   |                      | Ti        | er 1 targets | Tier 2 targets     |              |           |  |  |
|-----------|----------------------|-----------|--------------|--------------------|--------------|-----------|--|--|
| year      | No. new cells        | Aggregate | Footprint    | No. new cells      | Aggregate    | Footprint |  |  |
| 1000 1004 | N11 24 150           |           |              | N11 (525           |              |           |  |  |
| 1990–1994 | No. cells = $24 150$ |           | 201.6        | No. cells = $6525$ | <b>500 5</b> |           |  |  |
| 1995      | 1 220                | 1 032.8   | 901.6        | 905                | 732.7        | 666.0     |  |  |
| 1996      | 1 137                | 775.7     | 715.4        | 890                | 686.7        | 642.1     |  |  |
| 1997      | 1 251                | 970.6     | 921.2        | 289                | 143.5        | 137.9     |  |  |
| 1998      | 1 604                | 2 077.1   | 1 697.7      | 388                | 276.2        | 259.8     |  |  |
| 1999      | 1 362                | 1 280.1   | 1 162.6      | 453                | 421.3        | 338.6     |  |  |
| 2000      | 1 204                | 1 534.0   | 1 380.0      | 310                | 161.5        | 156.1     |  |  |
| 2001      | 737                  | 717.5     | 615.6        | 384                | 190.7        | 187.3     |  |  |
| 2002      | 1 060                | 957.3     | 922.6        | 696                | 530.2        | 503.9     |  |  |
| 2003      | 655                  | 728.1     | 651.1        | 453                | 703.1        | 622.2     |  |  |
| 2004      | 352                  | 332.7     | 308.5        | 178                | 94.8         | 92.8      |  |  |
| 2005      | 575                  | 621.8     | 550.6        | 359                | 571.1        | 512.9     |  |  |
| 2006      | 274                  | 134.7     | 130.1        | 254                | 150.1        | 146.9     |  |  |
| 2007      | 241                  | 142.5     | 133.8        | 326                | 190.1        | 187.3     |  |  |
| 2008      | 190                  | 125.6     | 120.1        | 669                | 574.1        | 510.5     |  |  |
| 2009      | 170                  | 73.5      | 71.0         | 392                | 209.2        | 204.6     |  |  |
| 2010      | 148                  | 60.0      | 59.3         | 311                | 154.7        | 146.3     |  |  |
| 2011      | 146                  | 52.5      | 52.3         | 355                | 180.4        | 176.9     |  |  |
| 2012      | 99                   | 37.0      | 36.9         | 262                | 130.8        | 129.1     |  |  |
| 2013      | 61                   | 33.6      | 33.1         | 250                | 165.7        | 161.9     |  |  |
| 2014      | 82                   | 31.7      | 31.7         | 264                | 176.7        | 170.2     |  |  |
| 2015      | 163                  | 168.6     | 154.3        | 142                | 53.7         | 53.7      |  |  |
| 2016      | 175                  | 112.8     | 109.0        | 148                | 56.7         | 55.2      |  |  |
| 2017      | 97                   | 60.0      | 58.6         | 167                | 91.6         | 89.9      |  |  |
| 2018      | 127                  | 33.6      | 33.5         | 99                 | 51.1         | 50.4      |  |  |
| 2019      | 72                   | 88.8      | 84.6         | 118                | 52.2         | 51.9      |  |  |

Table D17: For deepwater Tier 1 targets, the number of 25-km<sup>2</sup> cells contacted during 1990–1994 and the number of 'new' cells contacted for the first time in subsequent years and the aggregate area (km<sup>2</sup>) and footprint (km<sup>2</sup>) estimated for those new cells, where data for 1995 represent cells contacted in 1995 but not in 1990–1994, and data for 1996 represent cells contacted in 1996 but not in 1990–1995, etc.

|              |                  |           | HAK       |                    |           | НОК       |                  |           | JMA       |
|--------------|------------------|-----------|-----------|--------------------|-----------|-----------|------------------|-----------|-----------|
| Fishing year | No. new cells    | Aggregate | Footprint | No. new cells      | Aggregate | Footprint | No. new cells    | Aggregate | Footprint |
| 1990–1994    | No. cells = 1742 |           |           | No. cells = 11 945 |           |           | No. cells = 3899 |           |           |
| 1995         | 217              | 159.4     | 155.7     | 1 129              | 1 003.2   | 940.4     | 338              | 265.4     | 259.2     |
| 1996         | 171              | 139.5     | 134.6     | 1 133              | 1 170.3   | 914.4     | 347              | 389.4     | 363.8     |
| 1997         | 92               | 85.8      | 82.9      | 1 016              | 745.1     | 709.7     | 166              | 100.0     | 99.0      |
| 1998         | 256              | 158.7     | 157.8     | 1 193              | 1 364.2   | 1 102.1   | 357              | 367.7     | 332.7     |
| 1999         | 269              | 237.3     | 226.9     | 680                | 492.4     | 482.4     | 209              | 130.1     | 128.2     |
| 2000         | 143              | 178.2     | 159.4     | 1 156              | 1 737.4   | 1 584.8   | 133              | 91.2      | 89.2      |
| 2001         | 133              | 88.9      | 88.3      | 854                | 843.6     | 813.0     | 31               | 12.4      | 12.4      |
| 2002         | 236              | 359.1     | 318.7     | 848                | 738.9     | 721.2     | 118              | 91.0      | 87.8      |
| 2003         | 208              | 148.3     | 147.5     | 670                | 765.9     | 696.2     | 143              | 113.6     | 110.7     |
| 2004         | 134              | 188.3     | 170.3     | 254                | 242.8     | 231.4     | 83               | 67.0      | 63.7      |
| 2005         | 115              | 137.1     | 128.9     | 105                | 69.1      | 67.8      | 58               | 30.5      | 30.4      |
| 2006         | 99               | 72.2      | 71.8      | 54                 | 26.9      | 26.4      | 43               | 23.8      | 23.8      |
| 2007         | 90               | 63.2      | 60.9      | 54                 | 33.0      | 32.9      | 48               | 27.7      | 27.6      |
| 2008         | 79               | 61.6      | 61.0      | 39                 | 18.4      | 18.4      | 47               | 23.1      | 23.1      |
| 2009         | 159              | 151.3     | 141.4     | 43                 | 30.2      | 30.2      | 20               | 9.7       | 9.7       |
| 2010         | 15               | 9.3       | 9.2       | 74                 | 30.3      | 30.1      | 38               | 11.3      | 11.3      |
| 2011         | 61               | 38.6      | 37.7      | 88                 | 44.9      | 44.8      | 63               | 24.4      | 24.4      |
| 2012         | 46               | 18.6      | 18.6      | 86                 | 34.1      | 34.0      | 6                | 3.3       | 3.3       |
| 2013         | 52               | 38.4      | 35.8      | 43                 | 26.4      | 26.3      | 25               | 7.9       | 7.9       |
| 2014         | 20               | 6.1       | 6.1       | 71                 | 29.4      | 29.4      | 18               | 9.7       | 9.7       |
| 2015         | 33               | 10.5      | 10.5      | 51                 | 24.3      | 24.3      | 24               | 8.4       | 8.4       |
| 2016         | 22               | 9.6       | 9.6       | 46                 | 23.7      | 23.7      | 8                | 3.9       | 3.9       |
| 2017         | 7                | 3.7       | 3.7       | 25                 | 10.2      | 10.2      | 27               | 9.3       | 9.3       |
| 2018         | 90               | 1.2       | 1.2       | 34                 | 12.9      | 12.9      | 7                | 1.1       | 1.1       |
| 2019         | 3                | 2.0       | 2.0       | 49                 | 22.6      | 21.3      | 12               | 5.2       | 5.2       |

Table D17: — continued.

| Fishing year  | No. new cells      | Aggregate | LIN<br>Footprint | No. new cells     | Aggregate | OEO<br>Footprint | No. new cells     | Aggregate | ORH<br>Footprint |
|---------------|--------------------|-----------|------------------|-------------------|-----------|------------------|-------------------|-----------|------------------|
| risining year | No. new cens       | Aggregate | rootpilit        | No. new cens      | Aggregate | тоофии           | No. new cens      | Aggregate | rootpriit        |
| 1990–1994     | No. $cells = 2788$ |           |                  | No. $cells = 216$ | 5         |                  | No. cells = $469$ | )2        |                  |
| 1995          | 133                | 68.7      | 68.0             | 139               | 85.2      | 73.9             | 348               | 289.3     | 211.7            |
| 1996          | 68                 | 44.3      | 44.0             | 292               | 194.5     | 176.8            | 343               | 221.3     | 183.8            |
| 1997          | 192                | 140.0     | 138.2            | 320               | 196.7     | 181.0            | 460               | 459.9     | 430.4            |
| 1998          | 228                | 255.6     | 248.2            | 290               | 168.6     | 158.3            | 559               | 831.2     | 720.0            |
| 1999          | 77                 | 44.2      | 43.1             | 298               | 263.7     | 240.0            | 611               | 616.9     | 583.4            |
| 2000          | 344                | 473.3     | 423.5            | 297               | 242.4     | 204.7            | 303               | 263.2     | 242.2            |
| 2001          | 253                | 260.8     | 249.9            | 180               | 98.9      | 87.1             | 204               | 313.8     | 192.9            |
| 2002          | 217                | 196.8     | 191.1            | 201               | 121.5     | 116.9            | 185               | 105.0     | 99.0             |
| 2003          | 190                | 135.5     | 132.6            | 97                | 69.8      | 60.8             | 141               | 79.4      | 73.7             |
| 2004          | 96                 | 112.5     | 104.7            | 117               | 49.5      | 48.6             | 187               | 111.7     | 109.3            |
| 2005          | 110                | 129.5     | 112.6            | 465               | 456.9     | 436.6            | 236               | 131.0     | 126.3            |
| 2006          | 199                | 205.1     | 190.7            | 206               | 150.6     | 135.5            | 72                | 26.4      | 25.9             |
| 2007          | 214                | 128.4     | 128.0            | 192               | 108.4     | 103.9            | 94                | 52.1      | 46.4             |
| 2008          | 463                | 458.5     | 418.8            | 55                | 20.7      | 19.4             | 38                | 11.0      | 11.0             |
| 2009          | 182                | 85.2      | 83.6             | 66                | 31.4      | 29.8             | 69                | 32.7      | 31.4             |
| 2010          | 239                | 111.3     | 108.9            | 68                | 39.1      | 37.1             | 47                | 20.0      | 20.0             |
| 2011          | 138                | 47.1      | 46.5             | 41                | 32.3      | 20.7             | 21                | 8.0       | 8.0              |
| 2012          | 72                 | 22.7      | 22.7             | 33                | 13.5      | 13.4             | 24                | 8.3       | 8.3              |
| 2013          | 70                 | 31.3      | 30.8             | 12                | 2.0       | 2.0              | 18                | 8.9       | 8.4              |
| 2014          | 60                 | 45.2      | 41.1             | 11                | 4.2       | 4.2              | 41                | 18.6      | 17.4             |
| 2015          | 49                 | 24.0      | 23.9             | 25                | 29.2      | 22.7             | 157               | 181.0     | 166.4            |
| 2016          | 104                | 61.4      | 58.0             | 16                | 7.4       | 7.4              | 146               | 81.4      | 80.2             |
| 2017          | 39                 | 14.4      | 14.4             | 11                | 2.8       | 2.8              | 82                | 52.1      | 51.6             |
| 2018          | 89                 | 51.7      | 50.7             | 15                | 6.6       | 5.8              | 51                | 19.1      | 19.1             |
| 2019          | 46                 | 19.4      | 19.4             | 6                 | 2.8       | 2.8              | 57                | 99.3      | 94.7             |

Table D17: — continued.

| Fishing      | SBW              |           |               | SCI              |              |           | SQU                |                |           |
|--------------|------------------|-----------|---------------|------------------|--------------|-----------|--------------------|----------------|-----------|
| year         | No. new cells    | Aggregate | Footprint     | No. new cells    | Aggregate    | Footprint | No. new cells      | Aggregate      | Footprint |
| 1990–1994    | No. cells = 2818 |           |               | No. cells = 3873 |              |           | No. cells = $4230$ | 1              |           |
|              |                  | 120.0     | 105.2         |                  | (7.4         | 67.0      |                    |                | 404.5     |
| 1995<br>1996 | 133<br>108       | 129.0     | 125.3<br>88.6 | 265<br>113       | 67.4<br>19.9 | 19.9      | 585<br>298         | 412.3<br>184.2 | 404.5     |
|              |                  | 90.3      |               |                  |              |           |                    |                | 182.6     |
| 1997         | 51               | 41.7      | 40.5          | 159              | 30.5         | 30.4      | 346                | 203.4          | 202.0     |
| 1998         | 79               | 130.0     | 116.3         | 261              | 58.8         | 58.5      | 252                | 165.6          | 164.3     |
| 1999         | 182              | 143.8     | 142.4         | 393              | 90.2         | 89.8      | 224                | 439.0          | 310.6     |
| 2000         | 30               | 17.5      | 17.3          | 124              | 27.3         | 27.2      | 443                | 508.7          | 415.4     |
| 2001         | 49               | 31.4      | 31.3          | 52               | 11.0         | 10.9      | 416                | 340.8          | 323.5     |
| 2002         | 297              | 405.0     | 387.1         | 161              | 34.3         | 34.2      | 183                | 86.1           | 86.1      |
| 2003         | 37               | 21.4      | 21.4          | 107              | 25.0         | 25.0      | 341                | 273.9          | 258.6     |
| 2004         | 57               | 105.6     | 95.8          | 31               | 5.2          | 5.2       | 128                | 82.7           | 81.7      |
| 2005         | 31               | 44.8      | 39.5          | 286              | 574.4        | 396.8     | 96                 | 77.8           | 73.8      |
| 2006         | 3                | 0.8       | 0.8           | 170              | 45.9         | 45.4      | 151                | 76.8           | 76.7      |
| 2007         | 11               | 5.9       | 5.9           | 57               | 11.7         | 11.7      | 96                 | 56.4           | 56.3      |
| 2008         | 24               | 13.5      | 13.5          | 50               | 8.2          | 8.2       | 42                 | 17.3           | 17.3      |
| 2009         | 33               | 16.6      | 16.4          | 34               | 6.5          | 6.5       | 26                 | 12.1           | 12.1      |
| 2010         | 33               | 22.5      | 22.3          | 46               | 9.2          | 9.2       | 55                 | 29.2           | 29.2      |
| 2011         | 15               | 28.9      | 24.0          | 22               | 3.7          | 3.7       | 19                 | 8.6            | 8.6       |
| 2012         | 13               | 7.8       | 7.6           | 20               | 4.3          | 4.3       | 21                 | 10.4           | 10.4      |
| 2013         | 3                | 3.6       | 3.6           | 69               | 16.9         | 16.9      | 22                 | 9.8            | 9.8       |
| 2014         | 4                | 2.4       | 2.4           | 73               | 17.2         | 16.9      | 20                 | 30.8           | 28.5      |
| 2015         | 9                | 8.2       | 8.1           | 48               | 11.8         | 11.8      | 15                 | 7.3            | 7.1       |
| 2016         | 2                | 1.0       | 1.0           | 43               | 12.5         | 12.1      | 59                 | 31.6           | 30.7      |
| 2017         | 5                | 2.9       | 2.9           | 57               | 31.3         | 27.9      | 46                 | 15.9           | 15.9      |
| 2018         | 1                | 0.3       | 0.3           | 156              | 72.1         | 59.9      | 9                  | 1.8            | 1.8       |
| 2019         | 6                | 11.5      | 10.9          | 83               | 18.3         | 17.9      | 27                 | 11.2           | 11.2      |

Table D18: Summary data for the number of tows, the aggregate area, and the footprint for Tier 1 bottom-contacting effort per 25-km<sup>2</sup> cell, for each year, from 1990–2019. In any year, the minimum number of tows per cell was 1, and the aggregate area or footprint was < 0.00001 km<sup>2</sup>. Data show the value at the first quartile and third quartile, and the median, mean, and maximum per cell per year.

| Fishing |         |        |       | No. tows | per cell |         |        | Aggrega | ite area per | cell (km <sup>2</sup> ) |         |        | Footp | orint per cel | ll (km²) |
|---------|---------|--------|-------|----------|----------|---------|--------|---------|--------------|-------------------------|---------|--------|-------|---------------|----------|
| year    | 1st Qu. | Median | Mean  | 3rd Qu.  | Max.     | 1st Qu. | Median | Mean    | 3rd Qu.      | Max.                    | 1st Qu. | Median | Mean  | 3rd Qu.       | Max.     |
| 1990    | 1       | 2      | 15.51 | 11       | 1 099    | 0.48    | 1.11   | 7.87    | 5.03         | 725.49                  | 0.48    | 1.09   | 3.66  | 4.44          | 25.00    |
| 1991    | 1       | 3      | 19.08 | 12       | 2 406    | 0.56    | 1.42   | 9.38    | 5.66         | 1 631.06                | 0.56    | 1.38   | 4.07  | 4.94          | 25.00    |
| 1992    | 1       | 4      | 19.27 | 15       | 1 258    | 0.63    | 1.75   | 9.29    | 7.26         | 815.36                  | 0.63    | 1.70   | 4.53  | 6.12          | 25.00    |
| 1993    | 1       | 4      | 19.47 | 17       | 1 839    | 0.62    | 1.92   | 9.82    | 8.04         | 1 386.55                | 0.62    | 1.82   | 4.73  | 6.59          | 25.00    |
| 1994    | 1       | 4      | 19.26 | 15       | 1 288    | 0.59    | 1.58   | 9.05    | 6.72         | 808.15                  | 0.58    | 1.53   | 4.27  | 5.66          | 25.00    |
| 1995    | 1       | 4      | 20.97 | 16       | 1 014    | 0.61    | 1.75   | 10.56   | 7.43         | 792.66                  | 0.60    | 1.67   | 4.55  | 6.17          | 25.00    |
| 1996    | 1       | 4      | 21.75 | 17       | 1 313    | 0.61    | 1.68   | 10.83   | 7.72         | 621.15                  | 0.61    | 1.60   | 4.71  | 6.30          | 25.00    |
| 1997    | 1       | 4      | 21.94 | 18       | 1 418    | 0.63    | 1.76   | 11.07   | 8.37         | 546.40                  | 0.63    | 1.69   | 4.90  | 6.75          | 25.00    |
| 1998    | 1       | 4      | 21.91 | 19       | 901      | 0.66    | 1.78   | 11.25   | 8.64         | 444.91                  | 0.65    | 1.70   | 5.05  | 7.03          | 25.00    |
| 1999    | 1       | 4      | 20.97 | 18       | 1 202    | 0.60    | 1.76   | 10.55   | 8.10         | 749.94                  | 0.60    | 1.67   | 4.90  | 6.59          | 25.00    |
| 2000    | 1       | 4      | 19.97 | 18       | 823      | 0.62    | 1.76   | 10.00   | 8.49         | 408.19                  | 0.61    | 1.70   | 4.92  | 6.78          | 25.00    |
| 2001    | 1       | 4      | 20.00 | 19       | 840      | 0.71    | 1.93   | 10.16   | 9.06         | 589.03                  | 0.71    | 1.85   | 5.10  | 7.22          | 25.00    |
| 2002    | 1       | 4      | 19.19 | 17       | 1 045    | 0.66    | 1.88   | 9.49    | 8.47         | 701.28                  | 0.65    | 1.80   | 4.93  | 6.95          | 25.00    |
| 2003    | 1       | 5      | 19.72 | 18       | 989      | 0.73    | 2.08   | 10.13   | 9.25         | 679.18                  | 0.72    | 1.99   | 5.16  | 7.47          | 25.00    |
| 2004    | 1       | 5      | 18.64 | 17       | 1 439    | 0.74    | 2.15   | 9.63    | 8.67         | 920.13                  | 0.73    | 2.03   | 4.91  | 7.07          | 25.00    |
| 2005    | 1       | 4      | 17.59 | 13       | 1 484    | 0.60    | 1.56   | 8.36    | 6.08         | 957.62                  | 0.59    | 1.50   | 4.07  | 5.15          | 25.00    |
| 2006    | 1       | 4      | 16.74 | 14       | 925      | 0.53    | 1.50   | 7.66    | 6.09         | 588.12                  | 0.53    | 1.44   | 4.04  | 5.15          | 25.00    |
| 2007    | 1       | 4      | 16.01 | 15       | 574      | 0.59    | 1.64   | 7.20    | 6.78         | 277.27                  | 0.58    | 1.57   | 4.11  | 5.65          | 25.00    |
| 2008    | 1       | 4      | 15.52 | 13       | 575      | 0.61    | 1.74   | 6.82    | 6.16         | 238.88                  | 0.60    | 1.67   | 3.98  | 5.31          | 25.00    |
| 2009    | 1       | 4      | 13.90 | 12       | 475      | 0.54    | 1.54   | 6.85    | 5.65         | 284.23                  | 0.53    | 1.49   | 3.89  | 4.87          | 24.99    |
| 2010    | 1       | 4      | 14.62 | 13       | 505      | 0.51    | 1.61   | 7.61    | 6.61         | 229.23                  | 0.50    | 1.54   | 4.23  | 5.52          | 24.97    |
| 2011    | 1       | 4      | 15.63 | 14       | 485      | 0.52    | 1.63   | 8.09    | 7.02         | 287.39                  | 0.52    | 1.56   | 4.38  | 5.82          | 24.98    |
| 2012    | 1       | 4      | 15.73 | 14       | 417      | 0.51    | 1.59   | 8.41    | 7.40         | 251.36                  | 0.51    | 1.53   | 4.45  | 6.08          | 25.00    |
| 2013    | 1       | 4      | 15.91 | 15       | 458      | 0.56    | 1.92   | 8.26    | 7.51         | 297.18                  | 0.55    | 1.81   | 4.50  | 6.13          | 24.98    |
| 2014    | 1       | 4      | 14.91 | 14       | 463      | 0.55    | 1.85   | 7.88    | 7.63         | 289.10                  | 0.54    | 1.76   | 4.44  | 6.21          | 24.99    |
| 2015    | 1       | 4      | 15.21 | 14       | 514      | 0.59    | 1.82   | 8.17    | 7.67         | 323.88                  | 0.57    | 1.72   | 4.53  | 6.33          | 25.00    |
| 2016    | 1       | 4      | 15.59 | 14       | 572      | 0.52    | 1.57   | 8.09    | 7.15         | 331.26                  | 0.51    | 1.51   | 4.35  | 5.94          | 25.00    |
| 2017    | 1       | 4      | 15.73 | 13       | 411      | 0.54    | 1.72   | 8.60    | 6.83         | 207.81                  | 0.54    | 1.64   | 4.42  | 5.66          | 24.98    |
| 2018    | 1       | 4      | 16.55 | 14       | 815      | 0.53    | 1.77   | 9.43    | 7.81         | 399.50                  | 0.52    | 1.65   | 4.56  | 6.24          | 25.00    |
| 2019    | 1       | 4      | 17.92 | 15       | 568      | 0.56    | 2.01   | 9.26    | 8.27         | 287.72                  | 0.55    | 1.84   | 4.63  | 6.47          | 25.00    |

Table D19: Summary data for the number of tows, the aggregate area, and the footprint for HAK/HOK/LIN/SWA/WWA bottom-contacting effort per 25-km² cell, for each year, from 1990–2019. In any year, the minimum number of tows per cell was 1, and the aggregate area or footprint was < 0.00001 km². Data show the value at the first quartile and third quartile, and the median, mean, and maximum per cell per year.

| Fishing _ |        |        |       | No.    | of tows |        |        | Αg    | gregate are | ea (km²) |        |        |      | Footp | rint (km²) |
|-----------|--------|--------|-------|--------|---------|--------|--------|-------|-------------|----------|--------|--------|------|-------|------------|
| year      | 1st Qu | Median | Mean  | 3rd Qu | Max     | 1st Qu | Median | Mean  | 3rd Qu      | Max      | 1st Qu | Median | Mean | 3rd   | Max        |
| 1990      | 1      | 2      | 12.9  | 11     | 333     | 0.52   | 1.07   | 7.22  | 5.32        | 206.30   | 0.50   | 1.06   | 3.92 | 4.64  | 25.00      |
| 1991      | 1      | 3      | 16.07 | 14     | 386     | 0.63   | 1.40   | 8.94  | 6.84        | 217.94   | 0.61   | 1.34   | 4.54 | 5.64  | 25.00      |
| 1992      | 1      | 4      | 17.19 | 18     | 351     | 0.75   | 2.03   | 9.46  | 9.59        | 223.86   | 0.75   | 1.96   | 5.18 | 7.65  | 25.00      |
| 1993      | 1      | 5      | 17.59 | 18     | 633     | 0.77   | 2.39   | 9.95  | 9.96        | 467.62   | 0.76   | 2.25   | 5.34 | 7.88  | 24.99      |
| 1994      | 1      | 3      | 14.89 | 14     | 376     | 0.70   | 1.64   | 8.32  | 7.42        | 214.94   | 0.68   | 1.57   | 4.55 | 6.19  | 25.00      |
| 1995      | 1      | 4      | 16.98 | 17     | 753     | 0.75   | 1.88   | 9.84  | 9.44        | 295.24   | 0.73   | 1.80   | 5.02 | 7.55  | 25.00      |
| 1996      | 1      | 4      | 19.54 | 18     | 1 313   | 0.75   | 1.99   | 10.88 | 9.87        | 480.96   | 0.75   | 1.86   | 5.30 | 7.66  | 25.00      |
| 1997      | 1      | 4      | 20.45 | 20     | 1 418   | 0.75   | 2.05   | 11.78 | 10.94       | 546.40   | 0.75   | 1.92   | 5.52 | 8.25  | 25.00      |
| 1998      | 1      | 4      | 22.00 | 23     | 901     | 0.75   | 2.07   | 12.99 | 12.07       | 350.40   | 0.75   | 1.96   | 5.87 | 9.12  | 25.00      |
| 1999      | 1      | 5      | 21.32 | 26     | 738     | 0.76   | 2.33   | 12.62 | 14.42       | 311.15   | 0.75   | 2.19   | 6.17 | 10.34 | 25.00      |
| 2000      | 1      | 4      | 20.14 | 23     | 823     | 0.76   | 2.29   | 11.89 | 13.15       | 321.89   | 0.75   | 2.13   | 5.95 | 9.78  | 25.00      |
| 2001      | 1      | 4      | 17.95 | 21     | 705     | 0.78   | 2.25   | 10.87 | 12.36       | 484.03   | 0.77   | 2.12   | 5.76 | 9.32  | 25.00      |
| 2002      | 1      | 4      | 17.44 | 22     | 643     | 0.78   | 2.35   | 10.44 | 12.40       | 350.08   | 0.77   | 2.15   | 5.77 | 9.37  | 24.95      |
| 2003      | 1      | 5      | 17.74 | 21     | 667     | 0.85   | 2.85   | 10.74 | 12.46       | 375.88   | 0.82   | 2.63   | 5.92 | 9.46  | 25.00      |
| 2004      | 1      | 5      | 16.04 | 17     | 1 144   | 0.88   | 2.79   | 9.59  | 10.29       | 622.12   | 0.86   | 2.54   | 5.43 | 8.13  | 24.95      |
| 2005      | 1      | 4      | 14.30 | 15     | 717     | 0.80   | 2.13   | 8.31  | 8.55        | 384.93   | 0.78   | 2.01   | 4.80 | 6.88  | 24.95      |
| 2006      | 1      | 4      | 14.84 | 16     | 536     | 0.75   | 1.98   | 8.69  | 9.36        | 306.54   | 0.75   | 1.87   | 4.92 | 7.45  | 24.94      |
| 2007      | 1      | 4      | 14.16 | 17     | 436     | 0.80   | 2.32   | 8.40  | 9.49        | 277.12   | 0.78   | 2.18   | 4.97 | 7.54  | 24.94      |
| 2008      | 1      | 4      | 13.12 | 14     | 422     | 0.75   | 2.02   | 7.47  | 7.85        | 216.57   | 0.72   | 1.93   | 4.52 | 6.51  | 24.89      |
| 2009      | 1      | 4      | 12.78 | 14     | 339     | 0.75   | 2.01   | 8.52  | 8.41        | 207.00   | 0.71   | 1.94   | 4.80 | 6.91  | 24.99      |
| 2010      | 1      | 4      | 13.03 | 15     | 334     | 0.69   | 2.21   | 9.48  | 10.05       | 229.23   | 0.67   | 2.11   | 5.23 | 7.83  | 24.97      |
| 2011      | 1      | 4      | 12.78 | 15     | 287     | 0.70   | 2.09   | 9.14  | 9.92        | 129.21   | 0.68   | 2.02   | 5.11 | 7.82  | 24.87      |
| 2012      | 1      | 4      | 13.07 | 15     | 308     | 0.66   | 2.12   | 9.63  | 10.70       | 192.35   | 0.64   | 2.03   | 5.21 | 8.15  | 25.00      |
| 2013      | 1      | 4      | 13.57 | 15     | 458     | 0.70   | 2.34   | 9.56  | 9.70        | 297.18   | 0.67   | 2.19   | 5.14 | 7.55  | 24.98      |
| 2014      | 1      | 4      | 13.87 | 16     | 463     | 0.75   | 2.56   | 9.75  | 10.45       | 289.10   | 0.75   | 2.36   | 5.33 | 7.99  | 24.99      |
| 2015      | 1      | 4      | 14.05 | 16     | 514     | 0.75   | 2.36   | 10.05 | 10.75       | 323.88   | 0.74   | 2.17   | 5.38 | 8.24  | 25.00      |
| 2016      | 1      | 4      | 13.48 | 15     | 572     | 0.70   | 2.23   | 9.89  | 10.44       | 330.83   | 0.67   | 2.10   | 5.26 | 7.96  | 25.00      |
| 2017      | 1      | 4      | 14.15 | 14     | 411     | 0.73   | 2.26   | 10.71 | 9.93        | 207.81   | 0.70   | 2.12   | 5.29 | 7.75  | 24.98      |
| 2018      | 1      | 4      | 14.88 | 16     | 814     | 0.77   | 2.60   | 11.73 | 11.56       | 399.50   | 0.75   | 2.37   | 5.57 | 8.33  | 25.00      |
| 2019      | 1      | 5      | 14.52 | 17     | 568     | 0.70   | 2.80   | 10.79 | 12.19       | 272.25   | 0.66   | 2.53   | 5.56 | 8.74  | 25.00      |

Table D20: Summary data for the aggregate area (km²) for HAK/HOK/LIN/SWA/WWA bottom-contacting effort per 25-km² cell, for Bycatch Assessment Areas CHAT4, COOK8, PUYS5, STEW5, SUBA6, and WCSI7, from 1990–2019. Data show the value at the first quartile and third quartile, and the median, mean, and maximum per cell per year. The minimum values given for each area are the largest over the time series.

| Fishing |         | C      | HAT4 (m | in. < 0.00 | 003 km <sup>2</sup> ) |         |        | COOK8 | (min. < 0.0 | 07 km²) |         |        | PUYS | 5 (min. = 0 | .02 km <sup>2</sup> ) |
|---------|---------|--------|---------|------------|-----------------------|---------|--------|-------|-------------|---------|---------|--------|------|-------------|-----------------------|
| year    | 1st Qu. | Median | Mean    | 3rd        | Max.                  | 1st Qu. | Median | Mean  | 3rd Qu.     | Max.    | 1st Qu. | Median | Mean | 3rd Qu.     | Max.                  |
| 1990    | 0.5     | 1.3    | 5.5     | 6.1        | 66.4                  | 0.3     | 0.6    | 4.1   | 1.0         | 66.7    | 0.8     | 3.2    | 12.2 | 16.3        | 105.4                 |
| 1991    | 0.8     | 1.9    | 9.3     | 7.8        | 217.7                 | 0.4     | 0.8    | 8.8   | 1.9         | 191.0   | 0.9     | 4.5    | 20.6 | 23.5        | 217.9                 |
| 1992    | 0.8     | 2.3    | 9.3     | 9.9        | 120.7                 | 0.4     | 0.8    | 6.6   | 2.1         | 128.5   | 0.8     | 4.1    | 20.9 | 18.0        | 223.9                 |
| 1993    | 0.8     | 2.4    | 10.0    | 10.9       | 149.1                 | 0.6     | 1.2    | 9.2   | 3.8         | 163.8   | 0.8     | 2.9    | 11.6 | 12.4        | 116.5                 |
| 1994    | 0.8     | 2.1    | 7.1     | 8.5        | 65.2                  | 0.6     | 1.0    | 7.1   | 3.0         | 148.7   | 1.1     | 4.3    | 7.9  | 10.5        | 56.4                  |
| 1995    | 0.8     | 2.4    | 11.0    | 13.0       | 179.7                 | 0.4     | 1.2    | 10.8  | 3.9         | 295.2   | 0.7     | 2.2    | 7.3  | 8.5         | 47.1                  |
| 1996    | 0.8     | 3.3    | 13.5    | 14.5       | 372.9                 | 0.8     | 2.1    | 20.0  | 9.8         | 481.0   | 0.8     | 3.5    | 11.7 | 14.0        | 98.2                  |
| 1997    | 0.8     | 2.7    | 14.4    | 16.0       | 260.2                 | 0.8     | 2.2    | 17.8  | 9.3         | 546.4   | 0.7     | 2.9    | 10.7 | 14.8        | 84.8                  |
| 1998    | 0.8     | 3.1    | 16.7    | 20.9       | 323.1                 | 0.5     | 2.0    | 13.1  | 8.0         | 350.4   | 0.7     | 3.1    | 11.9 | 17.0        | 75.9                  |
| 1999    | 0.9     | 4.3    | 16.0    | 24.1       | 145.7                 | 0.7     | 1.9    | 14.0  | 7.0         | 311.1   | 0.8     | 5.6    | 12.1 | 16.7        | 73.0                  |
| 2000    | 1.0     | 5.7    | 15.6    | 22.4       | 156.5                 | 0.8     | 2.5    | 15.3  | 8.9         | 321.9   | 0.8     | 4.8    | 13.8 | 17.9        | 97.9                  |
| 2001    | 1.0     | 4.3    | 13.6    | 21.4       | 111.7                 | 0.8     | 1.5    | 11.7  | 7.2         | 194.2   | 0.8     | 4.1    | 13.1 | 19.6        | 77.4                  |
| 2002    | 1.0     | 5.5    | 13.6    | 21.1       | 157.0                 | 0.5     | 1.3    | 9.8   | 4.9         | 150.8   | 1.0     | 4.5    | 9.2  | 15.0        | 54.9                  |
| 2003    | 1.0     | 6.0    | 14.8    | 21.7       | 135.8                 | 0.6     | 1.3    | 10.6  | 4.8         | 210.0   | 0.8     | 3.4    | 7.0  | 10.8        | 39.3                  |
| 2004    | 1.0     | 5.0    | 12.3    | 15.4       | 157.1                 | 0.6     | 1.3    | 13.3  | 6.4         | 261.1   | 1.0     | 3.4    | 4.5  | 6.6         | 23.2                  |
| 2005    | 1.0     | 3.6    | 10.4    | 12.3       | 106.2                 | 0.7     | 1.9    | 16.3  | 10.4        | 234.3   | 1.0     | 3.6    | 7.4  | 11.5        | 39.8                  |
| 2006    | 0.8     | 2.2    | 9.0     | 10.4       | 114.9                 | 0.5     | 1.4    | 8.9   | 4.5         | 131.6   | 1.0     | 3.7    | 9.9  | 14.5        | 75.3                  |
| 2007    | 0.9     | 3.0    | 9.8     | 12.1       | 125.2                 | 0.5     | 1.0    | 7.5   | 2.5         | 141.2   | 0.9     | 3.6    | 5.8  | 8.0         | 34.8                  |
| 2008    | 0.8     | 2.4    | 7.8     | 8.8        | 152.3                 | 0.5     | 0.9    | 9.1   | 3.9         | 156.1   | 0.7     | 2.8    | 6.2  | 10.0        | 38.5                  |
| 2009    | 0.8     | 2.2    | 9.6     | 10.3       | 207.0                 | 0.5     | 0.9    | 8.9   | 3.8         | 118.4   | 0.8     | 1.7    | 4.2  | 6.0         | 24.7                  |
| 2010    | 0.8     | 3.2    | 11.5    | 14.0       | 143.2                 | 0.3     | 0.8    | 5.9   | 2.4         | 110.8   | 0.4     | 2.2    | 3.7  | 6.3         | 16.8                  |
| 2011    | 0.8     | 3.0    | 10.8    | 13.4       | 128.0                 | 0.4     | 0.9    | 6.5   | 3.2         | 92.4    | 0.4     | 1.1    | 3.9  | 4.7         | 37.3                  |
| 2012    | 1.0     | 3.9    | 12.1    | 14.8       | 170.3                 | 0.4     | 0.9    | 7.5   | 3.1         | 100.1   | 0.5     | 3.0    | 5.5  | 8.1         | 29.1                  |
| 2013    | 1.0     | 3.9    | 12.3    | 14.8       | 158.1                 | 0.4     | 0.8    | 8.3   | 3.5         | 114.7   | 0.4     | 1.2    | 3.8  | 5.1         | 21.5                  |
| 2014    | 1.0     | 4.1    | 11.8    | 14.1       | 116.0                 | 0.4     | 0.8    | 8.8   | 4.0         | 145.0   | 0.4     | 1.9    | 6.6  | 7.0         | 57.0                  |
| 2015    | 0.9     | 3.0    | 11.8    | 14.0       | 143.6                 | 0.2     | 0.8    | 7.7   | 3.1         | 107.5   | 0.5     | 1.7    | 3.8  | 5.4         | 24.3                  |
| 2016    | 0.9     | 3.6    | 12.7    | 14.7       | 125.6                 | 0.2     | 0.8    | 9.5   | 4.4         | 126.3   | 0.6     | 2.6    | 6.1  | 9.4         | 39.2                  |
| 2017    | 1.0     | 4.0    | 13.7    | 16.1       | 186.5                 | 0.3     | 0.8    | 8.0   | 3.0         | 119.2   | 0.6     | 2.1    | 4.3  | 5.7         | 23.4                  |
| 2018    | 1.0     | 4.1    | 13.7    | 16.5       | 158.0                 | 0.4     | 0.9    | 10.3  | 5.3         | 106.4   | 0.6     | 1.3    | 3.8  | 3.7         | 37.4                  |
| 2019    | 1.0     | 4.6    | 14.0    | 17.6       | 180.0                 | 0.3     | 1.1    | 6.7   | 4.7         | 79.4    | 0.8     | 2.4    | 6.1  | 7.3         | 50.3                  |

Table D20: — continued.

| Fishing |         | S      | STEW5 (1 | min. < 0.0 | 001 km <sup>2</sup> ) |         |        | SUBA6 | (min. < 0.0 | 01 km <sup>2</sup> ) |    |       |        | WCSI7 | (min. < 0.0 | 008 km <sup>2</sup> ) |
|---------|---------|--------|----------|------------|-----------------------|---------|--------|-------|-------------|----------------------|----|-------|--------|-------|-------------|-----------------------|
| year    | 1st Qu. | Median | Mean     | 3rd        | Max.                  | 1st Qu. | Median | Mean  | 3rd Qu.     | Max.                 | 1s | t Qu. | Median | Mean  | 3rd Qu.     | Max.                  |
| 1990    | 0.6     | 1.2    | 6.8      | 5.2        | 106.8                 | 0.3     | 0.7    | 1.2   | 1.0         | 15.6                 |    | 0.8   | 3.0    | 19.6  | 19.8        | 206.3                 |
| 1991    | 0.8     | 2.2    | 9.4      | 10.5       | 121.3                 | 0.4     | 0.8    | 2.2   | 1.2         | 49.3                 |    | 0.7   | 1.7    | 15.3  | 18.7        | 134.0                 |
| 1992    | 0.9     | 2.9    | 10.9     | 13.4       | 202.8                 | 0.6     | 1.0    | 3.2   | 3.3         | 31.6                 |    | 0.7   | 1.9    | 12.0  | 13.5        | 171.9                 |
| 1993    | 1.0     | 3.3    | 10.1     | 9.7        | 467.6                 | 0.7     | 1.1    | 2.6   | 3.1         | 19.0                 |    | 0.9   | 3.3    | 14.0  | 17.9        | 249.2                 |
| 1994    | 0.7     | 1.5    | 6.9      | 5.9        | 92.6                  | 0.5     | 0.9    | 2.6   | 2.9         | 29.5                 |    | 0.8   | 3.3    | 19.5  | 20.4        | 214.9                 |
| 1995    | 0.8     | 2.0    | 6.4      | 7.6        | 67.9                  | 0.5     | 1.0    | 2.0   | 2.1         | 14.0                 |    | 0.7   | 2.0    | 16.8  | 13.5        | 210.0                 |
| 1996    | 0.8     | 2.0    | 7.9      | 7.3        | 103.6                 | 0.5     | 1.0    | 1.6   | 1.7         | 15.2                 |    | 0.9   | 4.0    | 18.3  | 22.4        | 162.1                 |
| 1997    | 0.8     | 2.6    | 9.6      | 10.9       | 113.1                 | 0.5     | 1.0    | 1.6   | 1.7         | 13.7                 |    | 0.8   | 2.8    | 18.5  | 17.5        | 174.0                 |
| 1998    | 1.0     | 2.9    | 10.7     | 10.5       | 148.5                 | 0.4     | 0.9    | 1.7   | 1.1         | 101.7                |    | 0.8   | 2.5    | 21.3  | 21.3        | 220.2                 |
| 1999    | 0.8     | 2.1    | 8.7      | 7.3        | 128.9                 | 0.4     | 1.0    | 3.6   | 1.8         | 240.7                |    | 0.8   | 3.0    | 18.1  | 21.3        | 250.5                 |
| 2000    | 0.8     | 2.3    | 11.4     | 10.1       | 212.4                 | 0.6     | 1.1    | 3.5   | 3.3         | 156.8                |    | 0.8   | 2.7    | 18.1  | 18.1        | 237.8                 |
| 2001    | 0.9     | 2.5    | 10.7     | 10.1       | 201.6                 | 0.8     | 1.3    | 4.0   | 4.0         | 153.0                |    | 0.8   | 4.1    | 20.6  | 26.2        | 484.0                 |
| 2002    | 0.9     | 2.8    | 11.8     | 14.1       | 129.7                 | 0.7     | 1.1    | 3.7   | 3.5         | 165.1                |    | 1.0   | 7.1    | 18.8  | 29.0        | 350.1                 |
| 2003    | 1.0     | 3.0    | 8.0      | 10.6       | 77.7                  | 0.8     | 1.8    | 5.0   | 6.2         | 53.8                 |    | 0.7   | 2.4    | 17.6  | 18.5        | 375.9                 |
| 2004    | 1.0     | 2.6    | 7.0      | 8.7        | 129.0                 | 0.8     | 1.8    | 4.1   | 4.7         | 60.6                 |    | 0.8   | 2.8    | 17.0  | 21.0        | 622.1                 |
| 2005    | 0.8     | 1.8    | 6.0      | 6.4        | 169.1                 | 0.6     | 1.0    | 3.0   | 2.3         | 61.3                 |    | 0.8   | 4.0    | 13.3  | 17.6        | 384.9                 |
| 2006    | 0.8     | 1.7    | 6.5      | 6.0        | 179.8                 | 0.7     | 1.4    | 2.1   | 2.8         | 10.3                 |    | 0.8   | 5.3    | 14.6  | 19.4        | 306.5                 |
| 2007    | 0.8     | 1.7    | 7.4      | 6.7        | 277.1                 | 0.8     | 1.7    | 3.4   | 4.3         | 23.0                 |    | 0.9   | 3.5    | 9.6   | 12.8        | 96.4                  |
| 2008    | 0.8     | 1.9    | 6.1      | 6.7        | 190.1                 | 0.7     | 1.6    | 5.3   | 4.3         | 62.2                 |    | 0.8   | 3.2    | 11.4  | 14.3        | 216.6                 |
| 2009    | 0.8     | 2.2    | 8.4      | 9.9        | 200.7                 | 0.7     | 1.8    | 5.5   | 5.2         | 72.6                 |    | 0.8   | 2.9    | 10.4  | 12.8        | 103.3                 |
| 2010    | 0.7     | 2.4    | 9.7      | 12.2       | 229.2                 | 0.7     | 2.0    | 4.6   | 4.1         | 38.9                 |    | 0.7   | 2.4    | 10.5  | 11.5        | 202.3                 |
| 2011    | 0.8     | 2.5    | 8.4      | 10.4       | 112.9                 | 0.8     | 1.5    | 6.2   | 4.4         | 129.2                |    | 0.7   | 2.4    | 12.5  | 15.1        | 96.5                  |
| 2012    | 0.8     | 2.5    | 9.3      | 12.4       | 192.3                 | 0.8     | 1.9    | 4.1   | 5.5         | 31.2                 |    | 0.5   | 1.8    | 12.4  | 13.7        | 139.9                 |
| 2013    | 0.8     | 2.6    | 10.0     | 10.9       | 297.2                 | 0.7     | 1.6    | 2.8   | 2.6         | 56.1                 |    | 0.6   | 2.6    | 11.1  | 12.6        | 252.1                 |
| 2014    | 1.0     | 3.5    | 10.8     | 13.5       | 282.2                 | 0.8     | 2.0    | 3.9   | 4.5         | 49.6                 |    | 0.8   | 3.8    | 13.8  | 16.0        | 289.1                 |
| 2015    | 0.9     | 3.4    | 11.0     | 14.0       | 252.7                 | 1.0     | 2.1    | 4.0   | 5.0         | 39.1                 |    | 0.9   | 3.3    | 13.0  | 14.4        | 323.9                 |
| 2016    | 0.6     | 1.7    | 5.7      | 6.3        | 132.1                 | 0.8     | 2.0    | 5.8   | 4.7         | 53.8                 |    | 0.8   | 3.0    | 14.1  | 18.4        | 330.8                 |
| 2017    | 0.8     | 2.3    | 7.6      | 9.1        | 172.8                 | 0.6     | 1.0    | 2.7   | 2.7         | 23.6                 |    | 0.8   | 2.8    | 18.2  | 15.3        | 207.8                 |
| 2018    | 1.0     | 2.9    | 10.4     | 12.5       | 171.7                 | 0.7     | 1.9    | 5.4   | 4.4         | 83.6                 |    | 0.9   | 3.0    | 21.5  | 22.7        | 399.5                 |
| 2019    | 0.7     | 2.7    | 8.3      | 9.9        | 179.0                 | 0.8     | 1.6    | 6.1   | 5.1         | 61.9                 |    | 0.9   | 5.0    | 15.5  | 21.6        | 272.2                 |

Table D21: Summary data for the number of tows, the aggregate area, and the footprint for bottom-contacting effort for ORH/OEO targets combined per 25-km<sup>2</sup> cell, for each year, from 1990–2019. In any year, the minimum number of tows per cell was 1, and the aggregate area or footprint was < 0.00001 km<sup>2</sup>. Data show the value at the first quartile and third quartile, and the median, mean, and maximum per cell per year.

| Fishing |         |        |       | No. tows j | per cell |         | A      | Aggregate | area per | cell (km²) |         |        | Foo  | tprint per co | ell (km²)_ |
|---------|---------|--------|-------|------------|----------|---------|--------|-----------|----------|------------|---------|--------|------|---------------|------------|
| year    | 1st Qu. | Median | Mean  | 3rd Qu.    | Max.     | 1st Qu. | Median | Mean      | 3rd      | Max.       | 1st Qu. | Median | Mean | 3rd Qu.       | Max.       |
| 1990    | 1       | 2      | 9.52  | 9          | 252      | 0.41    | 1.00   | 4.15      | 3.73     | 174.37     | 0.41    | 1.00   | 2.72 | 3.26          | 24.23      |
| 1991    | 1       | 2      | 7.55  | 6          | 328      | 0.34    | 0.77   | 2.83      | 2.42     | 68.64      | 0.33    | 0.77   | 2.05 | 2.25          | 21.89      |
| 1992    | 1       | 2      | 9.52  | 8          | 358      | 0.31    | 0.77   | 3.13      | 2.41     | 110.28     | 0.31    | 0.76   | 2.10 | 2.18          | 22.14      |
| 1993    | 1       | 2      | 10.23 | 8          | 392      | 0.28    | 0.75   | 3.32      | 2.30     | 142.80     | 0.28    | 0.75   | 2.17 | 2.12          | 21.87      |
| 1994    | 1       | 2      | 10.61 | 8          | 428      | 0.29    | 0.75   | 3.47      | 2.39     | 157.49     | 0.29    | 0.75   | 2.15 | 2.12          | 23.10      |
| 1995    | 1       | 3      | 10.62 | 9          | 365      | 0.28    | 0.75   | 3.39      | 2.70     | 183.26     | 0.28    | 0.75   | 2.14 | 2.41          | 24.70      |
| 1996    | 1       | 2      | 8.10  | 8          | 248      | 0.26    | 0.75   | 2.54      | 2.28     | 69.96      | 0.26    | 0.74   | 1.90 | 2.06          | 21.73      |
| 1997    | 1       | 2      | 8.15  | 9          | 358      | 0.30    | 0.76   | 2.86      | 2.79     | 97.24      | 0.29    | 0.76   | 2.12 | 2.52          | 22.53      |
| 1998    | 1       | 3      | 8.84  | 9          | 364      | 0.36    | 0.86   | 2.95      | 3.14     | 80.21      | 0.35    | 0.85   | 2.20 | 2.80          | 21.95      |
| 1999    | 1       | 3      | 8.32  | 9          | 244      | 0.40    | 0.94   | 2.99      | 3.10     | 134.41     | 0.40    | 0.93   | 2.24 | 2.82          | 22.81      |
| 2000    | 1       | 3      | 7.37  | 7          | 166      | 0.33    | 0.87   | 2.45      | 2.41     | 54.17      | 0.33    | 0.86   | 1.91 | 2.23          | 20.23      |
| 2001    | 1       | 3      | 6.90  | 8          | 145      | 0.31    | 0.80   | 2.23      | 2.31     | 45.02      | 0.30    | 0.79   | 1.78 | 2.07          | 15.69      |
| 2002    | 1       | 3      | 6.22  | 7          | 184      | 0.28    | 0.77   | 2.12      | 2.43     | 35.04      | 0.28    | 0.77   | 1.76 | 2.23          | 17.04      |
| 2003    | 1       | 2      | 6.64  | 7          | 259      | 0.27    | 0.75   | 2.09      | 1.95     | 55.05      | 0.27    | 0.75   | 1.65 | 1.77          | 19.09      |
| 2004    | 1       | 2      | 6.99  | 8          | 173      | 0.27    | 0.77   | 2.56      | 2.55     | 83.22      | 0.27    | 0.76   | 1.98 | 2.27          | 23.82      |
| 2005    | 1       | 2      | 5.97  | 6          | 185      | 0.30    | 0.76   | 2.05      | 2.06     | 111.00     | 0.30    | 0.75   | 1.61 | 1.88          | 23.91      |
| 2006    | 1       | 2      | 6.22  | 6          | 182      | 0.25    | 0.75   | 2.06      | 2.11     | 73.85      | 0.25    | 0.74   | 1.61 | 1.94          | 23.08      |
| 2007    | 1       | 2      | 5.99  | 6          | 154      | 0.26    | 0.75   | 2.01      | 1.86     | 45.86      | 0.26    | 0.75   | 1.61 | 1.72          | 17.64      |
| 2008    | 1       | 2      | 6.23  | 7          | 165      | 0.26    | 0.75   | 1.84      | 2.01     | 83.56      | 0.25    | 0.74   | 1.46 | 1.82          | 19.23      |
| 2009    | 1       | 2      | 5.94  | 7          | 119      | 0.26    | 0.76   | 1.92      | 2.15     | 34.90      | 0.26    | 0.76   | 1.59 | 1.96          | 15.79      |
| 2010    | 1       | 2      | 5.91  | 7          | 115      | 0.25    | 0.75   | 1.97      | 2.17     | 35.90      | 0.24    | 0.75   | 1.62 | 1.92          | 16.63      |
| 2011    | 1       | 2      | 5.11  | 6          | 65       | 0.20    | 0.60   | 1.48      | 1.53     | 24.66      | 0.20    | 0.59   | 1.23 | 1.42          | 12.64      |
| 2012    | 1       | 2      | 4.72  | 5          | 123      | 0.20    | 0.52   | 1.37      | 1.30     | 57.85      | 0.20    | 0.50   | 1.12 | 1.22          | 15.36      |
| 2013    | 1       | 2      | 5.08  | 6          | 162      | 0.22    | 0.64   | 1.53      | 1.62     | 91.30      | 0.22    | 0.61   | 1.25 | 1.51          | 17.06      |
| 2014    | 1       | 2      | 4.61  | 5          | 78       | 0.23    | 0.61   | 1.34      | 1.41     | 23.43      | 0.23    | 0.59   | 1.14 | 1.30          | 13.06      |
| 2015    | 1       | 2      | 5.68  | 6          | 210      | 0.30    | 0.75   | 1.98      | 1.96     | 69.11      | 0.30    | 0.75   | 1.57 | 1.80          | 22.59      |
| 2016    | 1       | 2      | 5.26  | 5          | 148      | 0.28    | 0.75   | 1.94      | 1.63     | 80.10      | 0.28    | 0.74   | 1.53 | 1.54          | 23.59      |
| 2017    | 1       | 2      | 5.59  | 6          | 121      | 0.33    | 0.84   | 2.21      | 2.67     | 30.10      | 0.33    | 0.82   | 1.86 | 2.46          | 16.93      |
| 2018    | 1       | 2      | 5.69  | 6          | 134      | 0.30    | 0.76   | 2.17      | 2.28     | 31.87      | 0.29    | 0.75   | 1.72 | 2.06          | 17.26      |
| 2019    | 1       | 3      | 5.77  | 6          | 147      | 0.30    | 0.83   | 2.15      | 2.52     | 53.17      | 0.29    | 0.79   | 1.71 | 2.23          | 18.72      |

Table D22: Summary data for the number of tows, the aggregate area, and the footprint for bottom-contacting effort for Tier 2 targets combined per 25-km² cell, for each year, from 1990–2019. In any year, the minimum number of tows per cell was 1, and the aggregate area or footprint was < 0.00001 km². Data show the value at the first quartile and third quartile, and the median, mean, and maximum per cell per year.

| Fishing |         |        |      | No. tows j | per cell |         | A      | Aggregate | area per | cell (km²) |         |        | Foo  | tprint per co | ell (km²) |
|---------|---------|--------|------|------------|----------|---------|--------|-----------|----------|------------|---------|--------|------|---------------|-----------|
| year    | 1st Qu. | Median | Mean | 3rd Qu.    | Max.     | 1st Qu. | Median | Mean      | 3rd      | Max.       | 1st Qu. | Median | Mean | 3rd Qu.       | Max.      |
| 1990    | 1       | 2      | 7.1  | 8          | 99       | 0.50    | 1.03   | 3.69      | 3.19     | 62.13      | 0.50    | 1.02   | 2.63 | 2.94          | 22.41     |
| 1991    | 1       | 2      | 6.5  | 6          | 250      | 0.44    | 0.90   | 3.07      | 2.72     | 157.91     | 0.43    | 0.89   | 2.22 | 2.48          | 20.53     |
| 1992    | 1       | 2      | 6.3  | 6          | 221      | 0.43    | 0.96   | 3.24      | 2.86     | 91.97      | 0.43    | 0.94   | 2.33 | 2.66          | 23.79     |
| 1993    | 1       | 2      | 6.9  | 7          | 156      | 0.47    | 0.95   | 3.45      | 2.96     | 101.94     | 0.47    | 0.92   | 2.34 | 2.62          | 23.65     |
| 1994    | 1       | 2      | 6.5  | 5          | 143      | 0.39    | 0.80   | 3.01      | 2.22     | 84.33      | 0.38    | 0.79   | 2.00 | 2.06          | 23.32     |
| 1995    | 1       | 2      | 7.2  | 5          | 248      | 0.39    | 0.80   | 3.34      | 2.34     | 90.85      | 0.38    | 0.79   | 2.16 | 2.24          | 23.76     |
| 1996    | 1       | 2      | 6.7  | 5          | 222      | 0.34    | 0.77   | 2.92      | 2.09     | 95.73      | 0.33    | 0.77   | 2.03 | 1.96          | 24.32     |
| 1997    | 1       | 2      | 6.2  | 6          | 355      | 0.33    | 0.78   | 2.47      | 2.11     | 80.59      | 0.33    | 0.77   | 1.89 | 1.95          | 21.63     |
| 1998    | 1       | 2      | 5.3  | 4          | 172      | 0.33    | 0.75   | 2.22      | 1.80     | 65.03      | 0.33    | 0.75   | 1.70 | 1.75          | 23.27     |
| 1999    | 1       | 1      | 5.0  | 4          | 127      | 0.28    | 0.69   | 2.00      | 1.41     | 49.41      | 0.28    | 0.68   | 1.55 | 1.37          | 19.72     |
| 2000    | 1       | 2      | 5.7  | 5          | 150      | 0.30    | 0.75   | 2.22      | 1.96     | 101.90     | 0.29    | 0.75   | 1.64 | 1.83          | 19.38     |
| 2001    | 1       | 2      | 5.0  | 5          | 109      | 0.29    | 0.74   | 1.93      | 1.73     | 76.26      | 0.29    | 0.73   | 1.51 | 1.64          | 22.89     |
| 2002    | 1       | 2      | 4.8  | 5          | 134      | 0.32    | 0.75   | 1.86      | 1.67     | 57.67      | 0.32    | 0.74   | 1.52 | 1.61          | 20.29     |
| 2003    | 1       | 2      | 5.5  | 5          | 187      | 0.34    | 0.75   | 2.27      | 2.05     | 87.79      | 0.34    | 0.75   | 1.76 | 1.96          | 24.34     |
| 2004    | 1       | 2      | 4.6  | 4          | 109      | 0.31    | 0.75   | 1.85      | 1.61     | 37.59      | 0.31    | 0.75   | 1.54 | 1.55          | 18.38     |
| 2005    | 1       | 2      | 5.6  | 5          | 191      | 0.33    | 0.80   | 2.41      | 2.19     | 86.82      | 0.33    | 0.79   | 1.88 | 2.05          | 18.77     |
| 2006    | 1       | 2      | 5.6  | 5          | 187      | 0.37    | 0.82   | 2.39      | 2.27     | 67.90      | 0.36    | 0.80   | 1.87 | 2.13          | 19.68     |
| 2007    | 1       | 2      | 5.5  | 5          | 170      | 0.39    | 0.90   | 2.42      | 2.35     | 61.48      | 0.38    | 0.88   | 1.92 | 2.20          | 22.48     |
| 2008    | 1       | 2      | 5.7  | 6          | 133      | 0.36    | 0.81   | 2.21      | 2.17     | 49.93      | 0.36    | 0.80   | 1.80 | 2.04          | 20.65     |
| 2009    | 1       | 2      | 5.5  | 5          | 123      | 0.35    | 0.77   | 2.16      | 1.98     | 49.29      | 0.35    | 0.77   | 1.75 | 1.85          | 18.61     |
| 2010    | 1       | 2      | 4.6  | 5          | 133      | 0.34    | 0.77   | 1.70      | 1.91     | 26.91      | 0.34    | 0.76   | 1.48 | 1.80          | 15.33     |
| 2011    | 1       | 2      | 4.5  | 5          | 109      | 0.33    | 0.75   | 1.70      | 1.70     | 27.45      | 0.32    | 0.75   | 1.48 | 1.62          | 14.65     |
| 2012    | 1       | 2      | 4.4  | 5          | 119      | 0.34    | 0.78   | 1.68      | 1.96     | 34.85      | 0.33    | 0.77   | 1.47 | 1.89          | 15.53     |
| 2013    | 1       | 2      | 4.9  | 5          | 92       | 0.33    | 0.76   | 1.91      | 2.02     | 36.58      | 0.33    | 0.76   | 1.63 | 1.90          | 19.42     |
| 2014    | 1       | 2      | 4.5  | 5          | 115      | 0.35    | 0.78   | 1.71      | 1.89     | 32.98      | 0.35    | 0.78   | 1.48 | 1.80          | 18.17     |
| 2015    | 1       | 2      | 4.9  | 5          | 137      | 0.31    | 0.73   | 1.93      | 1.65     | 61.75      | 0.31    | 0.72   | 1.54 | 1.60          | 22.99     |
| 2016    | 1       | 2      | 4.1  | 4          | 106      | 0.33    | 0.70   | 1.59      | 1.64     | 42.60      | 0.33    | 0.69   | 1.36 | 1.55          | 19.34     |
| 2017    | 1       | 2      | 4.3  | 4          | 117      | 0.31    | 0.70   | 1.77      | 1.55     | 61.45      | 0.30    | 0.69   | 1.42 | 1.50          | 22.94     |
| 2018    | 1       | 2      | 4.6  | 5          | 137      | 0.34    | 0.76   | 1.85      | 1.82     | 50.04      | 0.34    | 0.75   | 1.50 | 1.73          | 21.34     |
| 2019    | 1       | 2      | 4.8  | 4          | 116      | 0.31    | 0.68   | 1.92      | 1.49     | 76.73      | 0.31    | 0.67   | 1.40 | 1.41          | 23.38     |

Table D23: The deepwater (Tier 1 and Tier 2 combined) footprint (km²) by depth zone within the fishable area, for 1990–2019.

| Fishing year | 0–200 m  | 200–400 m | 400–600 m | 600–800 m | 800–1000 m | 1000–1200 m | 1200–1400 m | 1400–1600 m | 0–1600 m  |
|--------------|----------|-----------|-----------|-----------|------------|-------------|-------------|-------------|-----------|
| 1990         | 13 608.0 | 7 881.3   | 11 309.1  | 7 172.5   | 3 411.7    | 2 319.7     | 1 573.4     | 308.1       | 47 584.0  |
| 1991         | 12 261.2 | 9 471.9   | 14 505.9  | 11 896.5  | 4 395.5    | 1 687.5     | 648.0       | 191.9       | 55 058.4  |
| 1992         | 14 685.6 | 10 116.6  | 21 125.0  | 14 725.0  | 3 909.7    | 1 225.7     | 530.3       | 299.3       | 66 617.1  |
| 1993         | 15 706.7 | 9 176.1   | 21 252.0  | 14 178.9  | 4 246.6    | 1 374.4     | 675.3       | 317.1       | 66 927.0  |
| 1994         | 14 992.2 | 8 879.0   | 19 418.3  | 7 363.9   | 3 321.8    | 1 774.4     | 779.8       | 402.3       | 56 931.5  |
| 1995         | 14 072.7 | 8 381.7   | 23 398.5  | 10 142.5  | 3 276.4    | 1 590.3     | 629.7       | 338.6       | 61 830.5  |
| 1996         | 14 473.9 | 8 989.2   | 24 679.2  | 9 351.3   | 3 234.8    | 1 340.5     | 444.2       | 213.2       | 62 726.2  |
| 1997         | 12 700.4 | 9 175.4   | 27 615.7  | 12 301.5  | 4 402.2    | 1 857.3     | 466.0       | 237.9       | 68 756.4  |
| 1998         | 13 781.2 | 9 556.4   | 32 979.5  | 12 255.2  | 5 251.7    | 2 255.3     | 705.5       | 305.8       | 77 090.5  |
| 1999         | 10 927.9 | 8 264.7   | 33 255.6  | 10 541.5  | 5 608.6    | 2 829.0     | 855.3       | 329.4       | 72 611.9  |
| 2000         | 9 929.6  | 8 180.6   | 34 033.4  | 13 736.9  | 4 832.2    | 2 415.4     | 616.4       | 278.6       | 74 023.2  |
| 2001         | 11 531.1 | 8 417.7   | 35 443.8  | 14 540.7  | 3 639.7    | 1 963.9     | 522.1       | 197.0       | 76 256.1  |
| 2002         | 12 549.2 | 9 104.3   | 36 161.7  | 16 389.3  | 4 103.8    | 1 993.3     | 538.0       | 165.3       | 81 004.8  |
| 2003         | 12 755.9 | 9 004.7   | 38 440.5  | 15 042.1  | 2 853.2    | 1 876.0     | 475.5       | 168.8       | 80 616.7  |
| 2004         | 9 963.4  | 7 130.6   | 32 201.9  | 11 910.3  | 3 485.8    | 2 439.5     | 506.6       | 156.6       | 67 794.8  |
| 2005         | 11 016.6 | 7 131.5   | 24 068.2  | 6 504.0   | 2 760.8    | 2 081.1     | 493.6       | 165.5       | 54 221.3  |
| 2006         | 11 441.3 | 7 298.5   | 21 396.5  | 5 227.4   | 2 613.5    | 1 579.6     | 419.8       | 122.6       | 50 099.2  |
| 2007         | 11 602.9 | 7 804.5   | 21 347.0  | 5 045.2   | 2 355.9    | 1 595.7     | 455.5       | 141.0       | 50 347.7  |
| 2008         | 12 619.0 | 8 068.6   | 20 416.9  | 6 021.0   | 1 928.2    | 1 421.2     | 428.8       | 118.5       | 51 022.2  |
| 2009         | 10 360.5 | 6 648.9   | 19 795.0  | 5 166.5   | 1 953.4    | 1 790.2     | 412.9       | 101.4       | 46 228.7  |
| 2010         | 11 273.8 | 6 652.9   | 22 190.8  | 5 624.1   | 1 889.6    | 1 723.8     | 425.5       | 105.9       | 49 886.4  |
| 2011         | 10 334.0 | 6 932.9   | 22 637.5  | 6 148.3   | 1 619.2    | 682.0       | 228.7       | 95.9        | 48 678.5  |
| 2012         | 9 940.1  | 6 718.3   | 22 310.3  | 5 826.3   | 1 239.0    | 638.6       | 186.0       | 64.9        | 46 923.5  |
| 2013         | 9 717.2  | 5 884.2   | 20 978.3  | 6 188.0   | 1 131.6    | 635.1       | 193.1       | 56.9        | 44 784.3  |
| 2014         | 9 058.7  | 6 013.4   | 20 635.2  | 9 280.3   | 1 538.8    | 733.4       | 222.4       | 96.4        | 47 578.7  |
| 2015         | 8 039.3  | 6 041.0   | 22 708.1  | 7 852.3   | 2 436.0    | 798.6       | 220.0       | 88.2        | 48 183.6  |
| 2016         | 7 601.4  | 6 280.7   | 22 621.3  | 6 175.9   | 2 170.7    | 1 298.5     | 434.5       | 95.6        | 46 678.6  |
| 2017         | 7 989.8  | 5 696.5   | 21 935.6  | 6 728.6   | 2 829.0    | 1 277.4     | 414.4       | 112.3       | 46 983.6  |
| 2018         | 6 761.8  | 5 398.8   | 23 613.5  | 8 337.7   | 2 155.2    | 1 165.6     | 451.6       | 143.2       | 48 027.3  |
| 2019         | 7 568.3  | 5 857.9   | 21 008.2  | 5 564.3   | 2 453.9    | 1 002.1     | 323.5       | 62.8        | 43 841.0  |
| All          | 85 314.5 | 41 599.3  | 102 762.5 | 58 479.2  | 34 586.2   | 18 813.3    | 7 202.1     | 2 926.3     | 351 683.5 |

Table D24: The deepwater Tier 1 footprint (km²) by depth zone within the fishable area, for 1990–2019.

| Fishing year | 0–200 m  | 200–400 m | 400–600 m | 600–800 m | 800–1000 m | 1000–1200 m | 1200–1400 m | 1400–1600 m | 0–1600 m  |
|--------------|----------|-----------|-----------|-----------|------------|-------------|-------------|-------------|-----------|
| 1990         | 10 550.0 | 6 397.9   | 10 573.5  | 6 989.6   | 3 362.1    | 2 309.1     | 1565.8      | 295.8       | 42 043.8  |
| 1991         | 10 442.8 | 8 408.0   | 14 057.2  | 11 746.0  | 4 333.5    | 1 669.4     | 635.8       | 181.5       | 51 474.2  |
| 1992         | 12 497.5 | 9 137.0   | 20 791.6  | 14 635.7  | 3 845.3    | 1 198.8     | 500.7       | 279.3       | 62 885.8  |
| 1993         | 13 435.5 | 7 818.9   | 20 732.7  | 14 079.3  | 4 177.1    | 1 345.1     | 647.3       | 298.2       | 62 534.1  |
| 1994         | 13 448.2 | 7 871.8   | 19 065.4  | 7 263.8   | 3 234.4    | 1 729.6     | 751.4       | 383.1       | 53 747.6  |
| 1995         | 11 418.2 | 7 310.8   | 22 958.7  | 9 999.4   | 3 197.5    | 1 552.7     | 609.2       | 321.8       | 57 368.4  |
| 1996         | 12 387.5 | 7 855.4   | 24 413.1  | 9 225.4   | 3 115.8    | 1 292.5     | 420.8       | 192.9       | 58 903.4  |
| 1997         | 11 281.2 | 8 565.5   | 27 427.9  | 12 230.4  | 4 306.2    | 1 821.2     | 451.8       | 222.5       | 66 306.7  |
| 1998         | 12 774.1 | 8 834.5   | 32 797.6  | 12 152.9  | 5 171.0    | 2 205.2     | 678.2       | 292.6       | 74 906.1  |
| 1999         | 10 016.9 | 7 882.8   | 33 084.2  | 10 395.3  | 5 494.8    | 2 781.1     | 824.3       | 302.5       | 70 781.9  |
| 2000         | 8 842.6  | 7 690.4   | 33 810.6  | 13 619.2  | 4 682.6    | 2 345.8     | 567.4       | 248.4       | 71 806.9  |
| 2001         | 10 099.9 | 7 710.7   | 35 142.5  | 14 463.8  | 3 554.5    | 1 928.2     | 500.2       | 173.2       | 73 572.9  |
| 2002         | 10 635.6 | 8 181.1   | 35 787.3  | 16 286.8  | 4 011.5    | 1 956.0     | 521.4       | 149.7       | 77 529.4  |
| 2003         | 10 831.3 | 7 868.4   | 37 875.0  | 14 929.3  | 2 734.9    | 1 815.4     | 452.4       | 144.4       | 76 651.1  |
| 2004         | 8 792.8  | 6 721.0   | 31 548.6  | 11 806.8  | 3 379.1    | 2 405.6     | 485.6       | 142.0       | 65 281.3  |
| 2005         | 9 442.2  | 6 440.5   | 23 611.5  | 6 345.5   | 2 638.4    | 2 029.8     | 478.5       | 139.2       | 51 125.6  |
| 2006         | 10 259.5 | 6 564.2   | 20 655.6  | 5 024.7   | 2 448.9    | 1 538.8     | 392.2       | 103.6       | 46 987.5  |
| 2007         | 9 653.2  | 6 555.8   | 20 542.9  | 4 847.1   | 2 214.7    | 1 531.2     | 425.3       | 123.8       | 45 894.1  |
| 2008         | 8 957.4  | 6 094.1   | 19 197.1  | 5 836.6   | 1 788.5    | 1 356.8     | 405.2       | 99.6        | 43 735.2  |
| 2009         | 7 609.0  | 4 920.6   | 18 734.8  | 5 040.8   | 1 861.9    | 1 758.0     | 393.0       | 87.1        | 40 405.4  |
| 2010         | 8 993.2  | 5 557.7   | 20 990.4  | 5 512.4   | 1 786.2    | 1 671.4     | 408.0       | 91.4        | 45 010.7  |
| 2011         | 7 981.1  | 5 663.8   | 21 412.2  | 5 998.2   | 1 515.1    | 633.8       | 211.8       | 86.4        | 43 502.5  |
| 2012         | 7 637.9  | 5 536.1   | 21 506.8  | 5 695.2   | 1 133.7    | 598.7       | 153.8       | 50.6        | 42 312.9  |
| 2013         | 7 093.5  | 4 834.0   | 20 153.4  | 6 006.9   | 1 071.4    | 601.9       | 185.7       | 50.9        | 39 997.7  |
| 2014         | 6 289.3  | 5 238.5   | 19 701.3  | 9 152.4   | 1 461.5    | 685.4       | 205.2       | 86.0        | 42 819.7  |
| 2015         | 5 282.4  | 5 278.8   | 22 117.0  | 7 721.9   | 2 365.4    | 764.7       | 211.2       | 78.3        | 43 819.6  |
| 2016         | 5 322.9  | 5 502.8   | 21 796.2  | 6 046.1   | 2 111.3    | 1 263.2     | 422.1       | 84.2        | 42 548.8  |
| 2017         | 5 588.5  | 4 916.2   | 21 267.9  | 6 610.7   | 2 763.2    | 1 245.7     | 404.8       | 108.9       | 42 905.9  |
| 2018         | 4 782.8  | 4 536.8   | 22 841.9  | 8 243.9   | 2 105.6    | 1 139.8     | 441.8       | 136.3       | 44 228.9  |
| 2019         | 5 672.4  | 5 227.2   | 20 543.8  | 5 459.1   | 2 398.5    | 964.2       | 309.4       | 57.3        | 40 631.7  |
| All          | 67 744.3 | 37 727.3  | 100 979.3 | 57 264.6  | 33 929.7   | 18 430.2    | 7 000.3     | 2 753.1     | 325 828.8 |

Table D25: The deepwater Tier 2 footprint (km²) by depth zone within the fishable area, for 1990–2019.

| Fishing year | 0–200 m  | 200–400 m | 400–600 m | 600–800 m | 800–1000 m | 1000–1200 m | 1200–1400 m | 1400–1600 m | 0–1600 m  |
|--------------|----------|-----------|-----------|-----------|------------|-------------|-------------|-------------|-----------|
| 1990         | 9 717.9  | 3 250.1   | 1 477.1   | 282.5     | 63.6       | 18.3        | 9.4         | 16.5        | 14 835.4  |
| 1991         | 7 285.0  | 2 694.6   | 903.2     | 255.2     | 104.7      | 33.0        | 15.3        | 11.6        | 11 302.6  |
| 1992         | 10 073.0 | 2 794.0   | 963.5     | 179.7     | 95.8       | 40.2        | 36.8        | 23.4        | 14 206.4  |
| 1993         | 10 746.1 | 2 830.7   | 1 187.9   | 171.8     | 109.7      | 49.7        | 43.7        | 21.8        | 15 161.4  |
| 1994         | 9 984.6  | 2 586.4   | 854.9     | 144.0     | 137.0      | 78.1        | 39.5        | 27.2        | 13 851.7  |
| 1995         | 8 657.5  | 2 584.6   | 1 197.6   | 247.1     | 126.9      | 60.6        | 31.1        | 18.8        | 12 924.1  |
| 1996         | 8 143.2  | 2 595.2   | 698.0     | 176.9     | 156.0      | 83.7        | 28.5        | 30.8        | 11 912.1  |
| 1997         | 5 963.0  | 1 659.9   | 503.5     | 104.0     | 128.0      | 53.6        | 17.2        | 27.1        | 8 456.4   |
| 1998         | 8 094.7  | 1 612.6   | 449.0     | 146.6     | 124.0      | 78.4        | 44.9        | 25.9        | 10 576.2  |
| 1999         | 6 499.0  | 995.6     | 468.7     | 210.9     | 198.6      | 114.4       | 51.4        | 38.1        | 8 576.8   |
| 2000         | 4 975.2  | 1 229.4   | 498.9     | 158.7     | 219.2      | 122.0       | 63.1        | 41.5        | 7 308.0   |
| 2001         | 5 027.8  | 1 366.7   | 592.0     | 94.8      | 104.5      | 41.5        | 25.2        | 25.3        | 7 277.9   |
| 2002         | 7 546.3  | 1 902.3   | 748.5     | 146.8     | 107.0      | 42.2        | 17.5        | 18.3        | 10 528.9  |
| 2003         | 7 571.4  | 2 155.0   | 912.3     | 134.9     | 129.7      | 72.0        | 27.2        | 27.9        | 11 030.4  |
| 2004         | 5 246.4  | 977.6     | 889.0     | 121.1     | 117.2      | 39.8        | 29.0        | 19.2        | 7 439.5   |
| 2005         | 6 359.0  | 1 383.5   | 789.7     | 201.4     | 137.6      | 60.1        | 21.0        | 32.0        | 8 984.3   |
| 2006         | 6 898.7  | 1 443.0   | 1 339.1   | 259.3     | 171.4      | 48.1        | 31.3        | 20.2        | 10 211.1  |
| 2007         | 7 811.7  | 2 037.7   | 1 317.9   | 241.8     | 154.8      | 76.5        | 31.6        | 17.7        | 11 689.9  |
| 2008         | 9 364.7  | 2 553.7   | 1 625.2   | 240.5     | 163.4      | 74.3        | 31.2        | 19.5        | 14 072.5  |
| 2009         | 7 306.2  | 2 228.5   | 1 432.0   | 149.8     | 101.7      | 39.4        | 21.3        | 14.5        | 11 293.4  |
| 2010         | 7 794.5  | 1 483.7   | 1 804.5   | 126.8     | 108.6      | 57.0        | 22.7        | 14.6        | 11 412.3  |
| 2011         | 6 488.7  | 1 598.7   | 1 656.5   | 173.3     | 117.3      | 54.8        | 18.5        | 9.5         | 10 117.3  |
| 2012         | 6 980.4  | 1 548.5   | 1 152.4   | 151.1     | 112.6      | 44.5        | 32.8        | 14.5        | 10 036.7  |
| 2013         | 7 115.1  | 1 352.7   | 1 218.7   | 222.7     | 64.0       | 34.7        | 8.9         | 6.1         | 10 022.8  |
| 2014         | 6 863.2  | 1 150.5   | 1 350.5   | 173.4     | 82.3       | 51.8        | 18.5        | 10.5        | 9 700.7   |
| 2015         | 5 841.6  | 1 076.0   | 831.0     | 193.7     | 77.7       | 35.0        | 9.3         | 10.8        | 8 075.1   |
| 2016         | 5 109.5  | 1 017.8   | 1 112.7   | 162.7     | 64.6       | 36.2        | 13.0        | 11.9        | 7 528.2   |
| 2017         | 5 204.5  | 1 065.4   | 929.5     | 139.9     | 72.0       | 34.4        | 9.9         | 3.4         | 7 459.2   |
| 2018         | 4 743.3  | 1 111.5   | 1 102.3   | 116.0     | 57.4       | 28.7        | 10.1        | 6.9         | 7 176.2   |
| 2019         | 4 921.2  | 942.4     | 648.8     | 125.0     | 58.8       | 39.8        | 14.6        | 5.9         | 6 756.3   |
| All          | 63 459.9 | 19 153.4  | 15 067.9  | 3 661.9   | 1 583.8    | 1 009.4     | 522.7       | 332.8       | 104 791.8 |

Table D26: The estimated 1990–2019 footprint (km²) for Tier 1 targets, by 200-m depth zones.

| Depth zone (m) | HAK      | HOK       | JMA      | LIN      | OEO      | ORH      | SBW      | SCI      | SQU      | Tier 1    |
|----------------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|-----------|
|                |          |           |          |          |          |          |          |          |          |           |
| 0-200          | 329.2    | 12 897.1  | 39 435.4 | 2 700.4  | 105.1    | 279.9    | 94.2     | 1 771.6  | 24 206.3 | 67 744.3  |
| 200-400        | 1 328.6  | 19 449.5  | 5 856.2  | 7 261.5  | 70.5     | 196.7    | 3871.5   | 9 426.4  | 8 360.3  | 37 727.3  |
| 400–600        | 12 688.3 | 71 190.8  | 881.1    | 11 628.2 | 208.6    | 570.9    | 18 936.0 | 8 823.6  | 5 192.3  | 100 979.3 |
| 600-800        | 5 593.0  | 52 217.8  | 341.2    | 5 782.6  | 1 474.1  | 1 670.3  | 339.7    | 443.8    | 2 905.8  | 57 264.6  |
| 800-1000       | 1 038.6  | 8 863.8   | 56.8     | 356.1    | 8 758.3  | 18 483.9 | 58.2     | 171.1    | 485.0    | 33 929.7  |
| 1000-1200      | 51.3     | 2 013.2   | 53.1     | 79.6     | 5 069.6  | 12 851.7 | 22.9     | 145.0    | 319.2    | 18 430.2  |
| 1200-1400      | 11.9     | 633.8     | 60.9     | 30.7     | 1 423.5  | 5 128.4  | 22.2     | 96.5     | 275.2    | 7 000.3   |
| 1400-1600      | 8.4      | 382.6     | 13.0     | 13.3     | 371.4    | 1 992.8  | 3.5      | 59.6     | 104.2    | 2 753.1   |
| 0-1600         | 21 049.2 | 167 648.6 | 46 697.5 | 27 852.5 | 17 481.0 | 41 174.6 | 23 348.2 | 20 937.6 | 41 848.2 | 325 828.8 |

Table D27: The estimated 2019 footprint (km²) for Tier 1 targets, by 200-m depth zones. – indicates no contact.

| Depth zone (m) | HAK   | HOK      | JMA     | LIN     | OEO   | ORH     | SBW   | SCI     | SQU     | Tier 1   |
|----------------|-------|----------|---------|---------|-------|---------|-------|---------|---------|----------|
| 0–200          | 1.7   | 376.6    | 2 693.1 | 76.0    | 0.6   | _       | 2.8   | 122.1   | 2 539.6 | 5 812.5  |
| 200-400        | 5.3   | 1 570.7  | 121.3   | 309.9   | 1.0   | 1.1     | 95.5  | 2 243.2 | 1 179.3 | 5 527.3  |
| 400-600        | 220.2 | 16 923.1 | 10.4    | 842.3   | 0.8   | 4.7     | 659.1 | 2 222.5 | 202.3   | 21 085.3 |
| 600-800        | 146.6 | 5 074.3  | 0.3     | 382.5   | 4.9   | 34.0    | _     | 7.7     | 3.9     | 5 654.1  |
| 800-1000       | 0.6   | 437.0    | _       | 33.7    | 167.5 | 1 774.3 | _     | 1.3     | _       | 2 414.4  |
| 1000-1200      | _     | 7.1      | _       | 1.1     | 109.3 | 846.9   | _     | 1.0     | 0.4     | 965.7    |
| 1200-1400      | _     | 2.9      | _       | _       | 11.4  | 295.3   | _     | 0.3     | _       | 310.0    |
| 1400-1600      | _     | 0.4      | _       | _       | 5.1   | 51.8    | _     | _       | _       | 57.3     |
| 0-1600         | 374.4 | 24 392.1 | 2 825.0 | 1 645.4 | 300.6 | 3 008.2 | 757.3 | 4 598.1 | 3 925.5 | 41 826.7 |

Table D28: The deepwater (Tier 1 and Tier 2 combined) footprint (km²) by BOMEC class within the fishable area, for 1990–2019. The 'All' includes 10 km² not assigned to a class and 3.1 km² in class K. Year is fishing year.

| Year | A       | В       | C        | D       | E        | F       | G       | Н        | I        | J        | L        | M        | N        | О     | All       |
|------|---------|---------|----------|---------|----------|---------|---------|----------|----------|----------|----------|----------|----------|-------|-----------|
| 1990 | 50.3    | 76.7    | 5 900.8  | 334.0   | 4 253.3  | 1 491.3 | 200.5   | 9 532.0  | 5 577.6  | 12 730.5 | 4 751.8  | 886.2    | 1 777.9  | 20.8  | 47 584.0  |
| 1991 | 21.0    | 70.0    | 4 308.5  | 335.5   | 5 143.8  | 1 720.7 | 260.4   | 10 935.1 | 7 302.7  | 14 076.0 | 7 526.9  | 2 149.6  | 1 184.8  | 23.3  | 55 058.4  |
| 1992 | 49.9    | 79.4    | 6 933.4  | 226.7   | 4 964.0  | 1 331.8 | 266.6   | 13 579.1 | 12 797.0 | 11 925.2 | 10 308.0 | 2 904.3  | 1 202.8  | 48.4  | 66 617.1  |
| 1993 | 58.2    | 206.3   | 7 095.3  | 246.5   | 6 050.1  | 846.7   | 400.6   | 14 261.5 | 12 741.1 | 15 235.8 | 5 694.2  | 2 575.7  | 1 474.8  | 39.9  | 66 927.0  |
| 1994 | 68.3    | 207.4   | 6 427.6  | 267.2   | 5 278.6  | 1 297.9 | 454.4   | 12 833.8 | 9 961.2  | 12 611.1 | 4 677.6  | 983.3    | 1 806.7  | 56.1  | 56 931.5  |
| 1995 | 44.7    | 256.5   | 4 033.9  | 296.8   | 6 449.8  | 1 347.0 | 606.4   | 14 084.3 | 12 801.6 | 14 062.1 | 5 064.4  | 1 320.1  | 1 396.5  | 66.3  | 61 830.5  |
| 1996 | 113.0   | 106.3   | 4 339.1  | 336.4   | 6 338.9  | 1 639.6 | 995.6   | 14 283.5 | 14 187.2 | 12 991.2 | 5 146.2  | 1 301.9  | 895.4    | 51.5  | 62 726.2  |
| 1997 | 118.5   | 146.6   | 3 199.6  | 397.8   | 5 935.0  | 1 379.8 | 1 005.5 | 13 951.2 | 15 353.2 | 17 215.5 | 7 210.3  | 1 740.4  | 1 019.5  | 83.4  | 68 756.4  |
| 1998 | 73.3    | 113.4   | 4 104.1  | 423.2   | 6 930.4  | 1 133.3 | 754.7   | 16 719.1 | 18 603.6 | 17 861.7 | 6 947.0  | 1 905.6  | 1 441.8  | 75.6  | 77 090.5  |
| 1999 | 115.7   | 74.4    | 3 042.3  | 301.8   | 6 150.5  | 642.8   | 614.2   | 16 945.9 | 18 784.9 | 17 412.9 | 5 030.1  | 1 785.5  | 1 631.7  | 76.2  | 72 611.9  |
| 2000 | 78.4    | 108.1   | 2 008.3  | 283.6   | 5 679.8  | 596.0   | 685.9   | 16 503.8 | 18 452.8 | 17 758.0 | 8 063.8  | 2 443.3  | 1 288.2  | 70.2  | 74 023.2  |
| 2001 | 341.8   | 109.5   | 3 995.2  | 175.7   | 5 042.9  | 630.7   | 552.1   | 17 670.4 | 17 752.3 | 17 057.3 | 9 227.1  | 2 546.6  | 1 097.0  | 57.5  | 76 256.1  |
| 2002 | 238.2   | 167.8   | 5 056.6  | 226.4   | 4 973.9  | 1 102.1 | 468.7   | 16 558.2 | 16 919.7 | 17 260.3 | 11 951.0 | 4 842.6  | 1 162.5  | 76.5  | 81 004.8  |
| 2003 | 209.4   | 94.9    | 5 047.9  | 218.1   | 4 925.7  | 1 301.2 | 516.5   | 19 145.3 | 16 536.5 | 16 276.0 | 13 171.3 | 2 036.4  | 1 065.4  | 72.1  | 80 616.7  |
| 2004 | 58.7    | 53.1    | 3 734.7  | 129.3   | 3 948.1  | 1 471.2 | 575.0   | 14 965.0 | 13 616.1 | 15 253.8 | 10 577.4 | 2 271.6  | 1 076.7  | 63.9  | 67 794.8  |
| 2005 | 15.2    | 44.7    | 4 622.8  | 68.2    | 4 213.4  | 1 372.8 | 501.9   | 12 853.4 | 10 255.8 | 11 778.8 | 5 648.9  | 1 710.9  | 1 075.4  | 59.2  | 54 221.3  |
| 2006 | 8.7     | 31.4    | 4 392.1  | 73.3    | 4 863.1  | 1 626.2 | 355.5   | 11 972.0 | 9 947.9  | 11 324.2 | 3 576.6  | 1 127.5  | 760.0    | 41.0  | 50 099.2  |
| 2007 | 19.3    | 29.4    | 4 890.2  | 81.8    | 4 526.0  | 1 111.0 | 339.3   | 12 735.9 | 11 162.7 | 9 540.1  | 3 990.5  | 1 146.0  | 734.8    | 40.6  | 50 347.7  |
| 2008 | 139.6   | 789.7   | 6 193.3  | 225.7   | 3 459.6  | 972.2   | 656.3   | 12 415.0 | 9 779.5  | 10 323.2 | 4 528.4  | 783.1    | 708.8    | 47.8  | 51 022.2  |
| 2009 | 126.1   | 523.8   | 4 711.6  | 240.6   | 2 877.0  | 1 342.5 | 578.1   | 9 731.2  | 10 576.2 | 9 255.2  | 4 689.4  | 880.3    | 671.8    | 24.8  | 46 228.7  |
| 2010 | 74.8    | 490.9   | 5 606.0  | 328.5   | 3 362.5  | 1 399.7 | 617.3   | 9 439.8  | 12 250.7 | 9 806.0  | 4 629.7  | 1 092.9  | 758.1    | 29.0  | 49 886.4  |
| 2011 | 93.3    | 382.0   | 4 158.6  | 295.0   | 3 954.4  | 931.9   | 627.8   | 9 685.9  | 11 349.7 | 9 183.2  | 6 219.7  | 1 291.8  | 479.3    | 25.8  | 48 678.5  |
| 2012 | 79.5    | 544.7   | 4 522.1  | 255.7   | 3 402.1  | 671.3   | 543.8   | 10 182.7 | 11 733.2 | 9 213.8  | 4 645.8  | 672.9    | 438.8    | 16.7  | 46 923.5  |
| 2013 | 67.8    | 598.4   | 4 225.8  | 267.2   | 3 190.1  | 685.1   | 654.0   | 9 121.0  | 12 125.2 | 8 600.4  | 4 358.9  | 452.6    | 422.0    | 15.8  | 44 784.3  |
| 2014 | 99.5    | 591.6   | 4 144.5  | 253.4   | 2 853.3  | 431.9   | 664.9   | 8 998.2  | 11 531.9 | 10 185.1 | 6 251.1  | 1 036.2  | 505.8    | 31.3  | 47 578.7  |
| 2015 | 34.4    | 351.7   | 3 501.4  | 198.5   | 2 968.7  | 412.8   | 522.9   | 10 197.8 | 12 301.9 | 11 311.9 | 5 130.4  | 779.0    | 455.4    | 16.8  | 48 183.6  |
| 2016 | 17.8    | 370.7   | 2 892.9  | 142.9   | 2 906.6  | 473.1   | 484.8   | 10 976.5 | 10 780.9 | 10 893.7 | 5 182.3  | 738.6    | 789.7    | 27.7  | 46 678.6  |
| 2017 | 15.5    | 274.1   | 2 884.9  | 164.4   | 3 095.3  | 794.4   | 498.9   | 9 710.0  | 10 897.1 | 11 368.6 | 5 609.4  | 878.7    | 765.5    | 26.5  | 46 983.6  |
| 2018 | 26.9    | 355.5   | 2 529.7  | 118.8   | 2 466.2  | 385.8   | 424.9   | 10 120.7 | 10 821.5 | 11 079.7 | 7 531.3  | 1 445.3  | 698.5    | 22.4  | 48 027.3  |
| 2019 | 25.7    | 360.7   | 2 704.4  | 151.3   | 3 290.2  | 316.7   | 374.2   | 9 904.4  | 9 870.5  | 10 094.0 | 5 516.1  | 705.7    | 507.9    | 19.2  | 43 841.0  |
| All  | 1 505.7 | 4 394.1 | 36 642.9 | 3 790.2 | 24 569.7 | 6 891.5 | 3 623.8 | 64 974.9 | 38 597.9 | 78 170.5 | 56 587.4 | 18 785.3 | 12 548.9 | 587.6 | 351 683.5 |

Table D29: The deepwater Tier 1 footprint (km²) by BOMEC class within the fishable area, for 1990–2019. The 'All' includes 8.8 km² not assigned to a class and 2.9 km² in class K. Year is fishing year.

| Year | A     | В       | C        | D       | Е        | F       | G       | Н        | I        | J        | L        | M        | N        | O     | All       |
|------|-------|---------|----------|---------|----------|---------|---------|----------|----------|----------|----------|----------|----------|-------|-----------|
| 1990 | 29.6  | 32.8    | 5 338.0  | 131.0   | 2 594.5  | 1 446.3 | 116.1   | 7 369.0  | 5 237.9  | 12 443.4 | 4 657.2  | 866.2    | 1 761.5  | 20.2  | 42 043.8  |
| 1991 | 12.5  | 28.4    | 3 987.1  | 139.3   | 4 191.7  | 1 715.6 | 215.4   | 9 463.9  | 7 112.7  | 13 850.7 | 7 443.2  | 2 140.0  | 1 150.8  | 22.7  | 51 474.2  |
| 1992 | 25.4  | 38.5    | 6 342.4  | 159.8   | 3 859.9  | 1 292.6 | 251.6   | 12 360.9 | 12 528.7 | 11 665.1 | 10 261.9 | 2 894.8  | 1 155.9  | 47.6  | 62 885.8  |
| 1993 | 23.0  | 87.6    | 6 548.5  | 124.6   | 4 946.7  | 822.0   | 316.8   | 12 488.3 | 12 558.2 | 14 920.2 | 5 664.3  | 2 569.1  | 1 426.9  | 37.3  | 62 534.1  |
| 1994 | 27.0  | 104.3   | 6 043.7  | 224.1   | 4 535.8  | 1 291.4 | 384.9   | 11 644.0 | 9 785.2  | 12 283.8 | 4 646.5  | 981.6    | 1 741.4  | 53.8  | 53 747.6  |
| 1995 | 22.2  | 113.3   | 3 090.3  | 195.5   | 5 357.5  | 1 344.2 | 472.6   | 12 769.4 | 12 551.8 | 13 738.1 | 5 001.1  | 1 310.1  | 1 348.0  | 54.3  | 57 368.4  |
| 1996 | 28.8  | 51.0    | 3 773.6  | 258.7   | 5 332.2  | 1 618.9 | 991.1   | 12 873.9 | 14 074.7 | 12 669.0 | 5 087.9  | 1 256.8  | 839.9    | 46.4  | 58 903.4  |
| 1997 | 27.3  | 84.0    | 2 651.7  | 338.3   | 5 419.8  | 1 373.3 | 1 000.4 | 13 191.6 | 15 304.0 | 16 918.3 | 7 200.0  | 1 735.2  | 983.0    | 79.6  | 66 306.7  |
| 1998 | 48.3  | 72.0    | 3 900.9  | 362.3   | 6 433.3  | 1 125.0 | 742.4   | 15 842.9 | 18 536.7 | 17 557.4 | 6 930.2  | 1 894.5  | 1 385.3  | 71.1  | 74 906.1  |
| 1999 | 62.8  | 50.5    | 2 752.5  | 276.9   | 5 877.5  | 635.6   | 589.2   | 16 326.6 | 18 731.5 | 17 053.3 | 5 017.5  | 1 773.8  | 1 563.4  | 67.7  | 70 781.9  |
| 2000 | 46.3  | 48.8    | 1 646.3  | 212.6   | 5 295.1  | 584.6   | 657.9   | 15 864.8 | 18 375.2 | 17 338.3 | 8 048.1  | 2 431.1  | 1 195.7  | 59.3  | 71 806.9  |
| 2001 | 307.3 | 37.6    | 3 469.0  | 116.3   | 4 705.3  | 624.8   | 520.8   | 16 569.5 | 17 666.5 | 16 710.9 | 9 213.1  | 2 540.5  | 1 045.3  | 45.9  | 73 572.9  |
| 2002 | 178.7 | 44.1    | 4 312.7  | 165.1   | 4 364.9  | 1 099.4 | 435.2   | 15 252.7 | 16 827.0 | 16 918.9 | 11 910.2 | 4 837.5  | 1 116.4  | 66.0  | 77 529.4  |
| 2003 | 108.8 | 60.9    | 4 413.4  | 139.2   | 4 036.7  | 1 296.9 | 501.7   | 17 538.9 | 16 460.6 | 15 871.3 | 13 132.6 | 2 036.2  | 995.2    | 58.5  | 76 651.1  |
| 2004 | 3.3   | 32.5    | 3 436.6  | 52.4    | 3 314.9  | 1 467.3 | 560.6   | 14 040.0 | 13 594.0 | 14 939.4 | 10 514.5 | 2 271.6  | 1 002.2  | 52.0  | 65 281.3  |
| 2005 | 2.6   | 29.7    | 3 901.5  | 55.8    | 3 619.5  | 1 372.7 | 498.2   | 11 858.0 | 10 169.9 | 11 299.5 | 5 587.0  | 1 703.8  | 981.6    | 45.7  | 51 125.6  |
| 2006 | 3.4   | 27.2    | 4 152.2  | 63.5    | 4 094.2  | 1 624.5 | 350.8   | 10 927.7 | 9 685.3  | 10 688.1 | 3 519.3  | 1 127.3  | 697.3    | 26.6  | 46 987.5  |
| 2007 | 8.6   | 16.2    | 4 489.6  | 44.7    | 3 298.2  | 1 101.3 | 322.4   | 11 031.7 | 10 852.2 | 8 918.3  | 3 948.2  | 1 141.8  | 687.0    | 33.8  | 45 894.1  |
| 2008 | 5.2   | 89.9    | 4 753.2  | 89.0    | 2 628.2  | 970.1   | 510.2   | 9 758.3  | 9 288.0  | 9 696.5  | 4 475.4  | 778.9    | 651.8    | 40.5  | 43 735.2  |
| 2009 | 5.3   | 61.2    | 3 836.7  | 51.7    | 1 956.0  | 1 329.5 | 444.8   | 7 783.4  | 10 024.5 | 8 786.6  | 4 600.4  | 872.1    | 634.3    | 18.9  | 40 405.4  |
| 2010 | 11.5  | 96.5    | 4 972.5  | 72.5    | 2 576.3  | 1 397.6 | 472.5   | 7 989.7  | 11 852.8 | 9 196.1  | 4 548.2  | 1 090.6  | 713.0    | 20.8  | 45 010.7  |
| 2011 | 11.7  | 88.5    | 3 673.6  | 67.5    | 2 848.4  | 931.6   | 435.2   | 8 022.7  | 10 907.7 | 8 592.8  | 6 183.0  | 1 286.5  | 434.1    | 19.1  | 43 502.5  |
| 2012 | 8.4   | 62.5    | 3 850.7  | 66.1    | 2 656.1  | 664.4   | 355.0   | 8 869.2  | 11 495.9 | 8 662.6  | 4 552.8  | 667.8    | 390.7    | 10.4  | 42 312.9  |
| 2013 | 5.8   | 70.7    | 3 641.2  | 91.2    | 2 094.7  | 684.4   | 363.8   | 8 014.6  | 11 734.6 | 8 130.9  | 4 295.8  | 451.0    | 408.1    | 10.8  | 39 997.7  |
| 2014 | 6.3   | 48.6    | 3 192.7  | 57.2    | 2 110.2  | 425.1   | 458.8   | 7 959.8  | 11 146.8 | 9 692.3  | 6 189.8  | 1 032.0  | 474.3    | 25.7  | 42 819.7  |
| 2015 | 4.4   | 79.0    | 2 397.7  | 45.8    | 1 980.8  | 409.3   | 385.9   | 9 300.9  | 12 070.4 | 10 875.4 | 5 079.9  | 769.6    | 407.5    | 13.0  | 43 819.6  |
| 2016 | 2.6   | 41.1    | 2 386.5  | 69.4    | 1 782.8  | 471.8   | 329.9   | 9 856.0  | 10 469.7 | 10 479.8 | 5 158.2  | 729.6    | 748.8    | 22.1  | 42 548.8  |
| 2017 | 2.6   | 103.6   | 2 440.3  | 45.5    | 1 758.1  | 792.6   | 415.8   | 8 509.1  | 10 605.7 | 11 016.2 | 5 583.4  | 868.9    | 739.4    | 24.8  | 42 905.9  |
| 2018 | 5.1   | 70.4    | 2 240.2  | 77.3    | 1 455.3  | 385.8   | 299.0   | 8 782.1  | 10 462.8 | 10 811.5 | 7 511.6  | 1 440.8  | 666.5    | 20.4  | 44 228.9  |
| 2019 | 16.7  | 29.6    | 2 412.9  | 100.2   | 2 403.8  | 316.7   | 264.8   | 8 927.9  | 9 738.2  | 9 713.1  | 5 509.5  | 702.4    | 478.9    | 16.9  | 40 631.7  |
| All  | 763.9 | 1 249.0 | 29 786.6 | 2 348.1 | 20 644.1 | 6 839.0 | 2 826.8 | 60 161.5 | 38 355.1 | 75 251.8 | 56 388.4 | 18 634.9 | 12 024.2 | 543.7 | 325 828.8 |

Table D30: The deepwater Tier 2 footprint (km²) by BOMEC class within the fishable area, for 1990–2019. The 'All' includes 1.2 km² not assigned to a class and 0.2 km² in class K. Year is fishing year.

| Year | A     | В       | С        | D       | Е        | F     | G       | Н        | I       | J       | L     | M     | N       | О    | All      |
|------|-------|---------|----------|---------|----------|-------|---------|----------|---------|---------|-------|-------|---------|------|----------|
| 1990 | 20.7  | 44.2    | 613.2    | 214.9   | 2 314.6  | 53.8  | 85.0    | 3 319.5  | 821.2   | 450.0   | 156.8 | 21.7  | 17.2    | 0.6  | 8 133.2  |
| 1991 | 8.5   | 41.6    | 347.0    | 198.5   | 1 701.4  | 5.8   | 45.5    | 2 255.9  | 491.0   | 389.0   | 150.2 | 10.4  | 52.6    | 0.7  | 5 698.0  |
| 1992 | 25.3  | 41.1    | 717.2    | 72.3    | 1 758.0  | 44.5  | 15.1    | 1 885.3  | 725.8   | 512.3   | 86.8  | 11.3  | 58.9    | 1.7  | 5 955.6  |
| 1993 | 35.2  | 120.3   | 561.0    | 123.5   | 1 998.8  | 32.6  | 85.3    | 2 669.2  | 647.6   | 526.1   | 98.7  | 7.5   | 54.7    | 2.9  | 6 963.5  |
| 1994 | 41.3  | 103.6   | 396.3    | 43.6    | 1 441.7  | 10.4  | 71.2    | 1 996.9  | 602.5   | 571.7   | 111.6 | 1.8   | 82.0    | 2.4  | 5 477.0  |
| 1995 | 22.6  | 145.4   | 1 049.3  | 104.4   | 2 129.1  | 6.4   | 140.9   | 2 399.3  | 749.3   | 568.5   | 130.0 | 10.3  | 61.0    | 13.6 | 7 530.2  |
| 1996 | 86.9  | 56.7    | 630.0    | 84.3    | 1 943.7  | 24.8  | 11.0    | 2 257.9  | 467.7   | 470.7   | 146.5 | 45.8  | 73.9    | 12.5 | 6 312.5  |
| 1997 | 94.2  | 65.8    | 635.2    | 75.2    | 1 161.6  | 11.7  | 10.5    | 1 296.8  | 259.7   | 443.5   | 51.6  | 6.4   | 51.8    | 14.4 | 4 178.2  |
| 1998 | 26.1  | 41.8    | 293.9    | 88.2    | 1 462.2  | 12.4  | 14.3    | 1 224.1  | 167.9   | 473.9   | 36.8  | 12.3  | 87.9    | 14.9 | 3 956.8  |
| 1999 | 58.1  | 24.0    | 367.0    | 39.5    | 1 068.7  | 9.4   | 27.2    | 984.0    | 199.4   | 615.7   | 31.0  | 12.5  | 102.3   | 12.6 | 3 551.3  |
| 2000 | 32.3  | 59.7    | 429.7    | 71.5    | 896.1    | 15.5  | 40.9    | 886.6    | 235.8   | 651.1   | 34.6  | 12.9  | 126.3   | 15.1 | 3 508.0  |
| 2001 | 34.5  | 72.3    | 536.3    | 59.4    | 612.9    | 7.0   | 37.2    | 1 499.3  | 237.6   | 455.3   | 28.9  | 7.2   | 58.1    | 11.8 | 3 657.9  |
| 2002 | 62.0  | 123.8   | 764.0    | 62.5    | 1 013.4  | 2.8   | 46.7    | 1 805.3  | 354.2   | 472.1   | 90.0  | 5.0   | 50.4    | 12.6 | 4 864.9  |
| 2003 | 151.2 | 34.5    | 747.1    | 80.4    | 1 120.0  | 12.8  | 24.2    | 2 145.6  | 251.3   | 477.1   | 51.4  | 0.2   | 79.0    | 16.9 | 5 191.7  |
| 2004 | 55.4  | 20.7    | 320.3    | 77.1    | 832.2    | 4.9   | 23.3    | 1 191.3  | 94.4    | 363.4   | 73.4  |       | 78.1    | 13.3 | 3 148.0  |
| 2005 | 12.6  | 15.0    | 845.2    | 12.7    | 1 133.0  | 0.8   | 3.9     | 1 339.3  | 312.8   | 640.7   | 104.2 | 7.3   | 105.3   | 15.5 | 4 548.4  |
| 2006 | 5.3   | 4.2     | 298.2    | 9.9     | 1 383.7  | 2.7   | 5.1     | 1 435.8  | 689.7   | 819.8   | 112.3 | 0.3   | 65.1    | 15.4 | 4 847.4  |
| 2007 | 10.7  | 13.3    | 517.2    | 38.1    | 1 830.0  | 12.7  | 17.1    | 2 149.9  | 763.1   | 734.8   | 98.4  | 4.4   | 52.0    | 7.0  | 6 248.8  |
| 2008 | 134.5 | 709.2   | 1523.8   | 136.9   | 1 148.4  | 3.0   | 167.1   | 3 058.2  | 770.1   | 786.2   | 95.4  | 4.2   | 61.8    | 7.5  | 8 606.3  |
| 2009 | 120.8 | 467.8   | 923.1    | 189.1   | 1 209.2  | 22.4  | 155.0   | 2 161.5  | 872.8   | 554.2   | 143.5 | 8.2   | 39.6    | 6.0  | 6 873.5  |
| 2010 | 63.3  | 400.9   | 686.9    | 256.2   | 1 041.8  | 4.0   | 163.1   | 1 690.5  | 819.5   | 728.3   | 124.4 | 2.3   | 46.7    | 8.3  | 6 036.4  |
| 2011 | 81.6  | 300.4   | 493.3    | 229.6   | 1 395.6  | 0.4   | 211.7   | 1 937.8  | 746.3   | 676.1   | 79.6  | 5.6   | 47.6    | 6.6  | 6 212.6  |
| 2012 | 71.2  | 489.4   | 722.1    | 191.1   | 1 028.6  | 8.3   | 204.0   | 1 583.1  | 462.0   | 612.3   | 129.4 | 5.1   | 50.9    | 6.4  | 5 563.9  |
| 2013 | 62.1  | 539.7   | 608.6    | 180.9   | 1 364.4  | 1.3   | 311.8   | 1 267.8  | 729.1   | 561.7   | 122.0 | 1.6   | 15.2    | 5.1  | 5 771.5  |
| 2014 | 93.1  | 548.1   | 1147.2   | 198.7   | 998.4    | 7.3   | 223.7   | 1 200.3  | 747.6   | 585.2   | 101.2 | 4.2   | 34.6    | 5.6  | 5 895.3  |
| 2015 | 30.0  | 277.1   | 1395.3   | 153.0   | 1 301.1  | 3.5   | 146.4   | 989.4    | 474.2   | 555.2   | 83.7  | 9.4   | 50.9    | 3.9  | 5 473.2  |
| 2016 | 15.2  | 332.5   | 586.5    | 74.1    | 1 304.8  | 1.3   | 165.8   | 1 277.9  | 478.3   | 513.6   | 33.4  | 9.1   | 42.2    | 6.0  | 4 840.6  |
| 2017 | 12.9  | 174.7   | 473.3    | 119.1   | 1680.4   | 2.1   | 93.0    | 1 361.1  | 528.8   | 423.7   | 33.0  | 9.8   | 29.6    | 1.7  | 4 943.3  |
| 2018 | 21.8  | 291.9   | 330.3    | 41.5    | 1 254.0  |       | 133.7   | 1 486.5  | 649.4   | 336.7   | 27.7  | 4.6   | 37.2    | 2.0  | 4 617.3  |
| 2019 | 9.0   | 332.6   | 307.1    | 51.0    | 1 317.2  |       | 112.7   | 1 082.5  | 326.1   | 431.3   | 27.9  | 3.3   | 31.3    | 2.5  | 4 034.6  |
| All  | 928.0 | 3 712.4 | 13 019.8 | 1 953.1 | 13 015.6 | 240.7 | 1 657.6 | 23 056.4 | 5 603.2 | 8 703.3 | 890.8 | 227.8 | 1 119.8 | 87.2 | 74 217.1 |

Table D31: Estimated footprint (km²) for the Tier 1 target fish species relative to the probability of occurrence of each target and for the scampi and arrow squid targets relative to the estimated extent of the species (based on www.nabis.govt.nz).

| Probability |          | HAK   |                 | HOK      |          | JMA     |          | LIN     |          | OEO   |          | ORH     |
|-------------|----------|-------|-----------------|----------|----------|---------|----------|---------|----------|-------|----------|---------|
| occurrence  | 1990-    |       | 1990–           |          | 1990–    |         | 1990–    |         | 1990–    |       | 1990–    |         |
| (%)         | 2019     | 2019  | 2019            | 2019     | 2019     | 2019    | 2019     | 2019    | 2019     | 2019  | 2019     | 2019    |
| 0           | 240.4    |       | 236.8           | 5.0      | 1 011.8  | 4.8     | 4.8      | 0.0     | 381.0    | 2.2   | 1 174.2  | 1.2     |
| 0.1 - 1.0   | 241.3    |       | 1 126.2         | 15.2     | 182.4    | 0.9     | 83.4     | 1.4     | 64.7     | 0.3   | 171.4    | 1.7     |
| 1.1 - 5.0   | 459.1    | 0.6   | 2 983.4         | 60.6     | 1 141.0  | 12.6    | 92.2     | 0.4     | 203.6    | 2.6   | 380.3    | 5.7     |
| 5.1 - 10.0  | 356.5    | 4.1   | 3 145.1         | 90.4     | 983.2    | 4.1     | 119.4    | 2.3     | 193.3    | 2.0   | 386.6    | 7.4     |
| 10.1 – 0.0  | 527.4    | 2.1   | 4 048.9         | 133.3    | 2 278.4  | 35.2    | 461.4    | 10.8    | 229.1    | 3.3   | 614.3    | 19.4    |
| 20.1-30.0   | 508.3    | 1.9   | 2 801.7         | 115.4    | 5 875.8  | 149.6   | 1 140.8  | 33.2    | 238.8    | 2.6   | 590.5    | 20.5    |
| 30.1-40.0   | 788.8    | 7.1   | 2 563.8         | 127.9    | 6 459.0  | 268.0   | 1 177.0  | 56.1    | 187.5    | 2.5   | 507.3    | 14.4    |
| 40.1 - 50.0 | 1 629.5  | 20.2  | 2 667.3         | 174.0    | 4 653.6  | 224.3   | 1 213.6  | 72.2    | 211.7    | 1.7   | 506.4    | 15.3    |
| 50.1-60.0   | 2 322.2  | 65.6  | 2 805.5         | 176.1    | 5 170.0  | 405.9   | 1 093.5  | 68.0    | 274.1    | 0.7   | 511.8    | 14.5    |
| 60.1 - 70.0 | 3 190.0  | 90.3  | 2 711.2         | 262.9    | 9 513.3  | 837.3   | 1 104.6  | 69.6    | 463.3    | 3.2   | 654.9    | 16.0    |
| 70.1 - 80.0 | 6 135.0  | 138.1 | 3 806.3         | 358.3    | 6 704.9  | 398.0   | 1 334.8  | 75.0    | 1 289.1  | 9.4   | 1 008.1  | 41.3    |
| 80.1-90.0   | 4 359.8  | 42.8  | 6 499.3         | 810.2    | 2 649.8  | 484.2   | 3 335.3  | 129.0   | 3 138.9  | 21.9  | 2 155.7  | 113.6   |
| 90.1–95.0   | 286.8    | 1.7   | 20 643.5<br>111 | 2 829.3  | 65.9     |         | 7 685.7  | 424.0   | 3 038.3  | 40.8  | 2 745.4  | 155.5   |
| 95.1–99.0   | 4.2      |       | 609.6           | 19 233.5 | 8.5      |         | 9 005.9  | 703.5   | 7 583.8  | 207.4 | 29 767.8 | 2 581.8 |
|             |          |       | 167             |          |          |         |          |         |          |       |          |         |
| 0.0 – 99.0  | 21 049.2 | 374.4 | 648.6           | 24 392.1 | 46 697.5 | 2 825.0 | 27 852.5 | 1 645.4 | 17 481.0 | 300.6 | 41174.6  | 3 008.2 |

Table D31: — continued.

| Probability |           | SBW   | Population         |           | SCI     |           | SQU     |
|-------------|-----------|-------|--------------------|-----------|---------|-----------|---------|
| (%)         | 1990–2019 | 2019  | extent             | 1990–2019 | 2019    | 1990-2019 | 2019    |
| 0           | 100.8     |       | Hotspot            | 5 048.9   | 1 216.4 | 16 070.3  | 1 406.8 |
| 0.1 - 1.0   | 102.9     | 1.3   | 90% population     | 5 225.2   | 602.8   | 15 202.8  | 2 169.4 |
| 1.1-5.0     | 382.2     | 1.3   | 100% population    | 9 450.2   | 2 688.5 | 7 283.0   | 319.0   |
| 5.1-10.0    | 349.4     | 0.7   | Not Exist /unknown | 1 208.1   | 90.5    | 3 292.0   | 19.6    |
| 10.1-0.0    | 491.5     | 1.8   | All                | 20 932.3  | 4 598.1 | 41 848.2  | 3 925.5 |
| 20.1-30.0   | 433.6     | 0.8   |                    |           |         |           |         |
| 30.1-40.0   | 380.9     | 0.7   |                    |           |         |           |         |
| 40.1-50.0   | 355.5     | 0.1   |                    |           |         |           |         |
| 50.1-60.0   | 547.7     | 0.9   |                    |           |         |           |         |
| 60.1-70.0   | 758.5     | 2.8   |                    |           |         |           |         |
| 70.1-80.0   | 1 355.3   | 30.0  |                    |           |         |           |         |
| 80.1-90.0   | 3 722.9   | 82.8  |                    |           |         |           |         |
| 90.1-95.0   | 5 401.8   | 103.0 |                    |           |         |           |         |
| 95.1-99.0   | 8 965.3   | 61.4  |                    |           |         |           |         |
| 0.0-99.0    | 23 348.2  | 287.3 |                    |           |         |           |         |
|             |           |       |                    |           |         |           |         |

Table D32: The estimated footprint (km²) for deepwater fishstocks during 1990–2019 ad 2019 by the surficial layers representing the percent of carbonate, gravel mud, and sand. 'unk' is where there was no overlap.

|              |           |           | 1990–2019 foo | otprint (km²) |              | -         |          | 2019 footp | orint (km²) |
|--------------|-----------|-----------|---------------|---------------|--------------|-----------|----------|------------|-------------|
| Sediment (%) | Carbonate | Gravel    | Mud           | Sand          | Sediment (%) | Carbonate | Gravel   | Mud        | Sand        |
| 0–20         | 60 203.8  | 272 347.0 | 109 566.3     | 33 773.2      | 0–20         | 11 177.8  | 35 005.0 | 12 720.4   | 3 534.4     |
| 20-40        | 85 639.4  | 54 456.4  | 85 836.3      | 68 039.7      | 20–40        | 10 232.9  | 6 922.3  | 9 631.3    | 8 913.0     |
| 40–60        | 68 161.1  | 15 836.4  | 81 526.1      | 133 783.7     | 40–60        | 7 276.0   | 1 289.6  | 12 445.1   | 17 472.1    |
| 60–80        | 59 846.8  | 5 266.9   | 48 493.2      | 92 406.6      | 60–80        | 7 459.6   | 241.8    | 6 379.9    | 10 802.0    |
| 80-100       | 76 021.8  | 1 594.4   | 24 116.6      | 21 873.9      | 80–100       | 7 687.4   | 371.2    | 2 653.3    | 3 112.0     |
| unk          | 1 810.6   | 2 182.4   | 2 145.1       | 1 806.5       | unk          | 7.4       | 11.0     | 11.0       | 7.4         |
| Total        | 351 683.5 | 351 683.5 | 351 683.5     | 351 683.5     | Total        | 43 841.0  | 43 841.0 | 43 841.0   | 43 841.0    |

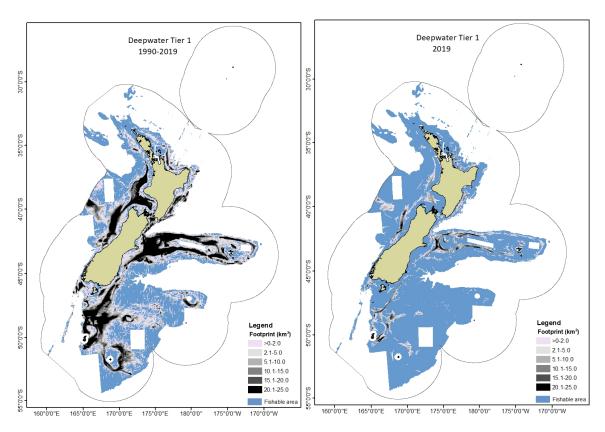



Figure D1: Distribution of the deepwater Tier 1 footprint, by 25-km<sup>2</sup> cells, 1990–2019 and 2019.

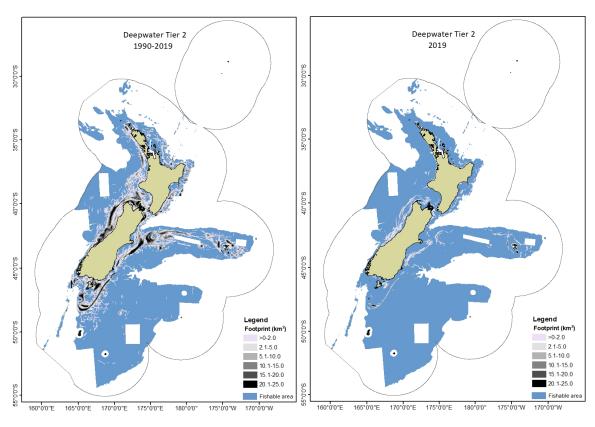



Figure D2: Distribution of the deepwater Tier 2 footprint, by 25-km<sup>2</sup> cells, 1990–2019 and 2019.

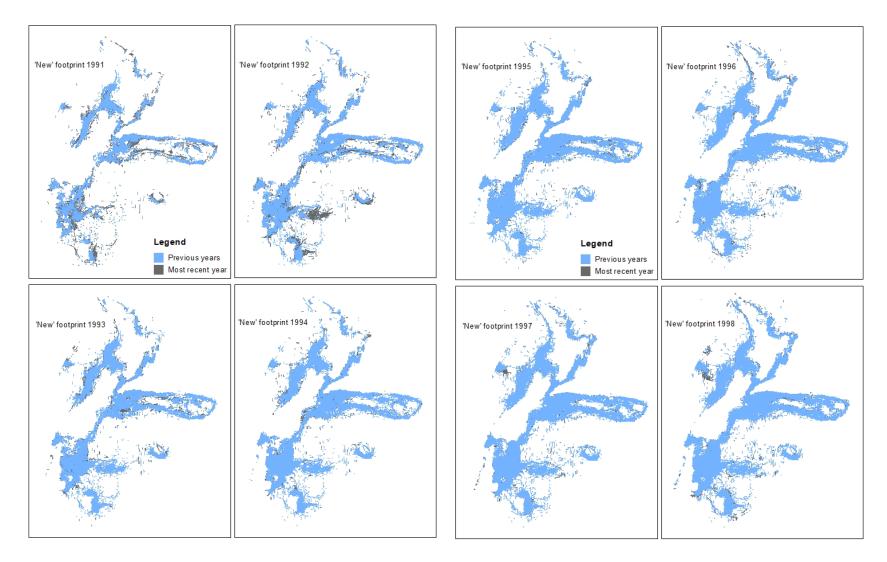



Figure D3: Distribution of new deepwater footprint each fishing year, relative to previous years, for 1990–2019. This figure shows 1991–1994 (left) and 1995–1998 (right).



Figure D3: — continued. This figure shows 1999–2002 (left) and 2003–2006 (right).



Figure D3: — continued. This figure shows 2007–2010 (left) and 2011–2014 (right).

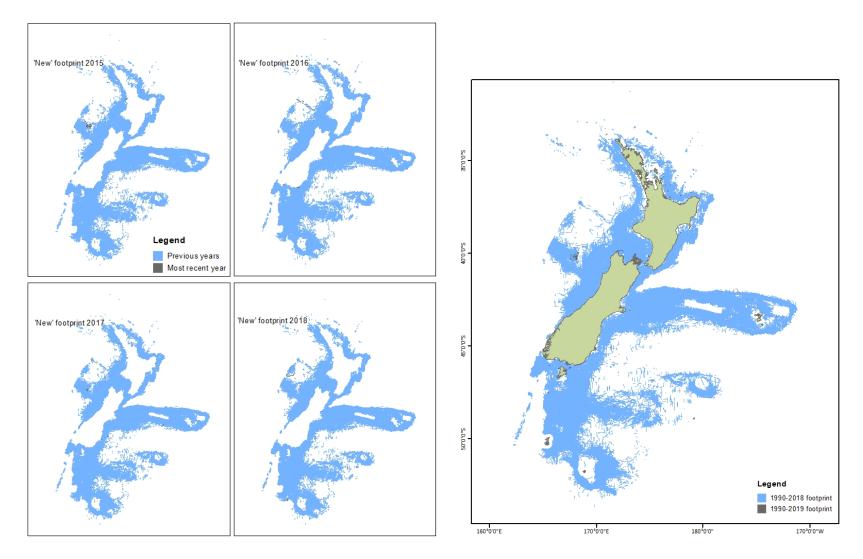



Figure D3: — continued. This figure shows 2015–2018 (left) and 2019 (right).

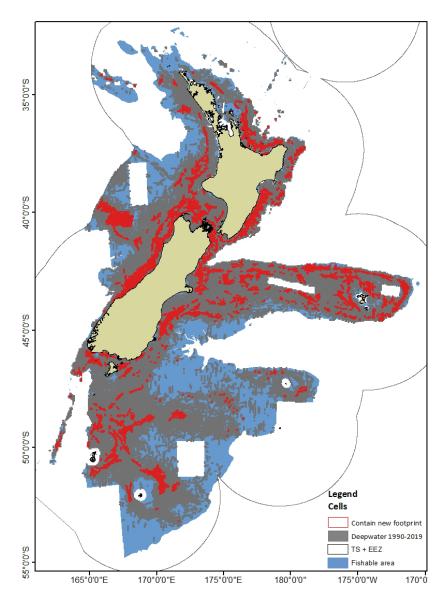



Figure D4a: The location of cells that had deepwater footprint contact in 2019 within them (n=6393 red cells) in parts of the cells that had not been contacted before (that is 1990–2018). The deepwater 1990–2019 set of cells is also shown. Refer to next figure

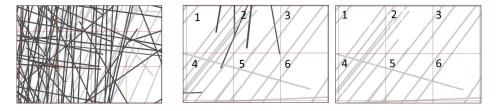



Figure D4b: Tows across red cells (cells with new deepwater footprint area contacted in 2019 but not in 1990–2018). Black tows are those made during 1990–2018, and light grey tows are those made in 2019. Right image shows the segments of tows that represent the new 2019 footprint (grey) in the cells shown in the lower left image.

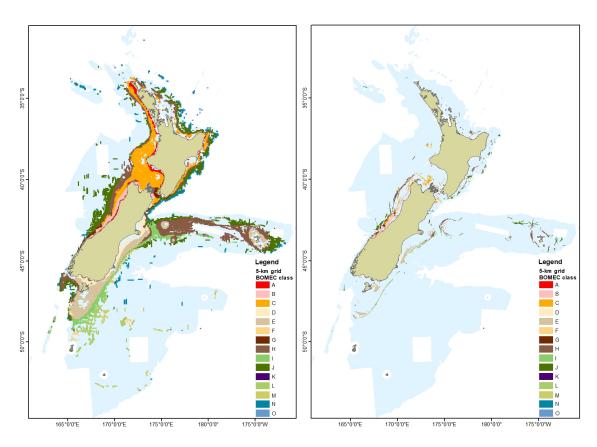



Figure D5: Tier 2 footprint overlap with BOMEC for 1990–2019 (left) and 2019 (right).

## **APPENDIX E: INSHORE FISHSTOCKS**

Table E1: The number of bottom-contacting tows by inshore target retained for the inshore spatial analysis, for 2008–2019. 'Others' include BCO, BNS, FRO, HPB, QSC, PAD, POR, RSN, TRU. [See Table 2 and Table E2 for definition of codes.]

| Target      | 2008   | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | All     |
|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| BAR         | 923    | 1 171  | 1 235  | 1 199  | 1 212  | 1 510  | 1 314  | 1 384  | 1 151  | 1 545  | 2 178  | 1 263  | 16 085  |
| ELE         | 647    | 698    | 865    | 678    | 792    | 659    | 606    | 791    | 649    | 660    | 650    | 889    | 8 584   |
| FLA         | 17 795 | 17 213 | 19 731 | 15 358 | 17 212 | 17 022 | 15 976 | 13 434 | 15 018 | 14 773 | 12 413 | 10 014 | 185 959 |
| GSH         | 173    | 565    | 705    | 806    | 488    | 515    | 419    | 247    | 99     | 92     | 70     | 114    | 4 293   |
| GUR         | 4 906  | 4 921  | 6 872  | 6 420  | 6 703  | 7 608  | 7 368  | 6 280  | 6 087  | 5 407  | 6 018  | 7 032  | 75 622  |
| JDO         | 2 104  | 1 941  | 2 070  | 1 654  | 1 420  | 1 746  | 2 040  | 1 972  | 1 608  | 2 144  | 1 492  | 1 004  | 21 195  |
| JMA         | 0      | 0      | 2      | 2      | 1      | 1      | 1      | 1      | 1      | 0      | 0      | 2      | 11      |
| KAH         | 5      | 0      | 3      | 10     | 4      | 3      | 22     | 8      | 13     | 8      | 0      | 5      | 81      |
| LEA         | 67     | 87     | 224    | 155    | 324    | 193    | 134    | 81     | 36     | 58     | 30     | 13     | 1 402   |
| LIN         | 198    | 216    | 196    | 147    | 109    | 145    | 164    | 141    | 166    | 217    | 168    | 58     | 1 925   |
| MOK         | 73     | 80     | 62     | 143    | 85     | 106    | 94     | 97     | 77     | 116    | 137    | 274    | 1 344   |
| RCO         | 3 059  | 2 910  | 3 001  | 2 908  | 2 635  | 2 366  | 2 574  | 1 620  | 1 822  | 2 068  | 1 198  | 1 403  | 27 564  |
| RSK         | 3      | 8      | 72     | 65     | 29     | 125    | 228    | 237    | 78     | 250    | 227    | 127    | 1 449   |
| SCH         | 76     | 102    | 69     | 106    | 101    | 106    | 88     | 75     | 90     | 133    | 220    | 237    | 1 403   |
| SKI         | 107    | 124    | 167    | 215    | 83     | 133    | 186    | 82     | 159    | 165    | 147    | 71     | 1 639   |
| SNA         | 3 997  | 4 239  | 3 926  | 3 968  | 4 205  | 3 973  | 3 708  | 3 521  | 3 035  | 2 821  | 3 184  | 3 099  | 43 676  |
| SPD         | 123    | 174    | 127    | 74     | 63     | 9      | 11     | 26     | 0      | 14     | 0      | 1      | 622     |
| SPO         | 16     | 68     | 132    | 114    | 171    | 146    | 233    | 203    | 196    | 189    | 336    | 193    | 1 997   |
| SSK         | 0      | 0      | 0      | 0      | 0      | 5      | 0      | 1      | 0      | 0      | 0      | 0      | 6       |
| STA         | 1 397  | 1 414  | 1 990  | 1 879  | 1 616  | 1 556  | 1 682  | 1 600  | 1 807  | 1 455  | 1 548  | 1 321  | 19 265  |
| TAR         | 11 351 | 12 347 | 12 891 | 12 770 | 11 851 | 11 419 | 12 763 | 11 466 | 10 143 | 10 986 | 9 548  | 8 341  | 135 876 |
| TRE         | 2 825  | 3 085  | 2 877  | 3 385  | 2 593  | 2 739  | 2 592  | 2 306  | 2 512  | 2 712  | 2 220  | 2 156  | 32 002  |
| WAR         | 1 064  | 1 041  | 1 041  | 1 243  | 1 358  | 1 243  | 1 129  | 1 410  | 1 333  | 1 117  | 989    | 627    | 13 595  |
| Others      | 323    | 325    | 229    | 128    | 103    | 442    | 37     | 65     | 104    | 186    | 180    | 95     | 2 217   |
| Total       | 51 232 | 52 729 | 58 487 | 53 427 | 53 158 | 53 770 | 53 369 | 47 048 | 46 184 | 47 116 | 42 953 | 38 339 | 597 812 |
| No. vessels | 215    | 195    | 202    | 207    | 192    | 182    | 180    | 170    | 171    | 162    | 152    | 150    | 297     |

Table E2: The number of 25-km² cells contacted by inshore targets (ordered from largest to smallest footprint), and the estimated aggregate area and footprint for 2008–2019. Targets not included are identified with an asterisk.

| Target | Common name               | No. of cells | Aggregate (km <sup>2</sup> ) | Footprint (km <sup>2</sup> ) |
|--------|---------------------------|--------------|------------------------------|------------------------------|
| TAR    | Tarakihi                  | 11 371       | 237 421.3                    | 77 311.1                     |
| GUR    | Red gurnard               | 6 828        | 102 414.3                    | 35 885.3                     |
| FLA    | Flatfish species          | 5 092        | 181 589.5                    | 26 686.1                     |
| SNA    | Snapper                   | 3 835        | 49 250.4                     | 20 345.8                     |
| TRE    | Trevally                  | 3 817        | 57 489.0                     | 18 847.6                     |
| RCO    | Red cod                   | 4 087        | 38 588.4                     | 18 667.0                     |
| BAR    | Barracouta                | 2 983        | 31 741.0                     | 13 952.3                     |
| STA    | Giant stargazer           | 3 205        | 28 614.5                     | 12 866.6                     |
| JDO    | John dory                 | 3 705        | 23 052.4                     | 12 100.2                     |
| WAR    | Blue warehou              | 3 431        | 23 236.0                     | 11 541.3                     |
| ELE    | Elephant fish             | 1 909        | 11 356.8                     | 5 865.6                      |
| LIN    | Ling                      | 1 258        | 4 870.0                      | 3 080.8                      |
| SCH    | School shark              | 2 408        | 3 101.2                      | 2 680.2                      |
| SPO    | Rig                       | 1 686        | 2 789.1                      | 2 248.7                      |
| GSH    | Ghost shark               | 1 242        | 4 708.1                      | 2 167.9                      |
| SKI    | Gemfish                   | 905          | 3 840.4                      | 1 894.4                      |
| LEA    | Leatherjacket             | 955          | 2 069.9                      | 1 666.0                      |
| RSK    | Rough skate               | 773          | 1 920.6                      | 1 577.1                      |
| MOK    | Moki                      | 802          | 1 742.8                      | 1 213.2                      |
| SPD    | Spiny dogfish             | 835          | 877.3                        | 823.1                        |
| HPB*   | Hāpuku/Bass               | 711          | 712.6                        | 641.2                        |
| QSC*   | Queen scallop             | 130          | 395.1                        | 201.1                        |
| BNS*   | Bluenose                  | 250          | 225.7                        | 171.6                        |
| KAH    | Kahawai                   | 244          | 134.7                        | 130.0                        |
| BCO*   | Blue cod                  | 122          | 52.4                         | 50.2                         |
| PAD*   | Paddle crab               | 51           | 35.8                         | 29.2                         |
| JMA    | Jack mackerel species     | 41           | 16.5                         | 16.4                         |
| RSN*   | Red snapper               | 46           | 12.0                         | 12.0                         |
| SSK    | Smooth skate              | 19           | 7.3                          | 7.2                          |
| TRU*   | Trumpeter                 | 15           | 6.0                          | 6.0                          |
| FRO*   | Frostfish                 | 9            | 2.3                          | 2.3                          |
| POR*   | Porae                     | 10           | 2.2                          | 2.2                          |
| All    | All forms (includes CELR) | 15 289       | 812 275.6                    | 148 528.8                    |
| All    | TCE, TCP, ERS             | 15 199       | 811 595.0                    | 148 276.2                    |

Table E3: Comparison of annual totals (number of cells contacted, aggregate area, and footprint) for combined TCER, TCEPR, and ERS data for inshore Targets (those listed without an asterisk in Table E2) and inshore Fishstocks and the percent of the Target totals retained in the Fishstock totals, 2008–2019. The annual overlap of the Fishstock footprint on the EEZ+TS and fishable area is given in the lower part of the table.

|              | 2008              | 2009           | 2010          | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     | 2017     | 2018     | 2019     | All       |
|--------------|-------------------|----------------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| No. cells co | ntacted           |                |               |          |          |          |          |          |          |          |          |          |           |
| Target       | 9 459             | 9 400          | 9 479         | 9 582    | 9 299    | 9 189    | 9 578    | 9 488    | 9 366    | 9 476    | 9 249    | 8 686    | 15 199    |
| Fishstock    | 9 299             | 9 261          | 9 356         | 9 476    | 9 218    | 9 075    | 9 483    | 9 395    | 9 297    | 9 339    | 9 170    | 8 625    | 15 025    |
| %            | 98.3              | 98.5           | 98.7          | 98.9     | 99.1     | 98.8     | 99.0     | 99.0     | 99.3     | 98.6     | 99.1     | 99.3     | 98.9      |
|              |                   |                |               |          |          |          |          |          |          |          |          |          |           |
| Aggregate (  | $(km^2)$          |                |               |          |          |          |          |          |          |          |          |          |           |
| Target       | 70 357.5          | 73 623.1       | 76 839.1      | 69 901.3 | 67 975.4 | 67 735.9 | 71 053.1 | 64 803.2 | 63 334.7 | 66 374.8 | 62 985.5 | 56 611.4 | 811 595.0 |
| Fishstock    | 69 580.3          | 72 823.1       | 76 284.7      | 69 480.0 | 67 671.6 | 67 228.4 | 70 641.8 | 64 378.6 | 62 806.5 | 65 614.7 | 62 400.3 | 56 364.4 | 805 274.4 |
| %            | 98.9              | 98.9           | 99.3          | 99.4     | 99.6     | 99.3     | 99.4     | 99.3     | 99.2     | 98.9     | 99.1     | 99.6     | 99.2      |
| Footprint (k | cm <sup>2</sup> ) |                |               |          |          |          |          |          |          |          |          |          |           |
| Target       | 44 237.2          | 46 321.7       | 47 219.3      | 45 152.7 | 43 572.7 | 43 465.4 | 45 608.2 | 42 765.7 | 41 718.4 | 43 266.8 | 42 585.4 | 38 131.5 | 148 276.2 |
| Fishstock    | 43 638.7          | 45 714.8       | 46 787.4      | 44 815.4 | 43 334.4 | 43 076.5 | 45 261.4 | 42 426.8 | 41 315.7 | 42 650.3 | 42 117.1 | 37 929.5 | 146 223.8 |
| %            | 98.6              | 98.7           | 99.1          | 99.3     | 99.5     | 99.1     | 99.2     | 99.2     | 99.0     | 98.6     | 98.9     | 99.5     | 98.6      |
| Overlap of   | fishstock foo     | otprint with I | EEZ+TS        |          |          |          |          |          |          |          |          |          |           |
| % overlap    | 1.1               | 1.1            | 1.1           | 1.1      | 1.1      | 1.0      | 1.1      | 1.0      | 1.0      | 1.0      | 1.0      | 0.9      | 3.6       |
| Overlap of   | fishstock for     | storiot with f | ichahle area  |          |          |          |          |          |          |          |          |          |           |
|              | HSHSTOCK TOO      | rpinit wini i  | isilable alea |          |          |          |          |          |          |          |          |          |           |

Table E4: The number of cells contacted by inshore fishstocks during 2008–2019. [Continued on next page]

| Fishstock | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | All   |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| BAR1      | 1 078 | 1 223 | 1 075 | 1 139 | 1 223 | 1 140 | 1 222 | 1 412 | 1 241 | 1 239 | 1 539 | 1 260 | 2 983 |
| ELE3      | 468   | 626   | 640   | 552   | 601   | 483   | 449   | 517   | 495   | 429   | 528   | 610   | 1 192 |
| ELE5      | 78    | 60    | 62    | 86    | 50    | 115   | 106   | 127   | 116   | 132   | 135   | 110   | 306   |
| ELE7      | 41    | 23    | 33    | 113   | 30    | 54    | 40    | 107   | 90    | 140   | 154   | 75    | 427   |
| FLA2      | 270   | 249   | 172   | 185   | 218   | 234   | 204   | 172   | 217   | 122   | 118   | 104   | 575   |
| FLA3      | 1 113 | 1 093 | 1 173 | 1 156 | 1 116 | 1 149 | 1 102 | 1 123 | 1 098 | 1 079 | 1 013 | 849   | 2 373 |
| FLA7      | 1 163 | 1 178 | 1 217 | 929   | 1 073 | 1 006 | 865   | 814   | 856   | 857   | 966   | 923   | 2 083 |
| GSH3      | 109   | 117   | 126   | 154   | 36    | 91    | 212   | 152   | 45    | 27    | 97    | 35    | 451   |
| GSH7      | 116   | 233   | 277   | 338   | 207   | 286   | 256   | 126   | 67    | 74    | 72    | 127   | 715   |
| GUR1      | 792   | 762   | 688   | 596   | 686   | 668   | 574   | 673   | 542   | 592   | 497   | 375   | 1 631 |
| GUR2      | 731   | 718   | 784   | 785   | 725   | 710   | 757   | 681   | 723   | 785   | 751   | 704   | 1 248 |
| GUR3      | 373   | 473   | 468   | 501   | 501   | 714   | 714   | 554   | 709   | 587   | 692   | 760   | 1 375 |
| GUR7      | 335   | 427   | 732   | 868   | 923   | 1 053 | 982   | 870   | 902   | 863   | 902   | 1 091 | 1 812 |
| GUR8      | 325   | 392   | 428   | 417   | 412   | 422   | 394   | 376   | 359   | 304   | 369   | 409   | 836   |
| JDO1      | 626   | 560   | 667   | 541   | 526   | 640   | 754   | 742   | 608   | 682   | 478   | 423   | 1 628 |
| JDO2      | 219   | 289   | 300   | 294   | 277   | 328   | 414   | 393   | 358   | 402   | 299   | 244   | 958   |
| JDO7      | 294   | 153   | 210   | 177   | 233   | 395   | 382   | 595   | 440   | 483   | 767   | 634   | 1 243 |
| LEA2      | 126   | 186   | 280   | 240   | 269   | 277   | 182   | 138   | 91    | 88    | 23    | 5     | 541   |
| LEA3      | 8     | 14    | 22    | 86    | 30    | 4     | 39    | 47    | 60    | 38    | 50    | 33    | 249   |
| MOK1      | 123   | 171   | 128   | 206   | 145   | 130   | 117   | 186   | 150   | 179   | 299   | 358   | 733   |
| RCO2      | 57    | 26    | 26    | 122   | 129   | 79    | 10    | 22    | 72    | 107   | 7     | 34    | 358   |
| RCO3      | 1 080 | 979   | 1037  | 1 047 | 1 120 | 1 005 | 1 244 | 942   | 769   | 990   | 937   | 548   | 2 023 |
| RCO7      | 945   | 884   | 892   | 821   | 766   | 590   | 587   | 643   | 677   | 638   | 577   | 582   | 1 776 |
| RSK3      | 15    | 45    | 83    | 127   | 109   | 211   | 349   | 413   | 213   | 273   | 371   | 320   | 747   |
| SCH1      | 69    | 131   | 108   | 208   | 162   | 194   | 231   | 122   | 68    | 58    | 173   | 123   | 655   |
| SCH3      | 66    | 65    | 82    | 82    | 11    | 97    | 51    | 61    | 64    | 61    | 146   | 110   | 553   |
| SCH7      | 134   | 144   | 100   | 133   | 120   | 129   | 20    | 52    | 130   | 98    | 267   | 135   | 839   |
| SCH8      | 65    | 106   | 48    | 62    | 125   | 96    | 94    | 81    | 74    | 140   | 143   | 162   | 351   |

Table E4: — continued.

| Fishstock | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | All    |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| SKI1      | 182   | 86    | 107   | 67    | 97    | 108   | 158   | 59    | 72    | 113   | 66    | 49    | 381    |
| SKI2      | 56    | 100   | 148   | 237   | 91    | 136   | 180   | 151   | 146   | 155   | 214   | 144   | 551    |
| SNA1      | 831   | 860   | 831   | 881   | 887   | 813   | 815   | 851   | 784   | 857   | 904   | 851   | 1473   |
| SNA2      | 237   | 294   | 209   | 211   | 199   | 171   | 263   | 209   | 332   | 290   | 331   | 143   | 632    |
| SNA7      | 254   | 244   | 297   | 314   | 207   | 240   | 262   | 212   | 214   | 194   | 212   | 180   | 567    |
| SNA8      | 586   | 557   | 476   | 444   | 516   | 425   | 353   | 464   | 404   | 397   | 397   | 406   | 1 211  |
| SPD3      | 344   | 379   | 348   | 213   | 120   | 42    | 47    | 74    | _     | _     | _     | _     | 775    |
| SPO3      | 53    | 154   | 320   | 192   | 348   | 289   | 357   | 307   | 303   | 289   | 546   | 328   | 1 030  |
| SPO7      | 9     | 9     | 21    | 83    | 105   | 75    | 13    | 44    | 87    | 36    | 47    | 42    | 399    |
| SPO8      | 20    | 10    | 20    | 12    | 9     | _     | 28    | 44    | 88    | 61    | 103   | 63    | 226    |
| STA3      | 134   | 283   | 390   | 397   | 262   | 319   | 277   | 318   | 417   | 418   | 476   | 404   | 1 148  |
| STA4      | 38    | _     | 77    | 24    | _     | _     | 9     | _     | _     | _     | _     | _     | 126    |
| STA5      | 360   | 346   | 393   | 370   | 384   | 407   | 378   | 377   | 373   | 335   | 366   | 283   | 748    |
| STA7      | 522   | 471   | 561   | 579   | 516   | 503   | 530   | 502   | 630   | 597   | 570   | 497   | 1 198  |
| TAR1      | 1 653 | 1 570 | 1 576 | 1 508 | 1 478 | 1 376 | 1 639 | 1 655 | 1 609 | 1 740 | 1 508 | 1 262 | 3 008  |
| TAR2      | 1 203 | 1 108 | 1 096 | 1 124 | 1 120 | 1 075 | 1 160 | 1 153 | 1 131 | 1 061 | 1 130 | 932   | 1 743  |
| TAR3      | 949   | 1 009 | 1 023 | 1 094 | 909   | 927   | 1 060 | 1 166 | 1 119 | 1 115 | 1 031 | 877   | 1 905  |
| TAR4      | 161   | 86    | 213   | 114   | 30    | _     | 166   | 145   | 56    | 99    | 95    | 240   | 423    |
| TAR5      | 45    | 47    | 84    | 158   | 141   | 132   | 109   | 162   | 103   | 111   | 79    | 96    | 386    |
| TAR7      | 1 518 | 1 674 | 1 667 | 1 947 | 1 883 | 1 869 | 1 876 | 1 749 | 1 732 | 1 771 | 1 733 | 1 539 | 3 234  |
| TAR8      | 327   | 567   | 524   | 554   | 575   | 541   | 618   | 552   | 565   | 489   | 436   | 357   | 1 348  |
| TRE1      | 767   | 678   | 661   | 648   | 566   | 564   | 593   | 548   | 589   | 697   | 645   | 610   | 1 248  |
| TRE2      | 134   | 241   | 164   | 75    | 27    | 155   | 179   | 132   | 227   | 135   | 39    | 49    | 603    |
| TRE7      | 918   | 1050  | 966   | 1 010 | 944   | 912   | 907   | 791   | 843   | 902   | 836   | 692   | 2 012  |
| WAR2      | 223   | 192   | 191   | 92    | 130   | 86    | 104   | 110   | 161   | 178   | 164   | 108   | 461    |
| WAR3      | 472   | 421   | 361   | 380   | 430   | 378   | 350   | 432   | 389   | 432   | 338   | 422   | 1 318  |
| WAR7      | 628   | 627   | 614   | 672   | 564   | 663   | 625   | 648   | 688   | 588   | 637   | 346   | 1 491  |
| WAR8      | 22    | _     | 12    | 36    | 84    | 37    | 98    | 56    | 126   | 53    | 43    | 44    | 244    |
| Total     | 9 299 | 9 261 | 9 356 | 9 476 | 9 218 | 9 075 | 9 483 | 9 395 | 9 297 | 9 339 | 9 170 | 8 625 | 15 025 |

Table E5: The estimated aggregate area (km²) for inshore fishstocks, by fishing years 2008–2019. [Continued on next page]

| Fishstock | 2008    | 2009    | 2010     | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    | 2019    | All      |
|-----------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| BAR1      | 1 761.8 | 2 161.7 | 2 513.9  | 2 471.7 | 2 299.3 | 2 710.2 | 2 649.7 | 2 744.5 | 2 298.7 | 3 166.5 | 4 386.3 | 2 576.7 | 31 741.0 |
| ELE3      | 846.4   | 916.8   | 1 065.7  | 790.9   | 988.5   | 743.6   | 679.1   | 913.4   | 780.7   | 755.4   | 746.6   | 1 080.9 | 10 308.1 |
| ELE5      | 37.1    | 42.1    | 37.4     | 41.9    | 22.3    | 65.4    | 61.1    | 100.0   | 59.5    | 67.2    | 73.2    | 66.4    | 673.6    |
| ELE7      | 15.0    | 5.5     | 17.2     | 51.0    | 12.3    | 15.4    | 17.3    | 44.3    | 47.6    | 61.0    | 56.7    | 29.4    | 372.8    |
| FLA2      | 1 091.9 | 905.6   | 603.2    | 913.6   | 1 010.6 | 929.1   | 1 087.4 | 877.8   | 847.6   | 793.8   | 643.7   | 333.5   | 10 038.0 |
| FLA3      | 6 478.7 | 6 653.4 | 7 845.9  | 6 851.1 | 7 880.9 | 8 895.2 | 8 468.6 | 6 661.5 | 7 426.5 | 7 148.2 | 5 883.0 | 4 835.9 | 85 028.9 |
| FLA7      | 9 637.1 | 9 863.3 | 10 349.7 | 6 219.9 | 7 214.3 | 6 094.3 | 5 781.2 | 5 699.2 | 6 649.5 | 7 743.0 | 6 271.6 | 4 782.8 | 86 305.9 |
| GSH3      | 59.1    | 44.0    | 40.7     | 73.5    | 12.4    | 101.7   | 97.7    | 66.8    | 14.5    | 8.1     | 37.4    | 11.0    | 566.8    |
| GSH7      | 117.1   | 515.4   | 669.3    | 832.8   | 500.0   | 516.3   | 369.5   | 197.9   | 77.1    | 85.0    | 38.5    | 116.5   | 4 035.3  |
| GUR1      | 1 699.9 | 1 103.4 | 972.7    | 842.1   | 1 850.7 | 1 581.0 | 1 216.6 | 1 304.0 | 1 234.5 | 1 319.3 | 1 298.5 | 969.8   | 15 392.5 |
| GUR2      | 4 015.1 | 4 096.5 | 6 121.1  | 5 078.7 | 4 048.5 | 3 919.0 | 4 280.5 | 3 899.7 | 3 697.8 | 3 535.3 | 3 379.9 | 3 465.8 | 49 537.9 |
| GUR3      | 368.8   | 405.6   | 470.8    | 500.6   | 566.1   | 968.7   | 1 053.7 | 709.2   | 873.1   | 677.2   | 977.3   | 1 325.8 | 8 897.0  |
| GUR7      | 206.7   | 337.4   | 824.5    | 1 127.4 | 2 017.8 | 2 887.4 | 2 527.8 | 2 114.7 | 1 810.8 | 1 563.6 | 1 972.8 | 3 501.8 | 20 892.6 |
| GUR8      | 583.7   | 802.4   | 972.7    | 788.8   | 710.8   | 643.5   | 590.8   | 580.4   | 388.1   | 298.1   | 510.6   | 759.0   | 7 628.8  |
| JDO1      | 1 877.5 | 1 750.4 | 1 722.3  | 1 199.9 | 1 059.9 | 1 111.4 | 1 251.0 | 1 154.3 | 964.4   | 1 218.0 | 788.0   | 581.1   | 14 678.3 |
| JDO2      | 237.8   | 183.7   | 271.4    | 279.5   | 258.8   | 280.2   | 461.3   | 412.3   | 381.2   | 395.3   | 281.4   | 167.2   | 3 610.1  |
| JDO7      | 232.5   | 90.6    | 140.6    | 175.3   | 111.2   | 326.1   | 386.5   | 636.9   | 335.5   | 631.1   | 998.7   | 694.7   | 4 759.7  |
| LEA2      | 132.9   | 151.0   | 385.4    | 159.7   | 402.4   | 245.5   | 143.1   | 75.6    | 30.6    | 47.5    | 7.8     | 1.4     | 1 783.1  |
| LEA3      | 2.9     | 3.5     | 7.1      | 29.4    | 25.3    | 0.9     | 13.7    | 16.3    | 19.1    | 11.6    | 24.0    | 9.9     | 163.9    |
| MOK1      | 102.6   | 99.0    | 73.7     | 190.4   | 100.8   | 107.9   | 98.4    | 115.0   | 90.1    | 140.4   | 196.8   | 405.3   | 1 720.3  |
| RCO2      | 21.9    | 5.8     | 7.9      | 53.9    | 146.6   | 39.3    | 2.9     | 10.8    | 31.3    | 44.0    | 1.6     | 10.5    | 376.4    |
| RCO3      | 2 537.9 | 2 836.1 | 2 535.8  | 2 491.4 | 2 033.7 | 2 024.9 | 2 556.2 | 964.4   | 1 226.6 | 1 513.4 | 997.8   | 793.7   | 22 512.0 |
| RCO7      | 2 118.6 | 1 714.5 | 1 464.3  | 1 913.8 | 1 256.4 | 927.2   | 1 040.6 | 1 367.3 | 1 249.4 | 1 229.0 | 512.2   | 904.7   | 15 697.9 |
| RSK3      | 3.0     | 13.0    | 78.8     | 78.6    | 41.5    | 144.8   | 304.5   | 344.1   | 129.7   | 311.3   | 284.6   | 178.1   | 1 912.1  |
| SCH1      | 19.8    | 50.3    | 60.5     | 167.8   | 163.3   | 144.6   | 179.2   | 86.9    | 50.6    | 31.5    | 143.1   | 89.0    | 1 186.5  |
| SCH3      | 19.5    | 18.8    | 27.0     | 22.0    | 4.1     | 35.7    | 17.4    | 15.5    | 18.4    | 23.6    | 65.2    | 44.2    | 311.3    |
| SCH7      | 60.3    | 71.2    | 36.1     | 47.4    | 39.1    | 47.3    | 5.5     | 16.7    | 48.5    | 36.9    | 130.6   | 72.9    | 612.6    |
| SCH8      | 63.2    | 104.4   | 28.3     | 19.7    | 51.4    | 49.5    | 52.3    | 48.3    | 51.6    | 127.4   | 141.3   | 222.1   | 959.4    |

Table E5: — continued.

| Fishstock | 2008     | 2009     | 2010     | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     | 2017     | 2018     | 2019     | All       |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| SKI1      | 284.4    | 169.8    | 255.2    | 237.1    | 172.1    | 205.1    | 221.4    | 27.8     | 194.5    | 213.3    | 122.3    | 35.3     | 2 138.3   |
| SKI2      | 30.6     | 153.3    | 128.8    | 231.5    | 53.9     | 118.9    | 185.6    | 125.8    | 190.4    | 174.3    | 210.9    | 98.0     | 1 702.0   |
| SNA1      | 2 816.7  | 3134.3   | 2 772.1  | 2 751.6  | 2 955.1  | 2 929.1  | 2621.1   | 2 467.7  | 2 162.5  | 2 122.9  | 3 260.3  | 3 238.8  | 33 232.1  |
| SNA2      | 290.1    | 416.7    | 303.2    | 216.5    | 205.8    | 178.3    | 425.0    | 466.1    | 671.2    | 508.3    | 407.2    | 277.5    | 4 365.8   |
| SNA7      | 446.7    | 402.2    | 529.6    | 543.3    | 308.4    | 264.0    | 309.6    | 320.6    | 207.7    | 223.7    | 295.3    | 251.2    | 4 102.2   |
| SNA8      | 1 317.9  | 1 118.9  | 782.4    | 486.7    | 610.9    | 512.4    | 592.5    | 581.2    | 399.8    | 352.4    | 357.7    | 437.2    | 7 550.2   |
| SPD3      | 165.6    | 220.8    | 241.8    | 99.4     | 75.9     | 11.1     | 13.1     | 25.5     | _        | _        | _        | _        | 853.2     |
| SPO3      | 19.1     | 90.6     | 162.0    | 131.2    | 221.3    | 172.4    | 280.7    | 244.1    | 202.3    | 197.1    | 410.3    | 208.9    | 2 340.0   |
| SPO7      | 2.6      | 3.5      | 5.9      | 41.7     | 60.3     | 22.2     | 2.2      | 15.5     | 23.3     | 8.2      | 11.0     | 11.1     | 207.4     |
| SPO8      | 5.7      | 1.9      | 6.2      | 7.6      | 2.1      | _        | 8.5      | 24.1     | 32.1     | 36.8     | 63.3     | 44.0     | 232.4     |
| STA3      | 54.3     | 161.1    | 269.8    | 417.6    | 177.3    | 241.7    | 175.9    | 301.9    | 370.3    | 322.3    | 331.8    | 440.5    | 3 264.5   |
| STA4      | 34.7     | _        | 74.3     | 85.9     | _        | _        | 7.5      | _        | _        | _        | _        | _        | 202.3     |
| STA5      | 1 127.2  | 1 080.3  | 1 566.8  | 1 439.8  | 1 569.8  | 1 384.0  | 1 572.1  | 1 388.4  | 1 454.9  | 839.0    | 1 470.8  | 828.8    | 15 721.8  |
| STA7      | 735.6    | 695.7    | 916.2    | 830.2    | 628.6    | 699.9    | 628.8    | 685.7    | 986.7    | 963.8    | 755.8    | 890.5    | 9 417.5   |
| TAR1      | 4 615.0  | 5 179.5  | 4 219.0  | 4 166.5  | 4 105.6  | 3 232.6  | 4 057.2  | 4 438.4  | 4 548.1  | 5 358.5  | 4 661.4  | 3 523.7  | 52 105.5  |
| TAR2      | 8 624.9  | 9 145.4  | 8 405.7  | 7 614.2  | 6 550.9  | 6 432.4  | 7 352.0  | 6 808.1  | 5 597.4  | 5 762.3  | 5 574.3  | 4 555.6  | 82 423.3  |
| TAR3      | 1 743.1  | 2 353.9  | 2 698.0  | 2 685.2  | 1 745.5  | 2 060.1  | 2 915.8  | 3 039.5  | 2 084.7  | 2 902.4  | 2 719.6  | 2 188.4  | 29 136.2  |
| TAR4      | 1 295.8  | 470.9    | 1 011.7  | 553.0    | 17.8     | _        | 1 218.6  | 725.2    | 103.9    | 438.9    | 60.7     | 878.5    | 6 774.9   |
| TAR5      | 22.4     | 16.5     | 106.5    | 176.6    | 134.2    | 162.4    | 85.9     | 96.0     | 141.4    | 95.3     | 67.6     | 48.1     | 1 152.9   |
| TAR7      | 3 852.2  | 4 629.3  | 4 767.6  | 4 964.6  | 5 360.2  | 5 392.3  | 5 293.0  | 4 055.5  | 4 670.0  | 4 638.5  | 3 896.5  | 4 191.1  | 55 710.8  |
| TAR8      | 585.3    | 850.2    | 997.4    | 876.2    | 1 004.5  | 884.5    | 916.4    | 792.5    | 798.1    | 614.0    | 729.2    | 726.0    | 9 774.4   |
| TRE1      | 1 290.8  | 1 263.3  | 1 425.5  | 1 903.4  | 1 084.4  | 1 023.7  | 1 267.3  | 992.1    | 1 355.4  | 1 842.8  | 1 568.3  | 1 752.5  | 16 769.4  |
| TRE2      | 62.9     | 107.7    | 79.9     | 21.8     | 7.1      | 67.1     | 61.0     | 69.1     | 110.5    | 55.2     | 12.5     | 30.3     | 685.0     |
| TRE7      | 3 928.6  | 4 330.8  | 3 360.8  | 3 374.5  | 3 339.3  | 3 625.9  | 3 032.8  | 3 168.2  | 3 474.6  | 3 112.2  | 2 818.0  | 2 444.3  | 40 010.1  |
| WAR2      | 317.7    | 230.2    | 210.5    | 144.3    | 155.9    | 145.9    | 162.1    | 110.7    | 173.5    | 222.2    | 182.5    | 102.4    | 2 157.8   |
| WAR3      | 565.8    | 506.4    | 776.7    | 854.0    | 1 288.5  | 775.4    | 773.5    | 843.8    | 793.8    | 724.0    | 501.7    | 718.2    | 9 121.9   |
| WAR7      | 953.8    | 1 119.0  | 835.9    | 1 125.4  | 915.8    | 1 083.2  | 962.9    | 1 334.0  | 1 117.4  | 816.4    | 1 003.9  | 351.7    | 11 619.6  |
| WAR8      | 9.2      | _        | 2.4      | 13.2     | 39.3     | 9.4      | 51.1     | 17.2     | 75.0     | 33.7     | 36.9     | 26.5     | 313.8     |
| Total     | 69 580.3 | 72 823.1 | 76 284.7 | 69 480.0 | 67 671.6 | 67 228.4 | 70 641.8 | 64 378.6 | 62 806.5 | 65 614.7 | 62 400.3 | 56 364.4 | 805 274.4 |

Table E6: The estimated footprint (km²) for inshore fishstocks, by fishing years 2008–2019. [Continued on next page]

| Fishstock | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    | 2019    | All      |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| BAR1      | 1 531.7 | 1 769.6 | 1 893.7 | 1 962.3 | 1 868.4 | 2 158.4 | 2 122.4 | 2 245.2 | 1 969.7 | 2 430.8 | 3 358.3 | 2 268.4 | 13 952.3 |
| ELE3      | 723.0   | 786.3   | 908.6   | 680.9   | 831.3   | 634.0   | 572.5   | 763.2   | 655.8   | 627.9   | 652.4   | 928.8   | 4 951.1  |
| ELE5      | 35.7    | 39.0    | 35.2    | 40.6    | 21.7    | 63.1    | 59.2    | 95.1    | 58.6    | 65.0    | 70.5    | 64.7    | 562.2    |
| ELE7      | 15.0    | 5.5     | 16.6    | 48.7    | 12.2    | 15.3    | 15.9    | 43.5    | 46.5    | 59.2    | 56.3    | 29.3    | 352.3    |
| FLA2      | 589.1   | 499.1   | 352.4   | 455.5   | 533.3   | 496.2   | 531.3   | 450.2   | 455.5   | 430.5   | 313.2   | 181.5   | 1 818.3  |
| FLA3      | 3 349.7 | 3 702.9 | 4 138.0 | 3 907.6 | 4 087.1 | 4 531.7 | 4 289.4 | 3 917.2 | 3 848.5 | 3 619.2 | 3 321.7 | 2 718.2 | 13 072.8 |
| FLA7      | 4 631.1 | 4 985.2 | 5 040.8 | 3 525.5 | 3 962.8 | 3 545.7 | 3 182.7 | 3 102.1 | 3 464.7 | 3 796.4 | 3 598.5 | 3 075.9 | 11 700.5 |
| GSH3      | 57.7    | 43.7    | 39.6    | 72.6    | 12.3    | 80.1    | 95.9    | 64.9    | 13.5    | 8.0     | 35.8    | 10.9    | 501.4    |
| GSH7      | 106.5   | 383.0   | 504.3   | 614.5   | 378.2   | 430.0   | 314.4   | 176.4   | 72.0    | 80.6    | 36.6    | 106.9   | 1 617.0  |
| GUR1      | 1 486.6 | 985.8   | 828.9   | 723.7   | 1 498.3 | 1 242.0 | 948.4   | 1 103.2 | 1 039.2 | 1 043.9 | 966.8   | 734.0   | 6 872.4  |
| GUR2      | 2 762.3 | 2 856.3 | 3 807.5 | 3 283.6 | 2 750.0 | 2 767.2 | 3 001.3 | 2 666.4 | 2 615.6 | 2 648.5 | 2 489.7 | 2 557.0 | 9 451.3  |
| GUR3      | 330.7   | 384.7   | 441.3   | 460.0   | 524.5   | 896.1   | 924.9   | 648.6   | 800.2   | 615.1   | 886.8   | 1 140.9 | 5 674.9  |
| GUR7      | 199.8   | 320.3   | 755.6   | 1 029.4 | 1 751.3 | 2 412.6 | 2 122.2 | 1 803.4 | 1 595.3 | 1 382.9 | 1 727.7 | 2 810.5 | 9 931.2  |
| GUR8      | 516.9   | 706.0   | 796.1   | 682.3   | 619.8   | 551.2   | 523.4   | 513.7   | 361.8   | 279.3   | 443.1   | 641.0   | 3 977.0  |
| JDO1      | 1 460.3 | 1 393.8 | 1 390.2 | 966.3   | 918.1   | 969.0   | 1 073.3 | 999.5   | 843.9   | 1 057.5 | 669.5   | 516.4   | 6 203.3  |
| JDO2      | 206.3   | 177.6   | 253.3   | 257.3   | 237.3   | 263.3   | 418.8   | 374.5   | 356.3   | 367.0   | 258.0   | 156.9   | 2 497.9  |
| JDO7      | 222.2   | 82.0    | 131.6   | 156.6   | 108.1   | 300.0   | 347.4   | 573.2   | 318.1   | 575.6   | 913.8   | 637.8   | 3 425.9  |
| LEA2      | 116.1   | 144.2   | 341.8   | 156.2   | 355.8   | 236.4   | 137.7   | 73.7    | 30.5    | 46.8    | 7.8     | 1.4     | 1 396.1  |
| LEA3      | 2.9     | 3.5     | 7.0     | 29.4    | 22.7    | 0.9     | 13.5    | 16.3    | 19.1    | 11.5    | 23.6    | 9.9     | 156.6    |
| MOK1      | 93.0    | 87.6    | 69.1    | 166.0   | 89.6    | 93.7    | 88.7    | 104.9   | 83.6    | 123.6   | 184.8   | 369.1   | 1 190.7  |
| RCO2      | 21.6    | 5.8     | 6.4     | 53.0    | 121.3   | 34.4    | 2.9     | 10.6    | 30.1    | 41.6    | 1.6     | 10.5    | 325.1    |
| RCO3      | 1 905.0 | 1 960.8 | 1 876.4 | 1 843.8 | 1 635.0 | 1 438.8 | 2 075.6 | 864.8   | 1 000.5 | 1 219.0 | 875.8   | 620.6   | 10 381.2 |
| RCO7      | 1 701.9 | 1 470.4 | 1 273.1 | 1 561.2 | 1 058.8 | 768.4   | 899.2   | 1 120.6 | 1 059.3 | 1 059.6 | 478.6   | 803.2   | 7 981.7  |
| RSK3      | 3.0     | 13.0    | 62.0    | 71.5    | 39.4    | 138.2   | 282.7   | 327.6   | 123.2   | 279.5   | 265.8   | 170.5   | 1 568.6  |
| SCH1      | 19.8    | 50.2    | 59.9    | 163.2   | 149.9   | 142.1   | 171.9   | 85.2    | 48.5    | 31.2    | 130.7   | 86.8    | 992.2    |
| SCH3      | 19.1    | 18.8    | 26.8    | 21.7    | 4.1     | 35.4    | 17.0    | 15.5    | 18.4    | 22.3    | 64.0    | 43.4    | 303.6    |
| SCH7      | 59.2    | 69.8    | 35.8    | 47.1    | 39.0    | 47.0    | 5.5     | 16.7    | 48.3    | 36.6    | 127.2   | 70.5    | 581.7    |
| SCH8      | 60.4    | 98.3    | 26.4    | 19.6    | 50.8    | 48.2    | 51.6    | 46.5    | 49.2    | 120.3   | 134.6   | 202.8   | 791.7    |

Table E6: — continued.

| Fishstock | 2008     | 2009     | 2010     | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     | 2017     | 2018     | 2019     | All       |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| SKI1      | 223.5    | 120.3    | 185.8    | 176.3    | 146.7    | 162.7    | 188.6    | 26.9     | 144.1    | 155.8    | 107.6    | 34.4     | 822.5     |
| SKI2      | 29.7     | 133.2    | 114.8    | 203.4    | 51.2     | 112.4    | 169.3    | 119.1    | 171.8    | 158.3    | 194.2    | 93.9     | 1 120.5   |
| SNA1      | 2 292.2  | 2 433.8  | 2 222.4  | 2 239.7  | 2 338.4  | 2 271.4  | 2 069.2  | 2 036.1  | 1 852.1  | 1 852.1  | 2 602.7  | 2 551.8  | 11 051.5  |
| SNA2      | 264.3    | 356.5    | 274.5    | 203.5    | 196.5    | 169.4    | 354.3    | 397.5    | 528.2    | 421.4    | 324.1    | 165.6    | 2 394.5   |
| SNA7      | 341.9    | 320.8    | 443.8    | 452.9    | 260.7    | 238.1    | 269.8    | 277.6    | 186.1    | 199.4    | 260.3    | 220.7    | 2 046.6   |
| SNA8      | 1 132.5  | 984.1    | 701.8    | 461.2    | 573.1    | 479.0    | 539.3    | 547.9    | 382.6    | 333.2    | 337.1    | 401.8    | 4 858.0   |
| SPD3      | 163.6    | 215.4    | 231.4    | 97.9     | 72.6     | 11.0     | 13.0     | 25.3     | _        | _        | _        | _        | 800.0     |
| SPO3      | 19.1     | 87.6     | 157.6    | 124.1    | 212.6    | 165.9    | 252.6    | 224.1    | 190.3    | 188.4    | 385.1    | 198.6    | 1 825.0   |
| SPO7      | 2.6      | 3.5      | 5.9      | 40.9     | 59.1     | 22.2     | 2.2      | 15.5     | 23.3     | 8.2      | 11.0     | 11.1     | 201.5     |
| SPO8      | 5.7      | 1.9      | 6.2      | 7.5      | 2.1      | _        | 8.5      | 23.7     | 31.1     | 34.6     | 61.8     | 39.3     | 213.3     |
| STA3      | 53.4     | 150.7    | 253.4    | 367.0    | 157.1    | 221.9    | 166.1    | 255.6    | 327.6    | 304.6    | 315.7    | 385.7    | 2 354.4   |
| STA4      | 34.2     | _        | 72.1     | 69.7     | _        | _        | 7.5      | _        | _        | _        | _        | _        | 182.6     |
| STA5      | 874.6    | 859.0    | 1 144.1  | 1 108.9  | 1 185.8  | 1 101.6  | 1 193.4  | 1 092.4  | 1 113.3  | 689.1    | 1 083.7  | 668.4    | 4 559.4   |
| STA7      | 678.3    | 652.1    | 824.2    | 769.5    | 583.7    | 615.7    | 582.4    | 633.0    | 874.2    | 889.2    | 695.4    | 789.8    | 5 775.6   |
| TAR1      | 3 810.3  | 4 022.9  | 3 394.5  | 3 337.4  | 3 340.7  | 2 624.7  | 3 376.3  | 3 610.4  | 3 710.7  | 4 418.6  | 3 764.8  | 2 840.9  | 19 022.1  |
| TAR2      | 5 446.1  | 5 537.1  | 5 212.0  | 4 889.6  | 4 089.2  | 4 237.0  | 4 678.6  | 4 548.0  | 4 003.3  | 4 063.3  | 4 096.9  | 3 305.3  | 15 414.6  |
| TAR3      | 1 557.6  | 2 029.9  | 2 271.5  | 2 215.8  | 1 546.7  | 1 763.1  | 2 362.6  | 2 493.4  | 1 817.4  | 2 360.8  | 2 211.6  | 1 733.7  | 12 391.1  |
| TAR4      | 713.9    | 353.6    | 743.0    | 328.9    | 17.8     | _        | 762.7    | 522.8    | 93.2     | 287.8    | 60.1     | 566.5    | 2 216.8   |
| TAR5      | 21.9     | 16.3     | 86.1     | 154.8    | 124.2    | 140.3    | 79.3     | 93.7     | 119.2    | 90.3     | 60.9     | 47.4     | 817.3     |
| TAR7      | 3 303.8  | 3 856.4  | 3 853.3  | 4 129.1  | 4 358.3  | 4 461.7  | 4 455.9  | 3 512.8  | 3 979.5  | 3 939.3  | 3 351.3  | 3 360.5  | 23 114.3  |
| TAR8      | 464.8    | 759.9    | 817.5    | 769.8    | 867.5    | 781.5    | 816.3    | 706.4    | 706.3    | 543.3    | 597.8    | 514.6    | 5 006.2   |
| TRE1      | 1 115.0  | 1 085.2  | 1 188.4  | 1 508.1  | 945.1    | 864.5    | 1 028.0  | 815.0    | 1 090.0  | 1 516.2  | 1 328.5  | 1 402.6  | 6 908.8   |
| TRE2      | 61.6     | 104.2    | 78.9     | 21.6     | 7.1      | 65.3     | 60.7     | 68.1     | 108.6    | 53.6     | 12.4     | 27.5     | 642.6     |
| TRE7      | 3 027.3  | 3 313.1  | 2 578.2  | 2 656.7  | 2 579.6  | 2756.1   | 2 397.0  | 2 273.6  | 2 544.1  | 2 369.9  | 2 220.0  | 1 937.3  | 11 289.1  |
| WAR2      | 283.0    | 211.2    | 195.6    | 123.2    | 138.5    | 121.5    | 126.2    | 96.3     | 152.0    | 192.1    | 164.5    | 95.5     | 1 260.1   |
| WAR3      | 503.3    | 434.2    | 594.9    | 659.1    | 897.8    | 627.6    | 609.1    | 655.6    | 633.9    | 607.8    | 415.9    | 596.4    | 3 807.7   |
| WAR7      | 827.5    | 879.7    | 763.6    | 960.1    | 764.3    | 884.7    | 840.3    | 1 090.5  | 943.9    | 714.4    | 890.4    | 329.5    | 6 211.9   |
| WAR8      | 9.2      | _        | 2.4      | 12.3     | 38.8     | 9.4      | 49.4     | 17.1     | 72.4     | 31.1     | 33.9     | 25.4     | 279.9     |
| Total     | 43 638.7 | 45 714.8 | 46 787.4 | 44 815.4 | 43 334.4 | 43 076.5 | 45 261.4 | 42 426.8 | 41 315.7 | 42 650.3 | 42 117.1 | 37 929.5 | 146 223.8 |

Table E7: The aggregate area  $(km^2)$  estimated for inshore fishstocks in FMAs 1–3 and 4–8/9, for fishing years 2008–2019.

| Fishing | FMA1      | FMA2      | FMA3      | FMA5     | FMA7      | FMA8/9    | Total     |
|---------|-----------|-----------|-----------|----------|-----------|-----------|-----------|
| 2008    | 9 582.7   | 14 635.8  | 12 172.6  | 3 584.8  | 18 428.9  | 10 584.1  | 68 989.0  |
| 2009    | 10 041.5  | 15 236.7  | 14 133.9  | 3 356.3  | 19 521.9  | 10 813.3  | 73 103.4  |
| 2010    | 10 054.6  | 16 074.8  | 16 702.1  | 3 762.9  | 20 762.3  | 8 391.6   | 75 748.3  |
| 2011    | 9 518.1   | 14 590.4  | 15 597.5  | 3 562.9  | 18 095.6  | 7 879.0   | 69 243.4  |
| 2012    | 8 254.6   | 12 327.1  | 14 471.5  | 4 565.7  | 18 715.7  | 9 616.0   | 67 950.5  |
| 2013    | 7 201.1   | 11 986.4  | 15 986.5  | 4 636.1  | 18 528.7  | 9 395.3   | 67 734.0  |
| 2014    | 7 904.7   | 13 771.9  | 17 023.7  | 4 633.4  | 17 503.9  | 8 963.8   | 69 801.5  |
| 2015    | 7 425.0   | 12 572.9  | 14 266.3  | 4 121.7  | 16 599.9  | 9 092.3   | 64 078.1  |
| 2016    | 8 017.1   | 11 645.8  | 13 474.7  | 4 362.2  | 17 259.3  | 8 468.5   | 63 227.5  |
| 2017    | 8 867.7   | 11 673.1  | 14 717.1  | 4 071.4  | 18 084.5  | 8 522.2   | 65 936.0  |
| 2018    | 8 553.7   | 11 114.3  | 15 137.5  | 3 784.6  | 15 969.8  | 8 362.5   | 62 922.3  |
| 2019    | 7 255.8   | 9 380.2   | 12 205.2  | 3 171.8  | 15 841.9  | 7 875.0   | 55 729.8  |
| All     | 102 676.5 | 155 009.2 | 175 888.5 | 47 613.6 | 215 312.3 | 107 963.6 | 804 463.8 |

Table E8: The footprint  $(km^2)$  estimated for inshore fishstocks in FMAs 1–3 and 4–9, for fishing years 2008–2019.

| Fishing | FMA1     | FMA2     | FMA3     | FMA5    | FMA7     | FMA8/9   | Total     |
|---------|----------|----------|----------|---------|----------|----------|-----------|
| 2008    | 6 864.0  | 8 466.6  | 7 997.8  | 2 029.7 | 10 597.9 | 7 567.7  | 43 523.8  |
| 2009    | 6 965.8  | 8 556.8  | 9 061.2  | 2 009.9 | 11 498.3 | 7 907.5  | 45 999.5  |
| 2010    | 7 056.0  | 8 685.8  | 10 219.1 | 2 280.9 | 11 924.7 | 6 321.1  | 46 487.7  |
| 2011    | 6 760.8  | 8 422.2  | 9 835.7  | 2 317.8 | 11 438.0 | 6 079.4  | 44 854.0  |
| 2012    | 6 104.5  | 7 130.0  | 9 099.5  | 2 626.5 | 11 595.7 | 7 092.9  | 43 649.0  |
| 2013    | 5 234.9  | 7 210.5  | 9 638.6  | 2 667.1 | 11 937.5 | 6 866.6  | 43 555.1  |
| 2014    | 5 835.2  | 8 061.8  | 10 250.5 | 2 682.3 | 11 270.0 | 6 840.1  | 44 939.9  |
| 2015    | 5 640.0  | 7 551.9  | 9 243.9  | 2 700.7 | 10 512.5 | 6 685.6  | 42 334.7  |
| 2016    | 6 033.2  | 7 345.0  | 8 369.1  | 2 545.5 | 10 960.7 | 6 439.4  | 41 692.8  |
| 2017    | 6 744.9  | 7 510.8  | 9 131.5  | 2 276.1 | 11 004.0 | 6 386.8  | 43 054.2  |
| 2018    | 6 388.4  | 7 352.3  | 9 656.2  | 2 312.2 | 10 629.6 | 6 243.1  | 42 581.9  |
| 2019    | 5 320.8  | 6 129.3  | 8 037.8  | 1 934.5 | 10 404.7 | 5 782.7  | 37 609.9  |
| All     | 22 423.5 | 20 172.2 | 30 642.0 | 8 446.8 | 37 746.3 | 28 152.4 | 145 884.7 |

Table E9: Summary data for the number of tows, the aggregate area, and the footprint for the main bottom-contacting inshore fishstocks per 25-km<sup>2</sup> cell, for 2008–2019. Data show the value at the first quartile and third quartile, and the median, mean, and maximum per cell per year.

| Main      |         | No.    | of tows p | er cell (mini | mum=1) |         | Aggre  | egate area | (minimum | Footprint (minimum < 0.003) |         |        |      |         |      |
|-----------|---------|--------|-----------|---------------|--------|---------|--------|------------|----------|-----------------------------|---------|--------|------|---------|------|
| fishstock | 1st Qu. | Median | Mean      | 3rd Qu.       | Max.   | 1st Qu. | Median | Mean       | 3rd Qu.  | Max.                        | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
| FLA2      | 1       | 3      | 87.9      | 14            | 5 037  | 0.3     | 0.6    | 17.5       | 2.6      | 994.3                       | 0.3     | 0.6    | 3.2  | 2.3     | 25.0 |
| FLA3      | 1       | 5      | 176.0     | 59            | 4 601  | 0.4     | 1.0    | 35.8       | 10.8     | 1 245.2                     | 0.4     | 1.0    | 5.5  | 7.4     | 25.0 |
| FLA7      | 2       | 6      | 180.9     | 55            | 4 794  | 0.4     | 1.5    | 41.4       | 10.5     | 911.7                       | 0.4     | 1.4    | 5.6  | 7.2     | 25.0 |
| GUR1      | 1       | 4      | 38.1      | 29            | 1 802  | 0.4     | 0.9    | 9.4        | 6.4      | 460.5                       | 0.4     | 0.9    | 4.2  | 5.2     | 25.0 |
| GUR2      | 2       | 15     | 168.1     | 141           | 1 971  | 0.5     | 2.7    | 39.7       | 29.4     | 480.1                       | 0.4     | 2.4    | 7.6  | 14.0    | 25.0 |
| GUR3      | 1       | 6      | 27.7      | 33            | 313    | 0.4     | 1.3    | 6.5        | 7.1      | 69.6                        | 0.4     | 1.3    | 4.1  | 5.9     | 22.3 |
| GUR7      | 1       | 7      | 46.1      | 54            | 477    | 0.4     | 1.5    | 11.5       | 12.6     | 133.6                       | 0.4     | 1.4    | 5.5  | 9.1     | 24.9 |
| GUR8      | 2       | 6      | 34.9      | 36            | 483    | 0.4     | 1.5    | 9.1        | 8.6      | 166.7                       | 0.4     | 1.5    | 4.8  | 6.7     | 24.7 |
| JDO1      | 1       | 4      | 42.5      | 23            | 917    | 0.4     | 0.9    | 9.0        | 4.6      | 220.4                       | 0.3     | 0.9    | 3.8  | 4.0     | 25.0 |
| JDO2      | 1       | 3.5    | 16.0      | 16            | 308    | 0.3     | 0.8    | 3.8        | 3.4      | 91.6                        | 0.3     | 0.8    | 2.6  | 3.1     | 23.3 |
| JDO7      | 2       | 5      | 15.5      | 14            | 317    | 0.4     | 1.1    | 3.8        | 3.5      | 91.2                        | 0.4     | 1.1    | 2.8  | 3.3     | 24.0 |
| RCO3      | 2       | 12     | 45.7      | 42            | 1 854  | 0.5     | 2.7    | 11.1       | 9.8      | 524.2                       | 0.5     | 2.4    | 5.1  | 7.9     | 25.0 |
| RCO7      | 1       | 6      | 33.0      | 32            | 499    | 0.4     | 1.2    | 8.8        | 7.4      | 166.3                       | 0.4     | 1.2    | 4.5  | 6.0     | 25.0 |
| SNA1      | 2       | 16     | 97.0      | 113           | 1 303  | 0.5     | 3.2    | 22.6       | 27.8     | 352.9                       | 0.5     | 2.8    | 7.5  | 14.7    | 25.0 |
| SNA2      | 1       | 5      | 21.8      | 24            | 271    | 0.4     | 1.1    | 6.9        | 5.7      | 146.1                       | 0.4     | 1.0    | 3.8  | 4.9     | 24.6 |
| SNA7      | 1       | 6      | 33.2      | 23            | 765    | 0.4     | 1.2    | 7.2        | 5.1      | 191.6                       | 0.4     | 1.1    | 3.6  | 4.4     | 24.9 |
| SNA8      | 1       | 5      | 17.9      | 19            | 201    | 0.4     | 1.4    | 6.2        | 5.9      | 67.5                        | 0.4     | 1.3    | 4.0  | 5.2     | 23.1 |
| TAR1      | 2       | 10     | 61.6      | 56            | 970    | 0.5     | 2.5    | 17.3       | 15.2     | 286.3                       | 0.5     | 2.3    | 6.3  | 10.4    | 25.0 |
| TAR2      | 4       | 21     | 181.0     | 187           | 2 900  | 0.7     | 4.3    | 47.3       | 45.8     | 846.2                       | 0.7     | 3.8    | 8.8  | 18.5    | 25.0 |
| TAR3      | 2       | 11     | 63.2      | 66            | 831    | 0.5     | 2.4    | 15.3       | 15.8     | 265.0                       | 0.5     | 2.3    | 6.5  | 11.3    | 25.0 |
| TAR4      | 1       | 3      | 36.2      | 30            | 473    | 0.4     | 0.9    | 16.0       | 11.3     | 255.0                       | 0.4     | 0.9    | 5.2  | 7.8     | 25.0 |
| TAR7      | 2       | 13     | 61.1      | 73            | 1 408  | 0.6     | 3.2    | 17.2       | 19.9     | 422.3                       | 0.5     | 3.0    | 7.1  | 13.2    | 25.0 |
| TAR8      | 1       | 4      | 26.0      | 17            | 466    | 0.4     | 1.1    | 7.3        | 4.4      | 146.2                       | 0.4     | 1.1    | 3.7  | 3.9     | 24.8 |
| TRE1      | 2       | 10     | 54.0      | 48            | 1 096  | 0.4     | 2.0    | 13.4       | 10.8     | 345.3                       | 0.4     | 1.7    | 5.5  | 8.0     | 25.0 |
| TRE7      | 2       | 6      | 55.9      | 37            | 832    | 0.4     | 1.6    | 19.9       | 9.9      | 378.2                       | 0.4     | 1.5    | 5.6  | 7.4     | 25.0 |

Table E10: Summary data for the number of tows, the aggregate area, and the footprint for the main bottom-contacting inshore fishstocks per 25-km<sup>2</sup> cell, for 2019. Data show the value at the first quartile and third quartile, and the median, mean, and maximum per cell per year.

| Main      |         | No     | o. of tows | per cell (min | nium=1) |         | Aggre  | egate area | (minimum |       | Footprint (minimum < 0.003) |        |      |         |      |  |
|-----------|---------|--------|------------|---------------|---------|---------|--------|------------|----------|-------|-----------------------------|--------|------|---------|------|--|
| fishstock | 1st Qu. | Median | Mean       | 3rd Qu.       | Max.    | 1st Qu. | Median | Mean       | 3rd Qu.  | Max.  | 1st Qu.                     | Median | Mean | 3rd Qu. | Max. |  |
| FLA2      | 1       | 2      | 16.5       | 8.25          | 306     | 0.2     | 0.4    | 3.2        | 1.4      | 67.6  | 0.2                         | 0.4    | 1.7  | 1.2     | 19.3 |  |
| FLA3      | 1       | 5      | 28.3       | 23            | 425     | 0.3     | 0.9    | 5.7        | 4.5      | 103.3 | 0.3                         | 0.9    | 3.2  | 3.8     | 24.1 |  |
| FLA7      | 1       | 4      | 22.1       | 25            | 224     | 0.4     | 0.9    | 5.2        | 4.9      | 72.6  | 0.3                         | 0.8    | 3.3  | 4.3     | 23.4 |  |
| GUR1      | 1       | 3      | 9.3        | 7             | 195     | 0.3     | 0.8    | 2.6        | 2.0      | 48.0  | 0.3                         | 0.8    | 2.0  | 1.9     | 20.6 |  |
| GUR2      | 2       | 7      | 21.1       | 32            | 186     | 0.4     | 1.5    | 4.9        | 7.0      | 46.9  | 0.4                         | 1.4    | 3.6  | 5.7     | 20.7 |  |
| GUR3      | 1       | 3      | 7.4        | 10            | 89      | 0.3     | 0.7    | 1.7        | 2.1      | 24.5  | 0.3                         | 0.7    | 1.5  | 1.9     | 14.8 |  |
| GUR7      | 1       | 5      | 12.1       | 16            | 100     | 0.4     | 1.1    | 3.2        | 4.1      | 32.9  | 0.4                         | 1.1    | 2.6  | 3.7     | 18.0 |  |
| GUR8      | 1       | 3      | 7.6        | 8             | 74      | 0.3     | 0.6    | 1.9        | 1.8      | 21.7  | 0.3                         | 0.6    | 1.6  | 1.7     | 14.0 |  |
| JDO1      | 1       | 2      | 6.1        | 7             | 51      | 0.2     | 0.5    | 1.4        | 1.3      | 12.2  | 0.2                         | 0.5    | 1.2  | 1.3     | 9.6  |  |
| JDO2      | 1       | 1      | 3.0        | 3             | 24      | 0.2     | 0.4    | 0.7        | 0.8      | 7.6   | 0.2                         | 0.4    | 0.6  | 0.7     | 6.2  |  |
| JDO7      | 1       | 2      | 4.2        | 5             | 30      | 0.3     | 0.6    | 1.1        | 1.3      | 8.9   | 0.3                         | 0.6    | 1.0  | 1.3     | 6.6  |  |
| RCO3      | 1       | 2      | 6.4        | 5             | 155     | 0.2     | 0.5    | 1.4        | 1.0      | 43.9  | 0.2                         | 0.5    | 1.1  | 1.0     | 16.7 |  |
| RCO7      | 1       | 3      | 5.9        | 7             | 73      | 0.3     | 0.8    | 1.6        | 2.0      | 22.0  | 0.3                         | 0.8    | 1.4  | 1.9     | 14.3 |  |
| SNA1      | 2       | 7      | 14.4       | 18            | 116     | 0.4     | 1.7    | 3.8        | 4.9      | 38.8  | 0.4                         | 1.6    | 3.0  | 4.4     | 19.3 |  |
| SNA2      | 1       | 1      | 4.6        | 3             | 44      | 0.2     | 0.4    | 1.9        | 1.0      | 30.1  | 0.2                         | 0.4    | 1.2  | 0.8     | 13.6 |  |
| SNA7      | 1       | 3      | 6.7        | 8             | 41      | 0.2     | 0.6    | 1.4        | 1.6      | 9.9   | 0.2                         | 0.6    | 1.2  | 1.5     | 7.6  |  |
| SNA8      | 1       | 2      | 3.2        | 3             | 28      | 0.2     | 0.5    | 1.1        | 1.1      | 11.1  | 0.2                         | 0.5    | 1.0  | 1.1     | 7.5  |  |
| TAR1      | 1       | 4      | 8.4        | 11            | 80      | 0.4     | 1.2    | 2.8        | 3.6      | 44.1  | 0.4                         | 1.2    | 2.3  | 3.3     | 14.1 |  |
| TAR2      | 2       | 7      | 18.9       | 32            | 158     | 0.4     | 1.4    | 4.9        | 7.3      | 46.4  | 0.4                         | 1.3    | 3.5  | 6.0     | 20.8 |  |
| TAR3      | 1       | 3      | 10.5       | 12            | 118     | 0.3     | 0.7    | 2.5        | 2.5      | 36.2  | 0.3                         | 0.7    | 2.0  | 2.4     | 17.4 |  |
| TAR4      | 1       | 3      | 9.4        | 10            | 77      | 0.3     | 0.8    | 3.7        | 3.3      | 40.3  | 0.3                         | 0.8    | 2.4  | 2.9     | 17.4 |  |
| TAR7      | 2       | 5      | 9.2        | 12            | 104     | 0.4     | 1.2    | 2.7        | 3.4      | 38.0  | 0.4                         | 1.2    | 2.2  | 3.0     | 18.3 |  |
| TAR8      | 1       | 3      | 6.8        | 8             | 75      | 0.3     | 0.7    | 2.0        | 2.0      | 41.9  | 0.3                         | 0.7    | 1.4  | 1.8     | 14.3 |  |
| TRE1      | 1       | 5      | 11.4       | 14            | 103     | 0.3     | 1.0    | 2.9        | 3.6      | 32.6  | 0.3                         | 1.0    | 2.3  | 3.2     | 17.3 |  |
| TRE7      | 1       | 3      | 9.2        | 12            | 71      | 0.4     | 1.1    | 3.5        | 4.4      | 28.6  | 0.4                         | 1.1    | 2.8  | 3.8     | 17.5 |  |

Table E11: The number of 25-km<sup>2</sup> cells contacted by inshore fishstocks, by 50-m depth zone, for fishing years 2008–2019.

| Fishing |       |        |         |         |         | 50-m     | depth zone |
|---------|-------|--------|---------|---------|---------|----------|------------|
| year    | 0-50  | 50-100 | 100-150 | 150-200 | 200-250 | over 250 | All        |
| 2008    | 2 301 | 2 198  | 1 734   | 752     | 326     | 2 148    | 9 459      |
| 2009    | 2 306 | 2 261  | 1 861   | 739     | 317     | 1 916    | 9 400      |
| 2010    | 2 322 | 2 257  | 1 855   | 769     | 334     | 1 942    | 9 479      |
| 2011    | 2 330 | 2 238  | 1 853   | 762     | 349     | 2 050    | 9 582      |
| 2012    | 2 351 | 2 250  | 1 863   | 725     | 319     | 1 791    | 9 299      |
| 2013    | 2 300 | 2 255  | 1 867   | 728     | 301     | 1 738    | 9 189      |
| 2014    | 2 307 | 2 300  | 1 934   | 784     | 332     | 1 921    | 9 578      |
| 2015    | 2 293 | 2 248  | 2 023   | 745     | 331     | 1 848    | 9 488      |
| 2016    | 2 265 | 2 243  | 1 941   | 748     | 299     | 1 870    | 9 366      |
| 2017    | 2 245 | 2 249  | 1 950   | 760     | 330     | 1 942    | 9 476      |
| 2018    | 2 255 | 2 198  | 1 888   | 739     | 298     | 1 871    | 9 249      |
| 2019    | 2 159 | 2 207  | 1 804   | 736     | 332     | 1 448    | 8 686      |
| All     | 2 564 | 2 545  | 2 613   | 933     | 483     | 6 061    | 15 199     |

Table E12: The aggregate area (km²) estimated for inshore fishstocks, by 50-m depth zone, for fishing years 2008–2019.

| Fishing |           |           |           |          |          | 50-1     | m depth zone |
|---------|-----------|-----------|-----------|----------|----------|----------|--------------|
| year    | 0-50      | 50-100    | 100-150   | 150-200  | 200-250  | over 250 | All          |
| 2008    | 29 634.0  | 20 402.8  | 11 155.9  | 4 633.2  | 1 525.0  | 3 006.5  | 70 357.5     |
| 2009    | 30 791.3  | 22 541.3  | 10 765.3  | 4 585.6  | 1 789.1  | 3 150.5  | 73 623.1     |
| 2010    | 34 306.4  | 22 700.7  | 10 773.0  | 4 360.0  | 1 540.6  | 3 158.5  | 76 839.1     |
| 2011    | 28 500.2  | 21 253.8  | 11 438.8  | 4 048.9  | 1 569.0  | 3 090.6  | 69 901.3     |
| 2012    | 29 682.0  | 20 536.2  | 10 019.4  | 3 710.7  | 1 250.6  | 2 776.5  | 67 975.4     |
| 2013    | 29 016.3  | 22 394.3  | 9 457.3   | 3 258.2  | 1 025.8  | 2 584.0  | 67 735.9     |
| 2014    | 29 195.9  | 21 561.2  | 11 811.9  | 4 107.9  | 1 432.1  | 2 944.1  | 71 053.1     |
| 2015    | 24 197.1  | 21 803.1  | 11 003.5  | 3 709.8  | 1 294.8  | 2 794.9  | 64 803.2     |
| 2016    | 25 291.8  | 20 229.5  | 9 679.2   | 3 618.0  | 1 406.9  | 3 109.2  | 63 334.7     |
| 2017    | 25 717.9  | 20 606.9  | 11 470.5  | 3 873.7  | 1 494.9  | 3 210.9  | 66 374.8     |
| 2018    | 22 713.0  | 20 385.4  | 11 478.3  | 3 856.1  | 1 393.2  | 3 159.5  | 62 985.5     |
| 2019    | 21 071.3  | 19 638.8  | 9 893.0   | 3 063.4  | 1 097.8  | 1 847.1  | 56 611.4     |
| All     | 330 117.3 | 254 054.0 | 128 946.1 | 46 825.4 | 16 819.8 | 34 832.3 | 811 595.0    |

Table E13: The footprint (km²) estimated for inshore fishstocks, by 50-m depth zone, for fishing years 2008–2019.

| Fishing |          |          |          |          |         | 50-1     | m depth zone |
|---------|----------|----------|----------|----------|---------|----------|--------------|
| year    | 0-50     | 50-100   | 100-150  | 150-200  | 200-250 | over 250 | All          |
| 2008    | 15 678.8 | 13 508.4 | 7 883.2  | 3 525.7  | 1 185.7 | 2 455.5  | 44 237.2     |
| 2009    | 16 554.2 | 14 787.8 | 7 791.7  | 3 418.0  | 1 316.5 | 2 453.6  | 46 321.7     |
| 2010    | 17 504.3 | 14 939.8 | 7 832.4  | 3 296.5  | 1 158.1 | 2 488.1  | 47 219.3     |
| 2011    | 15 815.4 | 14 496.7 | 8 094.4  | 3 100.9  | 1 194.2 | 2 451.1  | 45 152.7     |
| 2012    | 16 206.7 | 14 019.8 | 7 394.2  | 2 870.4  | 945.9   | 2 135.8  | 43 572.7     |
| 2013    | 16 048.6 | 14 835.8 | 7 053.0  | 2 590.2  | 826.0   | 2 111.8  | 43 465.4     |
| 2014    | 15 811.8 | 14 425.8 | 8 708.6  | 3 206.8  | 1 110.6 | 2 344.6  | 45 608.2     |
| 2015    | 14 131.7 | 14 163.7 | 8 168.8  | 2 988.1  | 1 041.8 | 2 271.6  | 42 765.7     |
| 2016    | 14 100.6 | 13 617.5 | 7 528.0  | 2 886.3  | 1 098.3 | 2 487.8  | 41 718.4     |
| 2017    | 13 765.4 | 14 025.7 | 8 614.9  | 3 074.7  | 1 168.4 | 2 617.6  | 43 266.8     |
| 2018    | 13 295.5 | 14 108.3 | 8 428.2  | 3 041.0  | 1 123.9 | 2 588.4  | 42 585.4     |
| 2019    | 12 685.3 | 13 369.4 | 7 274.9  | 2 408.4  | 854.8   | 1 538.7  | 38 131.5     |
| All     | 37 422.2 | 43 789.0 | 32 659.7 | 13 593.6 | 5 129.2 | 15 682.5 | 148 276.2    |

Table E14: The number of cells contacted by the inshore fishstocks during 2008–2019 and 2019, by the BOMEC classes.

| Fishing | _   |       |     |       |       |       |     |       |     |       |    |    |     |       | BOM | EC class |
|---------|-----|-------|-----|-------|-------|-------|-----|-------|-----|-------|----|----|-----|-------|-----|----------|
| year    | Out | A     | В   | С     | D     | Е     | G   | Н     | I   | J     | K  | L  | M   | N     | O   | All      |
| 2008    | 39  | 1 076 | 545 | 2 674 | 1 077 | 926   | 242 | 1 448 | 127 | 940   | 7  | 10 | 91  | 246   | 11  | 9 459    |
| 2009    | 40  | 1 076 | 540 | 2 880 | 1 079 | 910   | 234 | 1 370 | 105 | 821   | 1  | 18 | 96  | 221   | 9   | 9 400    |
| 2010    | 54  | 1 078 | 544 | 2 828 | 1 076 | 960   | 247 | 1 466 | 118 | 766   |    |    | 81  | 252   | 9   | 9 479    |
| 2011    | 45  | 1 071 | 550 | 2 882 | 1 097 | 875   | 250 | 1 478 | 127 | 836   | 1  |    | 86  | 272   | 12  | 9 582    |
| 2012    | 43  | 1 088 | 543 | 2 889 | 1 103 | 893   | 251 | 1 307 | 83  | 787   | 1  | 2  | 70  | 235   | 4   | 9 299    |
| 2013    | 44  | 1 058 | 550 | 2 904 | 1 085 | 889   | 254 | 1 305 | 98  | 708   |    | 1  | 55  | 226   | 12  | 9 189    |
| 2014    | 41  | 1 052 | 542 | 2 997 | 1 103 | 917   | 249 | 1 465 | 103 | 817   | 7  |    | 46  | 233   | 6   | 9 578    |
| 2015    | 42  | 1 025 | 546 | 2 923 | 1 109 | 998   | 250 | 1 463 | 125 | 770   | 10 | 2  | 65  | 154   | 6   | 9 488    |
| 2016    | 41  | 1 022 | 539 | 2 947 | 1 087 | 908   | 232 | 1 354 | 121 | 804   | 12 | 6  | 95  | 187   | 11  | 9 366    |
| 2017    | 40  | 1 031 | 538 | 2 960 | 1 064 | 917   | 232 | 1 461 | 111 | 831   | 11 |    | 53  | 219   | 8   | 9 476    |
| 2018    | 39  | 1 003 | 547 | 2 911 | 1 095 | 830   | 245 | 1 436 | 105 | 784   | 13 |    | 51  | 186   | 4   | 9 249    |
| 2019    | 34  | 953   | 538 | 2 782 | 1 067 | 906   | 226 | 1 359 | 89  | 521   | 1  | 5  | 45  | 156   | 4   | 8 686    |
| All     | 75  | 1 176 | 554 | 3 495 | 1 181 | 1 396 | 262 | 2 362 | 321 | 2 788 | 19 | 40 | 280 | 1 188 | 62  | 15 199   |

Table E15: The estimated aggregate area (km²) for the inshore fishstocks during 2008–2019 and 2019, by the BOMEC classes. For 2008–2019, 'Out' had a total of 104.5 km²; class K had 25.1 km²; class L had 17.9 km²; and class O had 10.6 km².

| Fishing |           |           |           |           |          |          |          |         |         |        |        | BOMEC class |
|---------|-----------|-----------|-----------|-----------|----------|----------|----------|---------|---------|--------|--------|-------------|
| year    | A         | В         | C         | D         | Е        | G        | Н        | I       | J       | M      | N      | All         |
| 2008    | 12 951.0  | 8 801.0   | 23 371.4  | 12 272.7  | 4 366.9  | 1 516.7  | 6 173.8  | 110.7   | 655.5   | 29.0   | 94.9   | 70 357.5    |
| 2009    | 13 006.1  | 8 325.4   | 25 346.7  | 13 683.5  | 4 541.1  | 1 719.6  | 6 063.5  | 182.1   | 611.2   | 42.3   | 85.4   | 73 623.1    |
| 2010    | 14 188.6  | 10 079.6  | 22 635.4  | 15 600.4  | 5 936.2  | 1 791.0  | 5 715.6  | 190.1   | 554.0   | 32.4   | 104.3  | 76 839.1    |
| 2011    | 12 409.4  | 7 946.1   | 21 314.1  | 13 842.7  | 5 897.7  | 2 136.9  | 5 539.5  | 104.4   | 569.5   | 35.8   | 95.6   | 69 901.3    |
| 2012    | 12 788.5  | 9 261.8   | 19 351.5  | 14 211.2  | 5 077.8  | 1 935.8  | 4 583.6  | 88.0    | 553.7   | 23.4   | 88.1   | 67 975.4    |
| 2013    | 11 552.5  | 9 060.0   | 19 501.8  | 15 462.9  | 5 348.9  | 1 805.3  | 4 208.8  | 109.8   | 568.8   | 16.2   | 86.4   | 67 735.9    |
| 2014    | 11 808.9  | 9 178.4   | 19 249.8  | 15 603.4  | 6 922.9  | 1 952.6  | 5 474.2  | 89.7    | 655.2   | 13.2   | 91.9   | 71 053.1    |
| 2015    | 10 067.6  | 8 717.6   | 19 636.9  | 12 931.1  | 5 886.8  | 1 641.3  | 5 178.9  | 82.0    | 572.1   | 20.7   | 53.9   | 64 803.2    |
| 2016    | 10 386.1  | 8 697.4   | 18 499.9  | 13 164.9  | 4 899.6  | 1 537.8  | 5 306.7  | 125.0   | 581.6   | 49.2   | 68.6   | 63 334.7    |
| 2017    | 9 516.2   | 9 575.3   | 20 053.3  | 13 059.4  | 6 040.9  | 1 403.2  | 5 811.1  | 115.9   | 687.1   | 19.8   | 78.5   | 66 374.8    |
| 2018    | 8 694.6   | 7 700.4   | 19 944.7  | 12 308.9  | 6 087.2  | 1 307.8  | 6 080.6  | 81.6    | 672.9   | 19.9   | 74.9   | 62 985.5    |
| 2019    | 8 145.6   | 8 694.1   | 18 326.5  | 11 463.7  | 4 312.8  | 1 135.8  | 4 082.3  | 51.2    | 327.6   | 14.3   | 48.5   | 56 611.4    |
| All     | 135 515.2 | 106 037.0 | 247 232.0 | 163 604.8 | 65 318.6 | 19 883.8 | 64 218.6 | 1 330.5 | 7 009.1 | 3 16.3 | 9 71.0 | 811 595.0   |

Table E16: The estimated footprint (km²) for the inshore fishstocks during 2008–2019 and 2019, by the BOMEC classes. For 2008–2019, 'Out' contacted 35.4 km²; class K had 23.5 km²; class L had 17.8 km²; and class O had 10.3 km².

| Fishing |          |          |          |          |          |         |          |       |         |       |       | BOMEC class |
|---------|----------|----------|----------|----------|----------|---------|----------|-------|---------|-------|-------|-------------|
| year    | A        | В        | C        | D        | E        | G       | Н        | I     | J       | M     | N     | All         |
| 2008    | 7 358.6  | 4 298.8  | 15 853.7 | 6 932.1  | 3 128.4  | 1 034.7 | 4 779.0  | 96.0  | 621.1   | 28.8  | 92.5  | 44 237.2    |
| 2009    | 7 459.5  | 4 534.9  | 16 596.9 | 7 691.1  | 3 415.2  | 1 157.0 | 4 645.9  | 124.6 | 558.2   | 40.4  | 83.3  | 46 321.7    |
| 2010    | 7 799.2  | 5 143.5  | 15 242.2 | 8 373.8  | 4 225.5  | 1 258.1 | 4 378.9  | 134.0 | 522.7   | 30.3  | 102.0 | 47 219.3    |
| 2011    | 7 142.8  | 4 637.4  | 14 940.7 | 7 713.6  | 4 282.2  | 1 407.4 | 4 264.7  | 92.2  | 535.1   | 35.4  | 93.0  | 45 152.7    |
| 2012    | 7 396.4  | 5 057.8  | 13 984.5 | 7 822.2  | 3 684.0  | 1 269.2 | 3 649.2  | 72.2  | 518.8   | 22.7  | 85.2  | 43 572.7    |
| 2013    | 6 887.4  | 5 170.4  | 13 985.4 | 8 220.8  | 3 813.7  | 1 246.4 | 3 413.5  | 86.3  | 529.5   | 15.9  | 84.3  | 43 465.4    |
| 2014    | 6 844.9  | 5 073.9  | 14 099.3 | 8 337.5  | 4 774.1  | 1 272.0 | 4 406.6  | 76.9  | 611.0   | 13.0  | 87.6  | 45 608.2    |
| 2015    | 6 121.4  | 4 787.7  | 13 966.1 | 7 533.7  | 4 322.9  | 1 152.8 | 4 186.4  | 77.6  | 531.5   | 20.6  | 52.3  | 42 765.7    |
| 2016    | 6 338.8  | 4 883.9  | 13 746.4 | 7 073.2  | 3 612.5  | 1 087.9 | 4 209.8  | 95.5  | 542.9   | 43.9  | 67.0  | 41 718.4    |
| 2017    | 5 905.0  | 4 972.6  | 14 717.6 | 6 960.0  | 4 217.0  | 995.4   | 4 674.7  | 86.3  | 630.4   | 19.0  | 76.1  | 43 266.8    |
| 2018    | 5 542.4  | 4 497.5  | 14 672.8 | 7 251.9  | 4 116.4  | 939.1   | 4 775.3  | 76.2  | 611.7   | 19.5  | 72.0  | 42 585.4    |
| 2019    | 5 215.9  | 5 129.6  | 13 214.0 | 6 855.7  | 3 191.1  | 787.9   | 3 310.2  | 49.1  | 307.6   | 14.3  | 47.7  | 38 131.5    |
| All     | 16 233.8 | 11 184.2 | 52 087.3 | 20 498.2 | 15 634.4 | 4 288.2 | 21 452.2 | 718.8 | 4 935.4 | 289.2 | 867.4 | 148 276.2   |

Table E17: The estimated inshore footprint (km²) for inshore fishstocks during 2008–2019 ad 2019 by the surficial layers representing the percent of carbonate, gravel mud, and sand. 'unk' is where there was no overlap.

|              | 2008–2019 footprint (ki |           |           |           | (km²) 2019 footpri |           |          |          |          |
|--------------|-------------------------|-----------|-----------|-----------|--------------------|-----------|----------|----------|----------|
| Sediment (%) | Carbonate               | Gravel    | Mud       | Sand      | Sediment (%)       | Carbonate | Gravel   | Mud      | Sand     |
| 0–20         | 42 924.1                | 119765.5  | 48 364.1  | 13 402.3  | 0–20               | 12 770.9  | 31 419.5 | 11 892.0 | 3 228.4  |
| 20-40        | 66 981.8                | 20353.4   | 36 127.5  | 32 387.1  | 20–40              | 16 665.7  | 4 925.2  | 8 583.5  | 9 238.5  |
| 40–60        | 28 857.0                | 4958.6    | 28 748.4  | 41 029.6  | 40–60              | 7 158.2   | 1 163.2  | 8 209.3  | 10 808.4 |
| 60-80        | 6 476.0                 | 724.7     | 23 414.5  | 40 562.7  | 60-80              | 960.4     | 142.4    | 6 981.3  | 9 851.7  |
| 80-100       | 638.4                   | 76.2      | 9 225.7   | 18 495.0  | 80-100             | 102.7     | 7.8      | 1 992.1  | 4 531.0  |
| unk          | 2 399.0                 | 2397.8    | 2 396.0   | 2 399.6   | unk                | 473.5     | 473.3    | 473.3    | 473.5    |
| Total        | 148 276.2               | 148 276.2 | 148 276.2 | 148 276.2 | Grand Total        | 38 131.5  | 38 131.5 | 38 131.5 | 38 131.5 |

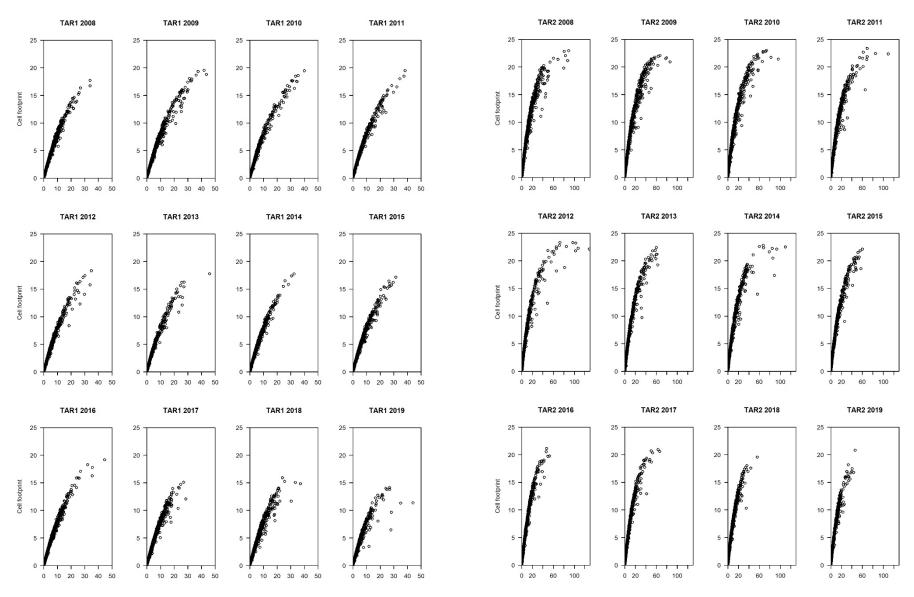
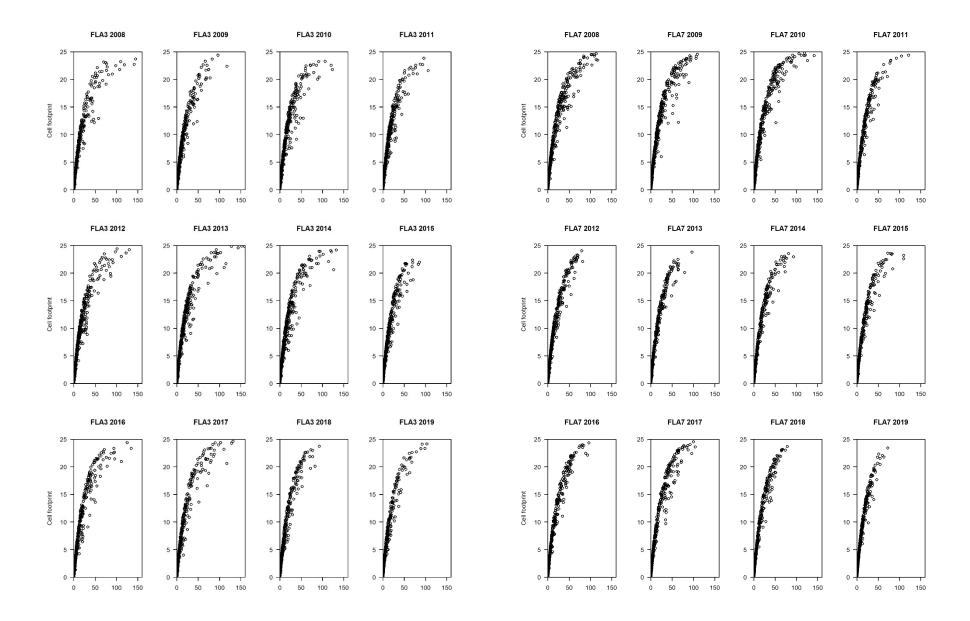




Figure E1: Relationship between the aggregate area and footprint of cells each fishing year for tarakihi fishstocks, 2008–2019.



### **APPENDIX F: ERS DATA**

Table F1: Comparison of the groomed ERS data (unchanged resolution of position data) and the rounded-coordinate ERS data: 2018 and 2019 number of contacted cells, aggregate area (km²), and footprint (km²) for deepwater Tier 1 and deepwater Tier 2 targets.

|            |           | Unchang   | ed ERS data_ | Rounded-coordinate ERS data |           |           |  |  |
|------------|-----------|-----------|--------------|-----------------------------|-----------|-----------|--|--|
| Tier 1     | No. cells | Aggregate | Footprint    | No. cells                   | Aggregate | Footprint |  |  |
| HAK        | 288       | 899.4     | 745.5        | 289                         | 888.8     | 751.1     |  |  |
| HOK        | 4 636     | 105 235.7 | 37 409.6     | 4 691                       | 105 658.0 | 38 518.0  |  |  |
| JMA        | 1 466     | 6 458.7   | 4 823.3      | 1 474                       | 6 459.1   | 4 850.3   |  |  |
| LIN        | 862       | 3 652.2   | 2 089.7      | 876                         | 3 680.8   | 2 178.9   |  |  |
| OEO        | 601       | 818.2     | 602.1        | 653                         | 876.3     | 712.3     |  |  |
| ORH        | 1 934     | 7 101.6   | 5 053.7      | 1 959                       | 7 290.1   | 5 403.0   |  |  |
| SBW        | 558       | 1 667.9   | 1 456.9      | 557                         | 1 675.6   | 1 469.2   |  |  |
| SCI        | 646       | 5 683.3   | 3 154.6      | 679                         | 5 704.4   | 3 287.7   |  |  |
| SQU        | 967       | 23 850.9  | 5 034.4      | 1011                        | 23 973.9  | 5 520.6   |  |  |
| Tier 1     | 10 317    | 155 368.0 | 58 457.1     | 10 518                      | 156 207.0 | 60 634.4  |  |  |
|            |           |           |              |                             |           |           |  |  |
| Tier 2     | No. cells | Aggregate | Footprint    | No. cells                   | Aggregate | Footprint |  |  |
| BAR        | 807       | 3 928.6   | 2 093.0      | 825                         | 3 925.9   | 2 157.7   |  |  |
| BYX        | 418       | 587.3     | 391.8        | 411                         | 615.2     | 453.8     |  |  |
| CDL        | 111       | 138.4     | 98.4         | 112                         | 144.7     | 117.2     |  |  |
| <b>EMA</b> | 34        | 24.7      | 24.4         | 34                          | 24.9      | 24.4      |  |  |
| FRO        | 61        | 79.0      | 72.3         | 60                          | 78.9      | 73.8      |  |  |
| LDO        | 23        | 15.9      | 15.2         | 25                          | 16.2      | 16.0      |  |  |
| RBT        | 43        | 22.0      | 21.9         | 41                          | 22.3      | 22.2      |  |  |
| RBY        | 66        | 49.0      | 43.9         | 65                          | 50.4      | 46.7      |  |  |
| SPE        | 51        | 112.5     | 78.2         | 51                          | 112.9     | 85.5      |  |  |
| SWA        | 1 028     | 2 569.3   | 1 945.2      | 1 051                       | 2 576.6   | 2 042.5   |  |  |
| WWA        | 212       | 280.8     | 229.1        | 219                         | 281.5     | 241.5     |  |  |
| Tier 2     | 2 518     | 7 807.6   | 4 939.5      | 2 550                       | 7 849.5   | 5 206.6   |  |  |

Table F2: Comparison of the groomed ERS data (unchanged resolution of position data) and the rounded-coordinate ERS data: 2019 number of contacted cells, aggregate area (km²), and footprint (km²) for the main inshore fishstock targets. [Continued on next page]

|         |           | Unchanged | d ERS data | Roun      | Rounded-coordinate ERS data |           |  |  |  |
|---------|-----------|-----------|------------|-----------|-----------------------------|-----------|--|--|--|
| Inshore | No. cells | Aggregate | Footprint  | No. cells | Aggregate                   | Footprint |  |  |  |
| BAR1    | 834       | 2 126.5   | 1 394.0    | 845       | 2 118.0                     | 1 430.5   |  |  |  |
| ELE3    | 321       | 229.8     | 221.5      | 317       | 229.1                       | 221.7     |  |  |  |
| ELE5    | 87        | 44.5      | 43.6       | 79        | 45.2                        | 44.5      |  |  |  |
| ELE7    | 8         | 2.0       | 2.0        | 8         | 1.9                         | 1.9       |  |  |  |
| FLA2    | 30        | 22.3      | 19.8       | 31        | 23.1                        | 20.4      |  |  |  |
| FLA3    | 356       | 842.0     | 598.4      | 362       | 844.5                       | 617.5     |  |  |  |
| FLA7    | 544       | 1 248.9   | 1 033.5    | 549       | 1 250.6                     | 1 058.7   |  |  |  |
| GSH3    | 16        | 3.5       | 3.5        | 17        | 3.6                         | 3.6       |  |  |  |
| GSH7    | 55        | 26.9      | 25.4       | 54        | 25.7                        | 25.0      |  |  |  |
| GSH8    | 11        | 4.0       | 4.0        | 12        | 4.0                         | 4.0       |  |  |  |
| GUR1    | 305       | 691.3     | 578.9      | 312       | 689.4                       | 581.8     |  |  |  |
| GUR2    | 384       | 727.1     | 645.4      | 394       | 725.7                       | 654.2     |  |  |  |
| GUR3    | 249       | 344.1     | 301.3      | 254       | 345.3                       | 307.8     |  |  |  |
| GUR7    | 559       | 800.7     | 693.0      | 573       | 802.0                       | 729.0     |  |  |  |
| GUR8    | 216       | 245.0     | 222.5      | 214       | 243.4                       | 221.9     |  |  |  |
|         |           |           |            |           |                             |           |  |  |  |

Table F2: — continued.

|         |           | Unchange  | ed ERS data | Rounded-coordinate ERS data |           |           |  |  |
|---------|-----------|-----------|-------------|-----------------------------|-----------|-----------|--|--|
| Inshore | No. cells | Aggregate | Footprint   | No. cells                   | Aggregate | Footprint |  |  |
| JDO1    | 67        | 41.9      | 41.2        | 63                          | 42.8      | 42.4      |  |  |
| JDO2    | 91        | 58.8      | 53.7        | 92                          | 59.1      | 55.0      |  |  |
| JDO7    | 65        | 21.8      | 21.4        | 67                          | 22.2      | 21.9      |  |  |
| LEA3    | 17        | 9.7       | 9.7         | 16                          | 9.6       | 9.6       |  |  |
| MOK1    | 225       | 237.1     | 221.5       | 233                         | 234.0     | 221.7     |  |  |
| RCO3    | 277       | 317.6     | 243.6       | 285                         | 316.7     | 252.4     |  |  |
| RCO7    | 239       | 149.8     | 134.6       | 234                         | 150.1     | 142.5     |  |  |
| RSK3    | 58        | 16.6      | 16.4        | 60                          | 17.1      | 16.9      |  |  |
| SCH1    | 122       | 131.1     | 118.9       | 125                         | 130.9     | 126.3     |  |  |
| SCH3    | 7         | 1.5       | 1.5         | 7                           | 1.4       | 1.4       |  |  |
| SCH7    | 45        | 14.2      | 14.1        | 43                          | 13.8      | 13.8      |  |  |
| SCH8    | 98        | 87.2      | 81.0        | 97                          | 86.8      | 83.7      |  |  |
| SKI1    | 58        | 55.7      | 54.6        | 59                          | 55.1      | 53.6      |  |  |
| SKI2    | 12        | 12.7      | 6.5         | 13                          | 13.1      | 11.5      |  |  |
| SNA1    | 586       | 1 683.9   | 1 384.3     | 599                         | 1 682.4   | 1 413.2   |  |  |
| SNA2    | 89        | 390.0     | 187.6       | 92                          | 385.6     | 213.9     |  |  |
| SNA7    | 29        | 25.0      | 19.3        | 31                          | 24.9      | 23.4      |  |  |
| SNA8    | 249       | 414.8     | 381.2       | 249                         | 414.3     | 380.4     |  |  |
| SPO3    | 67        | 44.2      | 42.7        | 71                          | 44.0      | 42.7      |  |  |
| SPO8    | 28        | 25.0      | 20.7        | 31                          | 25.0      | 22.3      |  |  |
| STA3    | 141       | 78.5      | 74.2        | 140                         | 78.8      | 76.5      |  |  |
| STA5    | 164       | 414.0     | 301.5       | 171                         | 412.4     | 314.6     |  |  |
| STA7    | 178       | 148.5     | 140.4       | 187                         | 147.9     | 139.1     |  |  |
| TAR1    | 938       | 2 970.8   | 2 142.1     | 959                         | 2 963.9   | 2 229.2   |  |  |
| TAR2    | 566       | 2 052.4   | 1 486.7     | 585                         | 2 040.7   | 1 563.3   |  |  |
| TAR3    | 425       | 743.9     | 629.6       | 438                         | 740.6     | 641.0     |  |  |
| TAR4    | 147       | 594.8     | 351.4       | 149                         | 594.4     | 391.8     |  |  |
| TAR5    | 45        | 67.2      | 57.9        | 45                          | 67.3      | 60.8      |  |  |
| TAR7    | 764       | 1 586.4   | 1 182.8     | 771                         | 1 578.3   | 1 317.1   |  |  |
| TAR8    | 166       | 616.7     | 318.7       | 182                         | 618.3     | 376.4     |  |  |
| TRE1    | 432       | 595.1     | 540.7       | 438                         | 595.5     | 549.5     |  |  |
| TRE2    | 11        | 2.7       | 2.7         | 11                          | 2.9       | 2.9       |  |  |
| TRE7    | 553       | 3 647.0   | 2 535.4     | 561                         | 3 625.5   | 2 560.5   |  |  |
| WAR2    | 71        | 83.7      | 77.2        | 72                          | 84.7      | 77.9      |  |  |
| WAR3    | 146       | 374.1     | 319.2       | 149                         | 373.9     | 328.9     |  |  |
| WAR7    | 108       | 124.0     | 100.3       | 118                         | 124.7     | 107.4     |  |  |
| WAR8    | 21        | 8.9       | 8.2         | 22                          | 9.0       | 8.9       |  |  |
| All     | 5 776     | 25 205.6  | 17 619.4    | 5 873                       | 25 138.6  | 18 368.6  |  |  |

### **APPENDIX G: SHELLFISH DREDGE FISHERIES**

Most commercial dredging for shellfish in New Zealand targets scallops (*Pecten novaezelandiae*) and oysters (*Ostrea chilensis*).

### Scallop dredge fisheries

Five main scallop dredge fisheries have operated in the New Zealand coastal waters during the 1990–2019 fishing years: the three northern fisheries in the Auckland and Kermadec Areas (Northland, West Coast, Coromandel) and two southern fisheries (Nelson-Marlborough (Challenger) and Chatham Islands) (Figure G1). Scallops inhabit substrates of shell, gravel, and silt in waters to about 60 m (85 m at Chatham Islands) and are most common at depths of 10–45 m (Cryer 2001). Dredges are designed to dig into the seafloor. The substrate generally dictates the type of dredge used. Fishers in the northern fisheries generally use the self-tipping "box" dredge which is more effective on the harder substrate encountered in the northern fisheries (Cryer 2001), whereas fishers in the southern fisheries use ring bag dredges. Commercial Fishing Regulations define the dredge design and operation of these fisheries, and management closures have occurred in some areas.

Tables of groomed numbers of tows (after Baird et al. 2011) are given in Tables G1–G5.

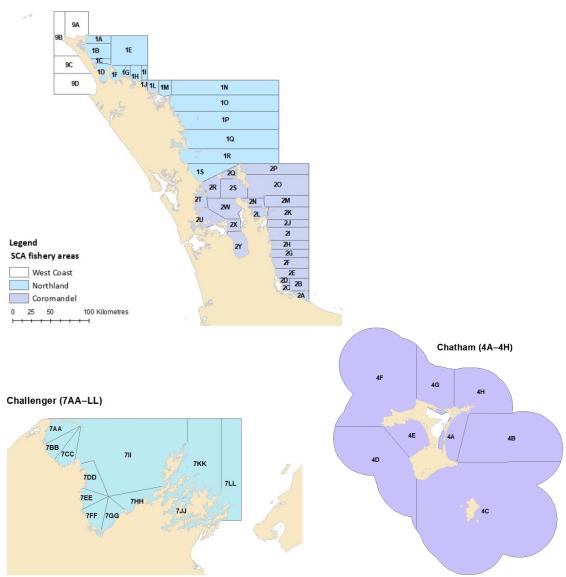



Figure G1: The five scallop fishery areas with effort during 1990–2019: the three northern areas (top) and the two southern areas (bottom).

Historically, most effort has been in the Challenger, Coromandel, and Northland fishery areas (Tables G1 & G2). However, these fisheries have been subject to multiple closures (see Fisheries New Zealand 2019c, Hartill & Williams 2014 for Northland, and Williams et al. 2014 for Challenger). There has been no effort in the Challenger fishery which has been closed since 2017 in an attempt to re-build the stock (see <a href="https://www.mpi.govt.nz/fishing-aquaculture/sustainable-fisheries/the-southern-scallop-fishery-sca-7">https://www.mpi.govt.nz/fishing-aquaculture/sustainable-fisheries/the-southern-scallop-fishery-sca-7</a>). Scallop dredging ceased in the CHAT fishery 2005 and after 2010 in the WCNI fishery.

During 1990–2019, the annual number of daily records has dropped from a peak of over 7000 in the mid-1990s to under 1000 since 2012, with less than 500 in 2019 (Table G1). The number of dredge tows has decreased from over 100 000 tows a year during most years between 1991 and 1996, about 49 000–82 000 tows during 1997–2003, about 23 000–53 500 tows during 2004–2010 (Table G2). Effort then dropped to under 20 000 tows until 2017, when the lowest number of tows per year were reported (6252), followed by a small increase to about 9000 tows in 2018 and 2019 (from the two fisheries still operating — Coromandel and Northland).

Table G1: Number of scallop records by area and year, 1990–2019. Data are from CELR forms which record daily effort in a fishery statistical area. See Figure G1 for areas. UNK is unknown location.

| _            |        |       |       |        |       | Scallop fish | nery areas |
|--------------|--------|-------|-------|--------|-------|--------------|------------|
| Fishing year | CHAL   | CHAT  | CORO  | NOR    | WCNI  | UNK          | Total      |
|              |        |       |       |        |       |              |            |
| 1990         | 901    | 113   | 760   | 1 593  | 0     | 1 328        | 4 695      |
| 1991         | 1 655  | 126   | 1636  | 2 173  | 0     | 749          | 6 339      |
| 1992         | 1 580  | 80    | 1761  | 2 883  | 0     | 1 198        | 7 502      |
| 1993         | 2 170  | 79    | 578   | 2 019  | 0     | 627          | 5 473      |
| 1994         | 4 182  | 1     | 761   | 2 700  | 2     | 128          | 7 774      |
| 1995         | 1 395  | 103   | 842   | 2 984  | 164   | 155          | 5 643      |
| 1996         | 3 245  | 134   | 822   | 1 350  | 1 041 | 677          | 7 269      |
| 1997         | 1 394  | 240   | 837   | 1 029  | 655   | 532          | 4 687      |
| 1998         | 1 222  | 150   | 693   | 759    | 630   | 598          | 4 052      |
| 1999         | 2 633  | 54    | 360   | 417    | 146   | 918          | 4 528      |
| 2000         | 1 916  | 36    | 158   | 273    | 168   | 531          | 3 082      |
| 2001         | 2 640  | 3     | 372   | 441    | 31    | 14           | 3 501      |
| 2002         | 3 240  | 12    | 365   | 407    | 286   | 10           | 4 320      |
| 2003         | 2 738  | 19    | 429   | 350    | 81    | 32           | 3 649      |
| 2004         | 1 675  | 0     | 597   | 447    | 112   | 28           | 2 859      |
| 2005         | 1 008  | 7     | 639   | 365    | 1     | 8            | 2 028      |
| 2006         | 1 401  | 0     | 640   | 417    | 0     | 27           | 2 485      |
| 2007         | 501    | 0     | 683   | 409    | 0     | 8            | 1 601      |
| 2008         | 345    | 0     | 544   | 349    | 42    | 9            | 1 289      |
| 2009         | 1 009  | 0     | 458   | 518    | 42    | 2            | 2 029      |
| 2010         | 461    | 0     | 398   | 233    | 1     | 5            | 1 098      |
| 2011         | 203    | 0     | 538   | 47     | 0     | 11           | 799        |
| 2012         | 385    | 0     | 525   | 45     | 0     | 8            | 963        |
| 2013         | 228    | 0     | 687   | 4      | 0     | 12           | 931        |
| 2014         | 260    | 0     | 614   | 11     | 0     | 17           | 902        |
| 2015         | 51     | 0     | 320   | 196    | 0     | 13           | 580        |
| 2016         | 109    | 0     | 350   | 174    | 0     | 6            | 639        |
| 2017         | 0      | 0     | 310   | 122    | 0     | 0            | 432        |
| 2018         | 0      | 0     | 392   | 197    | 0     | 3            | 592        |
| 2019         | 0      | 0     | 250   | 190    | 0     | 0            | 440        |
| Total        | 38 547 | 1 157 | 18319 | 23 102 | 3 402 | 7 654        | 92 181     |
| % by area    | 41.8   | 1.3   | 19.9  | 25.1   | 3.7   | 8.3          | 100.0      |

Table G2: Number of scallop tows by area and year, 1990-2019.

|              |         |        |         |         | Scallop f | ishery areas |
|--------------|---------|--------|---------|---------|-----------|--------------|
| Fishing year | CHAL    | CHAT   | CORO    | NOR     | WCNI      | Total        |
| 1990         | 11 996  | 1 093  | 18 100  | 35 319  | 0         | 66 508       |
| 1991         | 15 542  | 1 092  | 38 115  | 45 307  | 0         | 100 056      |
| 1992         | 22 334  | 695    | 44 626  | 62 218  | 0         | 129 873      |
| 1993         | 31 211  | 721    | 14 639  | 43 917  | 0         | 90 488       |
| 1994         | 68 080  | 16     | 17 716  | 51 937  | 23        | 137 772      |
| 1995         | 22 994  | 1 238  | 21 245  | 56 178  | 2 945     | 104 600      |
| 1996         | 59 141  | 1 422  | 19 833  | 25 679  | 12 921    | 118 996      |
| 1997         | 25 320  | 2 429  | 21 998  | 19 829  | 11 781    | 81 357       |
| 1998         | 23 085  | 1 197  | 18 098  | 15 630  | 12 298    | 70 308       |
| 1999         | 47 392  | 273    | 9 237   | 8 398   | 2 954     | 68 254       |
| 2000         | 35 394  | 179    | 4 470   | 5 757   | 3 276     | 49 076       |
| 2001         | 47 700  | 6      | 8 200   | 8 430   | 590       | 64 926       |
| 2002         | 60 723  | 43     | 9 552   | 7 666   | 3 998     | 81 982       |
| 2003         | 56 709  | 266    | 8 708   | 6 333   | 1 496     | 73 512       |
| 2004         | 32 019  | 0      | 11 200  | 8 271   | 2 076     | 53 566       |
| 2005         | 20 852  | 51     | 13 299  | 5 792   | 22        | 40 016       |
| 2006         | 30 843  | 0      | 14 486  | 6 240   | 0         | 51 569       |
| 2007         | 9 305   | 0      | 16 670  | 9 199   | 0         | 35 174       |
| 2008         | 6 292   | 0      | 14 941  | 7 290   | 824       | 29 347       |
| 2009         | 20 486  | 0      | 11 435  | 8 595   | 801       | 41 317       |
| 2010         | 9 374   | 0      | 9 667   | 4 300   | 2         | 23 343       |
| 2011         | 4 107   | 0      | 10 700  | 902     | 0         | 15 709       |
| 2012         | 7 507   | 0      | 7 449   | 847     | 0         | 15 803       |
| 2013         | 5 130   | 0      | 11 527  | 58      | 0         | 16 715       |
| 2014         | 4 837   | 0      | 14 280  | 178     | 0         | 19 295       |
| 2015         | 908     | 0      | 6 322   | 4 690   | 0         | 11 920       |
| 2016         | 1 657   | 0      | 6 140   | 3 187   | 0         | 10 984       |
| 2017         | 0       | 0      | 3 937   | 2 3 1 5 | 0         | 6 252        |
| 2018         | 0       | 0      | 5 988   | 3 028   | 0         | 9 016        |
| 2019         | 0       | 0      | 5 195   | 3 758   | 0         | 8 953        |
| Total        | 680 938 | 10 721 | 417 773 | 461 248 | 56 007    | 1 626 687    |
| % by area    | 41.9    | 0.7    | 25.7    | 28.4    | 3.4       | 100.0        |

For the years when the WCNI fishery was operating, 98% of the effort was in area 9A, off the northern-most coast of North Island (Table G3). At the Chatham Islands, 85% of the effort was in areas 4G and 4H, to the north and northeast of Chatham Island.

Dredging for scallops in the Northland fishery was mainly in area 1D (50% of tows during 1990–2019), though there was no effort reported during 2013–2018. Effort in area 1D in 2019 (at about 1000 tows) was less than 10% of annual effort in the 1990s (see Table G3 and Figure G1). The second most important fishery area was area 1R further south (34% of the 30-year effort). This area was fished mainly during the 1990s, at a much-reduced amount in 2005–2007 and from 2015.

In the Coromandel fishery, areas 2L (62% of all dredge tows), 2R (12%), and 2W (9%) accounted for most of the tows and effort was reported in all years for 2R, and every year but one year in 2L. Before the Challenger fishery was closed, the main areas were 7BB (24% tows) and 7CC (17%) in Golden Bay; 7EE (6%), 7FF (11%), and 7GG (5%) in Tasman Bay, and 7KK (16%) in Marlborough Sounds. Area 7KK was fished in most years after the early 1990s; effort in areas other than those listed above was very low after the 1990s, except for 7AA which was fished sporadically after 2007.

Table G3: Number of scallop tows by scallop fishery statistical areas (see Figure G1), by fishing year. Areas are shown in Figure G1. [Continued on next page]

# West Coast North Island (WCNI)

| Fishing year | 9A     | 9B | 9C | 9D    | Total  |
|--------------|--------|----|----|-------|--------|
| 1994         | 23     | 0  | 0  | 0     | 23     |
| 1995         | 2 945  | 0  | 0  | 0     | 2 945  |
| 1996         | 11 897 | 0  | 0  | 1 024 | 12 921 |
| 1997         | 11 779 | 2  | 0  | 0     | 11 781 |
| 1998         | 12 223 | 0  | 75 | 0     | 12 298 |
| 1999         | 2 954  | 0  | 0  | 0     | 2 954  |
| 2000         | 3 276  | 0  | 0  | 0     | 3 276  |
| 2001         | 590    | 0  | 0  | 0     | 590    |
| 2002         | 3 961  | 19 | 18 | 0     | 3 998  |
| 2003         | 1 484  | 0  | 0  | 12    | 1 496  |
| 2004         | 2 076  | 0  | 0  | 0     | 2 076  |
| 2005         | 22     | 0  | 0  | 0     | 22     |
| 2008         | 824    | 0  | 0  | 0     | 824    |
| 2009         | 801    | 0  | 0  | 0     | 801    |
| 2010         | 2      | 0  | 0  | 0     | 2      |
| Total        | 54 857 | 21 | 93 | 1 036 | 56 007 |

# **Chatham Islands (CHAT)**

| 4A  | 4B                                                                       | 4C                                                                              | 4E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 501 | 337                                                                      | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 183 | 20                                                                       | 12                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0   | 0                                                                        | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13  | 0                                                                        | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0   | 0                                                                        | 0                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 64  | 12                                                                       | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15  | 0                                                                        | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 54  | 0                                                                        | 183                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 130 | 68                                                                       | 125                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12  | 0                                                                        | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0   | 0                                                                        | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0   | 0                                                                        | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0   | 0                                                                        | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0   | 0                                                                        | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0   | 0                                                                        | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 972 | 437                                                                      | 320                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 501<br>183<br>0<br>13<br>0<br>64<br>15<br>54<br>130<br>12<br>0<br>0<br>0 | 501 337 183 20 0 0 13 0 0 0 64 12 15 0 54 0 130 68 12 0 0 0 0 0 0 0 0 0 0 0 0 0 | 501       337       0         183       20       12         0       0       0         13       0       0         0       0       0         64       12       0         15       0       0         54       0       183         130       68       125         12       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0 | 501       337       0       0         183       20       12       0         0       0       0       0         13       0       0       0         0       0       0       16         64       12       0       0         15       0       0       0         54       0       183       0         130       68       125       0         12       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0 | 501       337       0       0       0         183       20       12       0       6         0       0       0       0       0         13       0       0       0       0         0       0       0       16       0         64       12       0       0       0         15       0       0       0       3         54       0       183       0       0         130       68       125       0       0         12       0       0       0       0         0       0       0       0       0         0       0       0       0       0         0       0       0       0       0         0       0       0       0       0         0       0       0       0       0         0       0       0       0       0         0       0       0       0       0         0       0       0       0       0         0       0       0       0       0         0 | 501       337       0       0       0       22         183       20       12       0       6       379         0       0       0       0       0       385         13       0       0       0       0       708         0       0       0       0       0       708         0       0       0       0       0       0         64       12       0       0       0       671         15       0       0       0       3       934         54       0       183       0       0       2190         130       68       125       0       0       808         12       0       0       0       0       142         0       0       0       0       0       179         0       0       0       0       0       43         0       0       0       0       0       220         0       0       0       0       0       0       0 | 501         337         0         0         0         22         233           183         20         12         0         6         379         492           0         0         0         0         0         385         310           13         0         0         0         0         708         0           0         0         0         0         708         0           0         0         0         0         708         0           0         0         0         0         708         0           0         0         0         0         708         0           0         0         0         0         0         0           64         12         0         0         0         671         491           15         0         0         0         3         934         470           54         0         183         0         0         2190         2           130         68         125         0         0         808         66           12         0         0         0         0 |

Table G3 — continued. Northland. Areas are shown in Figure G1. [Continued on next page]

| Fishing year | 1A    | 1B    | 1C    | 1D      | 1E  | 1F    | 1G | 1H     | 11  | 1J    | 1K  | 1L  | 10 | 1P  | 1Q  | 1R      | 1S     | Total   |
|--------------|-------|-------|-------|---------|-----|-------|----|--------|-----|-------|-----|-----|----|-----|-----|---------|--------|---------|
| 1990         | 1 623 | 206   | 1 735 | 15 084  | 0   | 344   | 0  | 504    | 0   | 349   | 0   | 0   | 0  | 0   | 156 | 14 312  | 1 006  | 35 319  |
| 1991         | 1 204 | 1011  | 76    | 8 212   | 56  | 426   | 0  | 581    | 0   | 431   | 0   | 0   | 0  | 0   | 0   | 30 611  | 2 699  | 45 307  |
| 1992         | 1 418 | 25    | 0     | 15 904  | 0   | 1 025 | 0  | 1 087  | 0   | 1 231 | 0   | 27  | 0  | 0   | 0   | 38 029  | 3 472  | 62 218  |
| 1993         | 0     | 84    | 0     | 24 323  | 95  | 2 970 | 30 | 7 327  | 0   | 1 025 | 0   | 540 | 0  | 0   | 0   | 7 431   | 92     | 43 917  |
| 1994         | 352   | 53    | 0     | 34 676  | 0   | 2 435 | 20 | 6 754  | 0   | 1 731 | 69  | 297 | 10 | 30  | 0   | 5 510   | 0      | 51 937  |
| 1995         | 282   | 4446  | 593   | 26 921  | 0   | 658   | 12 | 3 589  | 438 | 1 530 | 0   | 62  | 0  | 0   | 0   | 17 629  | 18     | 56 178  |
| 1996         | 226   | 2379  | 407   | 13 724  | 0   | 873   | 0  | 2 187  | 383 | 974   | 0   | 0   | 0  | 0   | 0   | 4 256   | 270    | 25 679  |
| 1997         | 413   | 1283  | 96    | 14 074  | 0   | 228   | 0  | 352    | 0   | 360   | 0   | 0   | 0  | 0   | 0   | 2 942   | 81     | 19 829  |
| 1998         | 155   | 0     | 0     | 14 080  | 0   | 0     | 0  | 295    | 0   | 153   | 0   | 0   | 0  | 0   | 0   | 947     | 0      | 15 630  |
| 1999         | 46    | 10    | 0     | 8 342   | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 0       | 0      | 8 398   |
| 2000         | 98    | 0     | 0     | 5 546   | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 113     | 0      | 5 757   |
| 2001         | 0     | 0     | 0     | 7 657   | 0   | 186   | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 563     | 24     | 8 430   |
| 2002         | 8     | 0     | 0     | 6 469   | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 428 | 0   | 706     | 55     | 7 666   |
| 2003         | 44    | 0     | 0     | 4 887   | 700 | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 111 | 0   | 493     | 98     | 6 333   |
| 2004         | 0     | 0     | 0     | 7 954   | 84  | 0     | 0  | 3      | 0   | 0     | 0   | 0   | 0  | 42  | 0   | 185     | 3      | 8 271   |
| 2005         | 0     | 0     | 0     | 590     | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 3   | 5 199   | 0      | 5 792   |
| 2006         | 0     | 0     | 0     | 4       | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 6 217   | 19     | 6 240   |
| 2007         | 21    | 0     | 0     | 1 888   | 0   | 0     | 0  | 0      | 146 | 0     | 31  | 0   | 0  | 0   | 256 | 6 856   | 1      | 9 199   |
| 2008         | 0     | 0     | 0     | 7 060   | 0   | 0     | 0  | 0      | 15  | 0     | 0   | 0   | 0  | 0   | 63  | 152     | 0      | 7 290   |
| 2009         | 21    | 0     | 0     | 8 566   | 0   | 0     | 0  | 0      | 8   | 0     | 0   | 0   | 0  | 0   | 0   | 0       | 0      | 8 595   |
| 2010         | 0     | 0     | 0     | 4 275   | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 25      | 0      | 4 300   |
| 2011         | 0     | 0     | 0     | 853     | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 6       | 43     | 902     |
| 2012         | 0     | 0     | 0     | 817     | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 30      | 0      | 847     |
| 2013         | 0     | 0     | 0     | 0       | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 58      | 0      | 58      |
| 2014         | 0     | 0     | 0     | 0       | 0   | 16    | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 162     | 0      | 178     |
| 2015         | 0     | 0     | 0     | 0       | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 4 690   | 0      | 4 690   |
| 2016         | 0     | 18    | 0     | 0       | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 3 169   | 0      | 3 187   |
| 2017         | 0     | 0     | 0     | 0       | 0   | 0     | 28 | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 1 231   | 1 056  | 2 315   |
| 2018         | 0     | 0     | 0     | 0       | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 1 920   | 1 108  | 3 028   |
| 2019         | 0     | 0     | 0     | 1 122   | 0   | 0     | 0  | 0      | 0   | 0     | 0   | 0   | 0  | 0   | 0   | 2 636   | 0      | 3 758   |
| All          | 5 911 | 9 515 | 2 907 | 233 028 | 935 | 9 161 | 90 | 22 679 | 990 | 7 784 | 100 | 926 | 10 | 611 | 478 | 156 078 | 10 045 | 461 248 |

Table G3: — continued. Coromandel fishery. Annual totals are provided in Table G2. Areas 2J, 2M, 2P, 2Q, 2T, 2U, and 2Y had less than 75 tows during 1990–2019 and are not shown here (total of 232 tows). Areas are shown in Figure G1. [Continued on next page]

| Year  | 2A     | 2B  | 2C    | 2D    | 2E     | 2F    | 2G  | 2H    | 2I  | 2K    | 2L      | 2N  | 2R     | 2S    | 2W     | 2X     |
|-------|--------|-----|-------|-------|--------|-------|-----|-------|-----|-------|---------|-----|--------|-------|--------|--------|
| 1990  | 0      | 0   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 12 771  | 0   | 1 399  | 57    | 786    | 3 087  |
| 1991  | 30     | 0   | 21    | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 27 481  | 30  | 3 224  | 54    | 2 554  | 4 721  |
| 1992  | 103    | 0   | 0     | 0     | 668    | 35    | 0   | 70    | 0   | 232   | 23 361  | 228 | 4 190  | 0     | 3 172  | 12 567 |
| 1993  | 793    | 144 | 0     | 0     | 1 574  | 204   | 0   | 999   | 24  | 44    | 8 266   | 18  | 2 290  | 90    | 190    | 1      |
| 1994  | 2 363  | 0   | 111   | 580   | 1 911  | 417   | 0   | 1 098 | 227 | 68    | 10 171  | 369 | 152    | 125   | 124    | 0      |
| 1995  | 3 628  | 0   | 0     | 0     | 1 035  | 90    | 0   | 522   | 35  | 417   | 10 434  | 0   | 4 142  | 151   | 743    | 0      |
| 1996  | 406    | 0   | 56    | 0     | 0      | 0     | 80  | 593   | 138 | 0     | 12 314  | 0   | 3 653  | 815   | 1778   | 0      |
| 1997  | 31     | 0   | 481   | 0     | 0      | 0     | 0   | 76    | 151 | 0     | 16 770  | 0   | 3 563  | 48    | 696    | 142    |
| 1998  | 0      | 0   | 290   | 0     | 0      | 0     | 0   | 132   | 0   | 0     | 16 545  | 0   | 933    | 0     | 160    | 0      |
| 1999  | 242    | 0   | 90    | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 7 376   | 0   | 910    | 35    | 95     | 477    |
| 2000  | 2 185  | 0   | 219   | 0     | 0      | 0     | 105 | 0     | 0   | 0     | 1 657   | 0   | 304    | 0     | 0      | 0      |
| 2001  | 2 359  | 0   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 3 806   | 0   | 1 995  | 0     | 0      | 40     |
| 2002  | 3 216  | 0   | 387   | 0     | 161    | 51    | 0   | 0     | 0   | 0     | 4 566   | 0   | 1 124  | 27    | 0      | 20     |
| 2003  | 44     | 0   | 0     | 0     | 2 128  | 512   | 0   | 0     | 0   | 0     | 3 858   | 0   | 337    | 2     | 1 330  | 497    |
| 2004  | 591    | 0   | 0     | 671   | 3 215  | 380   | 53  | 0     | 0   | 0     | 5 671   | 0   | 619    | 0     | 0      | 0      |
| 2005  | 517    | 0   | 0     | 1 161 | 2 507  | 40    | 601 | 163   | 0   | 0     | 7 122   | 0   | 566    | 0     | 468    | 101    |
| 2006  | 0      | 0   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 17    | 12 309  | 0   | 1 423  | 0     | 726    | 0      |
| 2007  | 0      | 0   | 28    | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 15 507  | 0   | 673    | 0     | 451    | 0      |
| 2008  | 38     | 0   | 224   | 0     | 6      | 0     | 0   | 7     | 0   | 1 020 | 11 451  | 0   | 879    | 36    | 1 234  | 46     |
| 2009  | 0      | 0   | 673   | 0     | 0      | 24    | 0   | 0     | 0   | 0     | 8 829   | 0   | 1 767  | 25    | 117    | 0      |
| 2010  | 0      | 0   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 313   | 7 853   | 0   | 1 088  | 0     | 413    | 0      |
| 2011  | 32     | 0   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 131   | 6 609   | 0   | 2 757  | 58    | 1 097  | 16     |
| 2012  | 0      | 0   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 0       | 0   | 14     | 14    | 7 400  | 0      |
| 2013  | 0      | 8   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 25    | 3 623   | 0   | 1 441  | 118   | 6 312  | 0      |
| 2014  | 0      | 0   | 152   | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 5 651   | 0   | 874    | 111   | 7 492  | 0      |
| 2015  | 0      | 0   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 3 124   | 0   | 1 867  | 0     | 244    | 1 087  |
| 2016  | 0      | 0   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 4 704   | 0   | 1 157  | 0     | 279    | 0      |
| 2017  | 0      | 0   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 1 361   | 0   | 2 576  | 0     | 0      | 0      |
| 2018  | 0      | 0   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 3 927   | 0   | 1 174  | 0     | 887    | 0      |
| 2019  | 0      | 0   | 0     | 0     | 0      | 0     | 0   | 0     | 0   | 0     | 3 770   | 0   | 1 425  | 0     | 0      | 0      |
| Total | 16 578 | 152 | 2 732 | 2 412 | 13 205 | 1 753 | 839 | 3 660 | 575 | 2 267 | 260 887 | 645 | 48 516 | 1 766 | 38 748 | 22 802 |

Table G3: — *continued.* Challenger fishery. Note: areas were reported as, for example, 7A and 7AA up to about 2000, with 7AA notation starting from about 1993. The data are combined for each letter in the table below.

| Year | 7AA    | 7BB     | 7CC     | 7DD   | 7EE    | 7FF    | 7GG    | 7HH   | 7II   | 7JJ    | 7KK     | 7LL    | 7MM | All     |
|------|--------|---------|---------|-------|--------|--------|--------|-------|-------|--------|---------|--------|-----|---------|
| 1990 | 7 221  | 2 177   | 0       | 201   | 0      | 0      | 1 237  | 350   | 225   | 345    | 0       | 0      | 240 | 11 996  |
| 1991 | 3 123  | 8 196   | 3 502   | 107   | 0      | 51     | 354    | 209   | 0     | 0      | 0       | 0      | 0   | 15 542  |
| 1992 | 54     | 13 400  | 4 057   | 0     | 0      | 0      | 325    | 12    | 870   | 3 602  | 14      | 0      | 0   | 22 334  |
| 1993 | 3 068  | 4 859   | 0       | 152   | 13     | 16 904 | 1 981  | 958   | 209   | 2 537  | 530     | 0      | 0   | 31 211  |
| 1994 | 11 649 | 27      | 12 161  | 20    | 15 011 | 17 425 | 0      | 93    | 0     | 3 161  | 7 961   | 572    | 0   | 68 080  |
| 1995 | 204    | 1 718   | 15 566  | 0     | 2 099  | 84     | 1 058  | 604   | 15    | 728    | 802     | 116    | 0   | 22 994  |
| 1996 | 8 796  | 5 272   | 10 916  | 1 677 | 3 166  | 7 839  | 5 368  | 434   | 0     | 6 758  | 8 335   | 580    | 0   | 59 141  |
| 1997 | 1 589  | 1 282   | 12 643  | 2 047 | 0      | 2 240  | 40     | 0     | 0     | 1 850  | 3 045   | 584    | 0   | 25 320  |
| 1998 | 4 361  | 8 939   | 3 310   | 58    | 1 695  | 0      | 0      | 18    | 10    | 860    | 3 470   | 364    | 0   | 23 085  |
| 1999 | 4 115  | 8 913   | 3 573   | 280   | 2 260  | 1 151  | 7 201  | 3 297 | 5 493 | 1 395  | 9 297   | 398    | 19  | 47 392  |
| 2000 | 0      | 3 395   | 19 389  | 3 055 | 6 028  | 1 098  | 274    | 96    | 38    | 40     | 354     | 1 627  | 0   | 35 394  |
| 2001 | 4 299  | 23 637  | 10 961  | 1 080 | 4 127  | 17     | 111    | 593   | 722   | 44     | 1 737   | 372    | 0   | 47 700  |
| 2002 | 5 478  | 41 342  | 4 554   | 916   | 79     | 1 023  | 3 187  | 0     | 719   | 0      | 3 372   | 53     | 0   | 60 723  |
| 2003 | 11 801 | 19 321  | 6 272   | 69    | 145    | 2 511  | 7 088  | 47    | 864   | 108    | 7 646   | 837    | 0   | 56 709  |
| 2004 | 3 977  | 42      | 9       | 151   | 4      | 15 735 | 2 820  | 23    | 310   | 88     | 7 969   | 890    | 1   | 32 019  |
| 2005 | 704    | 3 038   | 5       | 70    | 3 679  | 5 366  | 1 307  | 0     | 6     | 420    | 6 257   | 0      | 0   | 20 852  |
| 2006 | 2 847  | 4 777   | 20      | 1     | 109    | 1 315  | 277    | 0     | 0     | 616    | 18 964  | 1 917  | 0   | 30 843  |
| 2007 | 1 672  | 1 212   | 5 526   | 0     | 0      | 0      | 0      | 0     | 12    | 186    | 621     | 76     | 0   | 9 305   |
| 2008 | 0      | 0       | 5 243   | 0     | 0      | 6      | 0      | 0     | 0     | 0      | 0       | 1 043  | 0   | 6 292   |
| 2009 | 88     | 11 042  | 186     | 0     | 0      | 20     | 37     | 0     | 4     | 0      | 9 042   | 30     | 37  | 20 486  |
| 2010 | 297    | 1 505   | 421     | 32    | 0      | 0      | 0      | 0     | 0     | 0      | 6 076   | 1 043  | 0   | 9 374   |
| 2011 | 0      | 1 018   | 26      | 0     | 0      | 0      | 0      | 0     | 70    | 0      | 2 417   | 576    | 0   | 4 107   |
| 2012 | 0      | 96      | 50      | 0     | 0      | 0      | 0      | 0     | 0     | 0      | 4 508   | 2 853  | 0   | 7 507   |
| 2013 | 97     | 0       | 0       | 0     | 0      | 0      | 0      | 0     | 0     | 0      | 4 084   | 949    | 0   | 5 130   |
| 2014 | 0      | 0       | 0       | 0     | 0      | 0      | 0      | 0     | 0     | 0      | 3 917   | 920    | 0   | 4 837   |
| 2015 | 0      | 0       | 0       | 0     | 0      | 0      | 0      | 217   | 30    | 0      | 455     | 206    | 0   | 908     |
| 2016 | 0      | 0       | 0       | 0     | 14     | 0      | 0      | 32    | 0     | 0      | 1 095   | 516    | 0   | 1 657   |
| All  | 75 440 | 165 208 | 118 390 | 9 916 | 38 429 | 72 785 | 32 665 | 6 983 | 9 597 | 22 738 | 111 968 | 16 522 | 297 | 680 938 |

### **Oyster dredge fisheries**

The main dredge oyster fisheries are in Foveaux Strait (Figure G4) and in the Challenger area (see Figure G1). Regulations define the dredge design and use, and the fisheries have been subject to restrictions on minimum size and catch and closures (primarily due to the *Bonamia* parasite infections (Fisheries New Zealand 2019c). Heavy double ring bag dredges are used in the Foveaux Strait oyster fishery (OYU 5), whereas, historically, the Challenger (Nelson-Marlborough) fishery dredges were of lighter construction than those used in Foveaux Strait. The number of records and numbers of tows in each main fishery are given in Table G4. The Challenger fishery peaked at about 31 500 tows in 1995 during a period of sustained effort in 1993–1999 (> 20 000), dropped to under 15 000 tows during 2001–2007, with little reported effort in subsequent years. The Foveaux Strait fishery is currently the only one being fished. The highest level of effort in the Foveaux Strait fishery, for 1990–2019, was in 1990 and 1991. This was followed by a steady period of lower annual effort during 1996–2013 (16 500–19 300 tows), before a gradual increase to over 30 000 tows a year during 2017–2019.

Table G4: The number of records and number of tows reported for the Challenger (CHAL) oyster fishery and the Foveaux Strait (FOV, OYU 5) oyster fishery.

|              |        |        | No. o | of records |         |         | No. of tows |         |  |  |
|--------------|--------|--------|-------|------------|---------|---------|-------------|---------|--|--|
| Fishing year | CHAL   | FOV    | other | total      | CHAL    | FOV     | other       | Total   |  |  |
| 1990         | 723    | 1 020  | 9     | 1 752      | 8 548   | 39 013  | 101         | 47 662  |  |  |
| 1991         | 1 096  | 1 585  | 12    | 2 693      | 13 530  | 64 496  | 131         | 78 157  |  |  |
| 1992         | 1 163  | 344    | 101   | 1 608      | 15 565  | 12 541  | 1 841       | 29 947  |  |  |
| 1993         | 1 664  | 110    | 53    | 1 827      | 24 362  | 3 498   | 652         | 28 512  |  |  |
| 1994         | 1 986  | 157    | 9     | 2 152      | 29 969  | 4 464   | 318         | 34 751  |  |  |
| 1995         | 2 195  | 147    | 44    | 2 386      | 31 457  | 4 227   | 662         | 36 346  |  |  |
| 1996         | 1 775  | 633    | 243   | 2 651      | 27 977  | 19 299  | 3 614       | 50 890  |  |  |
| 1997         | 1 587  | 650    | 123   | 2 360      | 24 735  | 16 504  | 2 086       | 43 325  |  |  |
| 1998         | 1 641  | 652    | 55    | 2 348      | 27 655  | 16 730  | 1 008       | 45 393  |  |  |
| 1999         | 1 445  | 605    | 29    | 2 079      | 25 727  | 15 927  | 545         | 42 199  |  |  |
| 2000         | 927    | 703    | 19    | 1 649      | 14 828  | 17 951  | 310         | 33 089  |  |  |
| 2001         | 618    | 582    | 1     | 1 201      | 10 565  | 17 596  | 56          | 28 217  |  |  |
| 2002         | 8      | 982    | 1     | 991        | 164     | 32 462  | 2           | 32 628  |  |  |
| 2003         | 937    | 622    | 0     | 1 559      | 14 674  | 19 164  | 0           | 33 838  |  |  |
| 2004         | 493    | 664    | 0     | 1 157      | 8 448   | 17 565  | 0           | 26 013  |  |  |
| 2005         | 697    | 841    | 0     | 1 538      | 10 980  | 25 446  | 0           | 36 426  |  |  |
| 2006         | 743    | 737    | 0     | 1 480      | 11 041  | 19 789  | 0           | 30 830  |  |  |
| 2007         | 584    | 644    | 0     | 1 228      | 9 775   | 16 225  | 0           | 26 000  |  |  |
| 2008         | 124    | 549    | 0     | 673        | 2 329   | 16 028  | 0           | 18 357  |  |  |
| 2009         | 38     | 616    | 0     | 654        | 658     | 17 610  | 0           | 18 268  |  |  |
| 2010         | 77     | 614    | 0     | 691        | 1 235   | 16 669  | 0           | 17 904  |  |  |
| 2011         | 112    | 720    | 1     | 833        | 1 965   | 16 771  | 13          | 18 749  |  |  |
| 2012         | 53     | 847    | 1     | 901        | 935     | 19 391  | 18          | 20 344  |  |  |
| 2013         | 14     | 835    | 7     | 856        | 276     | 18 996  | 46          | 19 318  |  |  |
| 2014         | 5      | 852    | 5     | 862        | 81      | 24 369  | 29          | 24 479  |  |  |
| 2015         | 9      | 711    | 1     | 721        | 99      | 23 109  | 11          | 23 219  |  |  |
| 2016         | 10     | 726    | 0     | 736        | 135     | 23 865  | 0           | 24 000  |  |  |
| 2017         | 1      | 863    | 0     | 864        | 16      | 32 448  | 0           | 32 464  |  |  |
| 2018         | 1      | 1 011  | 0     | 1 012      | 2       | 39 013  | 0           | 39 015  |  |  |
| 2019         | 0      | 1 117  | 4     | 1 121      | 0       | 31 590  | 95          | 31 685  |  |  |
| All          | 20 726 | 21 139 | 718   | 42 583     | 317 731 | 642 756 | 11 538      | 972 025 |  |  |

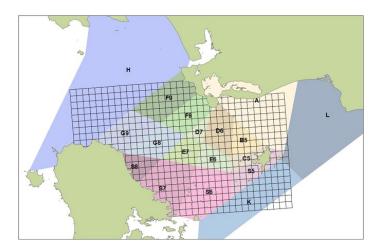



Figure G4: Foveaux Strait (OYU 5) fishery areas (coloured and labelled) with the 1 nm grid used by fishers to report fine-scale data.

### Foveaux Strait oyster fishery (OYU 5), based on 2019 ERS data

During the 2019 oyster fishery, the ERS reporting was instigated gradually through the fleet of 12 vessels throughout the season. For ten vessels the fishing effort was reported on CELRs and ERS and for the remaining two vessels, data collection was via CELRs. In total, there were 681 CELR records and 438 ERS records for the 2019 season (Table G5).

Table G5: Number of oyster effort records in the 2019 OYU 5 season, by form type and OYU5 fishery area code. There are 18 fishery-specific areas (shown in Figure G4): in 2019 there was no reported effort in areas K and L.

| Form  | A  | B5  | C5 | D6 | D7 | E6 | E7  | F8 | F9 | G8  | G9 | Н | S5 | S6 | S7  | S8 | Unk |
|-------|----|-----|----|----|----|----|-----|----|----|-----|----|---|----|----|-----|----|-----|
| CEL   | 20 | 56  | 22 | 16 | 4  | 20 | 185 | 17 | 0  | 203 | 9  | 0 | 1  | 5  | 121 | 0  | 2   |
| ERS   | 28 | 101 | 36 | 10 | 1  | 15 | 33  | 12 | 17 | 113 | 60 | 5 | 3  | 1  | 2   | 1  | 1   |
| Total | 48 | 157 | 58 | 26 | 5  | 35 | 218 | 29 | 17 | 316 | 69 | 5 | 4  | 6  | 123 | 1  | 3   |

These forms collect effort data in different ways: the CELR form collects daily data in the fishery-specific areas given in Table G5 and each record (*FishingEventKey*) represents daily effort in that area and the *EffortCount* in the data represent the number of dredge tows completed that day and area times the number of dredges used per fishing event (two in this fishery). So, a record with *EffortCount*=30 as the reported effort represents 15 tows, each of two dredges.

The ERS data are collected on a 1-nm grid that overlays the fishery-specific areas (see Figure G4). For each *FishingEventKey* each start position reported by the fishers via ERS indicates the start of the first tow in a cell in a day and the end position gives the end position of the last tow in that cell for that day. Thus, data are collected at the level of a cell, and a fisher must create a new fishing event record when the next tow starts in a neighbouring cell. This effectively gives a cell-based number of tows and allows for a finer resolution for analysis than is provided by the larger fishery-specific areas. The industry provided a shapefile of the 1-nm grid to be used for analysis of these data – a grid that has been used by the fishers for industry reporting for the past 15 years. ERS data were assigned to the 1-nm grid (in GIS) based on each record's start position.

To develop an ERS 'swept area' measure per record, the following data are required: number of tows, number of dredges used (always 2), width of combined dredges (usually 6.6.m, see below), and fishing duration and tow speed (to develop a distance fished in that cell for a day). However, the duration data

is for a day's effort and is recorded as the time from the start of the first tow in a grid cell to the end of the last tow in that grid cell. Thus, duration would over-estimate the time that the gear is actually fishing.

Instead, a standardised swept area for each tow was developed:

Standardised distance of 385 m \* standard two-dredge width => 2541  $m^2$  swept area per tow

where the standardised distance was calculated from a 5-minute duration for one tow at a tow speed of 2.5 kn. The swept area per tow was multiplied by the number of tows per record (per grid cell). It appeared that for some ERS data the number of tows was incorrect. A tow usually takes 15–20 minutes for the deployment, bottom-contact (fishing), and hauling and steaming back to start position (K. Michael, NIWA, pers. comm.). This means about 4 tows an hour is sensible. The numbers of tows per hour in the ERS data were looked at relative to the catch and duration and it was apparent that some records had 'number of tows' data that had been reported as if completing a CELR (that is, the CELR 'number of tows' actually reports 2 tows for each fishing event because it records the number of dredges fished per record for OYU 5, and thus CELR data would report twice the ERS 'number of tows' data per record). The spread of the estimated swept area for the OYU 5 2019 season is shown in Figure G5.

A total of 20.7 km<sup>2</sup> of seafloor was estimated as contacted by the 2019 ERS data; 100 grid cells had effort and of those, 3 cells had 1.25–1.3 km<sup>2</sup> of contact (maximum number of tows was 513), 6 had 0.5–0.9 km<sup>2</sup>, 23 had 0.25–0.5 km<sup>2</sup>, 19 cells had 0.1–0.24 km<sup>2</sup>, and the remaining cells had under 0.1 km<sup>2</sup> of contact.

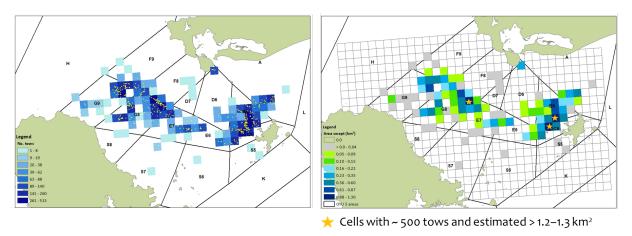



Figure G5: Number of tows (each with two dredges) per contacted 1-n. mile grid cells for 2019 (left), where tow starts are shown as small yellow dots, and the estimated swept area for the 2019 data per grid cell (right). These data represent 39% of the 436 daily records (CELR and ERS) from 10 vessels that fished in the 2019 season.