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Abstract

The potential population and community level impacts of fishing have received considerable attention, but little is known
about how fishing influences communities’ functional diversity at regional scales. We examined how estimates of functional
diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species
targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The
magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially
targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which
was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy
is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities’
functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts
community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning.
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Introduction

Humans have historically gathered fish and shellfish for

subsistence. However, powered by increasing social and economic

demands, and more advanced fishery technologies, the impact of

fishing has never been as high [1–3]. At population levels, it is now

clear that fishing directly leads to a reduction in the numbers and

size of target species [1,4], as well as indirectly affecting population

dynamics through for example changes in reproductive output [5].

However, the impacts of fishing are not restricted to target

populations. Changes made to the population structure of key

taxa, often at the top of the food chain and hence distortions of

predator-prey ratios, can lead to community-wide alterations via

cascading community effects [4]. Notable examples include the

regional-scale changes in the structure of rocky shores along the

coasts of Chile as result of the exploitation of a key predatory

mollusc [1], or profound changes extending down the food-web

following the collapse of the Canadian cod stocks [3].

Understanding the role of biodiversity and specifically the

impact of species loss on the functioning of ecosystems has been

a central topic in the ecological literature over the past two

decades. The question of whether the number of species per se or

the identity of species matters for ecosystem processes, has led to

advances in research methodologies [6–7] which have allowed

scientists to disentangle these two components of diversity. Recent

studies have often shown that richness effects (number of species)

are generally weak, whilst compositional effects are commonly

much stronger [8–12]. This suggests that it is the range of species

functional traits (functional diversity sensu [13]), but not species

richness per se, that likely underpins a mechanistic link between

species diversity and ecosystem functioning. Work in a range of

habitats, including experimental grass fields [14] and intertidal

macroalgal assemblages [12,15], provides support for this asser-

tion.

The spatial scale of study is likely to have a significant impact on

the relationship between species richness and ecosystem function-

ing [16–17]. At local scales, species sorting processes (e.g.

competition) cause a reduction in diversity [18] resulting in

a community composed of species whose optimal growth matches

the local conditions. The capacity of the community to resist

environmental changes is hence reduced [19–21]. At larger scales

however, the regional species pool provides a source of renewal of

local species assemblages that, via immigration and dispersal, can

be important for sustaining ecosystem functioning under changing

conditions [21]. For example, Naeslund and Norberg [22] showed

that communities developed from samples of single origin

exhibited important differences in the community structure and

in their response to ecosystem processes from communities

developed from mixed samples of multiple origins. According to

the insurance hypothesis, regionally rich biotas may thus be better

adapted at sustaining ecosystem processes against fluctuating

environmental conditions compared to depauperate biotas

[20,23].

Here we examine the influence of fishing on functional diversity

using an existing dataset [24–25] on coastal fish across 25 Atlantic

regions. Halpern and Floeter [25] showed that the relationship

between regional species richness and richness of functional groups
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was asymptotic and that several functional groups (different

combinations of species traits) either had no or few species

(unsaturated), hence species redundancy was limited to relatively

few groups. They suggested that understanding differences in

species richness among functional groups is particularly important

for predicting how human activities affect biological communities

and ecosystem functioning. We re-examine this dataset using

a continuous measure of functional diversity (FD sensu Petchey and

Gaston [26]). We then examine the effect of fishing on functional

diversity by deliberately deleting commercially targeted species

from the regional species pool and determining the impact of this

process on functional diversity. We test the hypothesis that

regional species richness functions as insurance to species loss and

compare the effects of fishing to that of equivalent but random

species deletions. We further examine what functional traits are

preferentially removed by fishing in order to ascribe the potential

impact of fishing on ecosystem functioning.

Results

Regional Species Richness and Functional Diversity
Relationship
The relationship between regional species richness and func-

tional diversity (FD sensu Petchey and Gaston [26]) was asymptotic

(Fig. 1). FD generally increased with regional species richness but

this effect was more pronounced at lower levels of richness and

beyond a regional richness of 400 there was little apparent increase

in FD.

Effect of Species Loss and Regional Species Richness on
Functional Diversity
On average, the removal of a single species at random led to

a decrease of 0.001560.0002 (mean 6 SE) in FD. Loss of FD,

however, differed with regional species richness (Fig. 2). Loss of FD

as a consequence of removing a single species was substantially

reduced in speciose as compared to depauperate regions

supporting the hypothesis that regional species richness may

provide insurance against species loss for ecosystem processes.

Effect of Fishing and Regional Species Richness on
Functional Diversity
For all the communities examined, removal of species led to

significant decreases in FD, (all regressions P,0.05) (Fig. 3). This

was true when only species targeted by commercial fishing were

selected for removals but also when species removals were drawn

randomly from the entire species pool. The rate at which FD was

lost, however, differed according to the way species were lost

(exploited versus random). In 19 out of the 25 communities

examined, the removal of exploited species caused a significantly

faster/greater reduction (greater slope or lower intercept, re-

spectively) in FD as compared to random species removals

(Table 1). Only in 4 out of the 25 communities was the effect of

removing exploited species lower than that of random species

removals (Table 1). Hence, the selection of exploited species for

removal generally had a greater negative effect on FD than

expected by random species losses.

At a larger-scale, there was a significant quadratic relationship

between the rate of FD loss (slope of the relationship between FD

and number of exploited species removed) and regional species

richness (Fig. 4, F2,22 = 130.18, P,0.001, R2 = 0.92) indicating that

loss of FD as a consequence of fishing is faster in species poor

regions. It was also evident that the magnitude of such an effect in

relation to random species removals (FD random/FD exploited)

was accentuated in species poor regions when pressure on

ecosystem (fishing intensity) increased (Fig. 5, Table 2).

Trait Comparison between Commercially Targeted and
Non-targeted Species
When considering the species traits examined (Table 3),

commercially exploited species had a significantly greater maxi-

Figure 1. Relationship between functional diversity (FD) and regional species richness. Each point represents one the 25 communities
examined.
doi:10.1371/journal.pone.0044297.g001
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mum body size than non-exploited species and were dominated by

deep-water species whereas shallow-water species were underrep-

resented among the exploited species list. In addition, there was

proportionally a greater number of macroalgal browsers, macro-

carnivores, omnivores, strict piscivores and sand invertivores in

targeted species. In contrast, the number of mobile benthic

invertivores, nocturnal planktivores and territorial herbivores was

proportionally lower among the exploited species. For the

remainder of the species functional traits, the proportional number

of exploited and non-exploited species was similar (Table 3). Thus,

by selectively targeting particular species functional traits, fishing is

causing a larger loss of FD than would be expected if species were

selected at random.

Discussion

Results generally suggested two main outcomes: (i) loss of

functional diversity due to the removal of targeted species is, to

some extent, reduced in the more speciose regional biota and, (ii)

the selective removal of commercially exploited species leads to

a significantly greater reduction in functional diversity than

equivalent but random species removals.

Halpern and Floeter [25] showed that many functional groups

either were vacant (no species) or had few species, and that species

redundancy was hence restricted to few functional groups.

Moreover, when considering the relationship between regional

species richness and community functional diversity, most

communities fell in the linear part of the graph (see Fig. 1)

suggesting that in most regions functional diversity will decrease as

species are lost. Hence it comes at no surprise that the removal of

targeted species led to a reduction in communities’ functional

diversity and that this was accentuated in the species poor regions.

This supports the hypothesis that diversity of regional biotas

functions as a buffer to ecosystem disruption under changing

environmental conditions [20,23]. The above is supported by the

work of Worm et al. [27] who showed that stock collapse was

greater, and recovery was slower, in regions with naturally

depauperate biotas. In contrast, Mora et al. [28] have recently

showed that for a given level of human pressure, standing stock of

reef fish (a surrogate for ecosystem functioning) decreased with

local diversity.

Two fundamental differences could explain the discrepancy in

results; While the study of Mora et al. [28] focused on local

richness, that of Worm et al. [27], and our study have focused on

regional richness and it is still unclear how results from smaller

spatial scales can be scaled-up to larger scales [16]. In addition, the

work of Mora et al. [28] used human density as a means to infer

human pressure. This, as shown by these authors, was not only

related to the levels of fishing, but also with the amounts of

fertilizers consumed and urbanisation. In contrast, our study and

that of Worm et al. [27] have focused on the effects of fishing

alone. While fishing has been shown to be highly selective,

predominantly targeting specific functional groups, it is not clear

how agriculture (e.g. via nutrient run-off) and coastal urbanisation

affect the structure of fish assemblages.

Although we did not assess the effects of diversity on

ecosystem functioning, our results provide stronger evidence for

the importance of species richness than many small-scale

experimental studies in which the effects of richness are often

relatively weak [8–12]. Most small-scale experimental studies

have used synthetically assembled communities and it is not

clear as to how results from such small-scale manipulative

studies may be scaled-up to natural communities. Moreover,

empirical studies have been biased towards the study of species

at lower trophic levels (e.g. plants and algae) despite the fact

that strong interactions may be more common among large

animals at higher trophic levels [29]. Vulnerability to extinction

is also predicted to increase with both body size and trophic

level [4,30–33]. Since richness of large predators is naturally

low, a few extinctions may thus result in the loss of the entire

top predator trophic level, with disproportionately large effects

on ecosystem properties and processes [31,34]. This view is

Figure 2. Loss of functional diversity (FD) and regional species richness. Loss of FD is the difference in FD before and after the removal of 1
random species. For each region, the value of FD was calculated as the mean of 100 iterations. See methods for further details.
doi:10.1371/journal.pone.0044297.g002
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supported by work done by Petchey et al. [35] with the British

avian assemblages, which generally showed no functional

redundancy. Halpern & Floeter [25] also noted important

differences in species richness among functional groups of reef

fish communities and suggested these could be particularly

important for understanding the effects of human activities on

Figure 3. Relationship between functional diversity (FD) and fishing pressure. Each point represents the mean FD (n = 100 iterations) of
communities after removing 7, 15, 22, and 29 species. Species removals were done by either randomly drawing commercially exploited species only
(E – filled circles) or at random from the entire species pool (R – open circles). FD of pristine communities (no species removals) is also shown (P – half-
filled circles). All regressions were significant at a =0.05.
doi:10.1371/journal.pone.0044297.g003
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biological communities and ecosystem functioning as is here

shown.

Processes affecting the regional species biota have been

investigated since seminal work by MacArthur and Wilson [36]

and it is now generally accepted that latitude, habitat isolation and

area all affect patterns of species distribution [36–39] and that

dispersal rates have a key role in influencing the extent of spatial

insurance in diversity across heterogeneous landscapes [20]. From

these, it may be predicted that susceptibility of reef fish

communities to ecosystem disruption as a result of overfishing

may be greater in isolated islands and higher-latitude regions as

compared to continental and lower-latitudinal regions. Moreover,

some species traits also correlate with geography. For instance,

species body size tends to positively correlate with latitude and

isolation; this has been shown for both birds [40] and fish [41–42].

Since fishing is generally non-random and tends to target larger-

bodied species [4], it may be expected that isolated and higher

latitude biotas will suffer the greatest from fishing. In fact, Fisher et

al. [41–42] provide empirical evidence for a greater impact of

fishing on species body size at higher latitudes, which has even

resulted in the disruption of natural latitudinal gradients in fish

body size.

The effects of fishing on functional diversity were surprisingly

striking when viewed in comparison to the effects of random

species removals. These results suggest that if fishing removed

species from all functional groups equally (i.e. random species loss)

its impact would have been much reduced. Numerous studies have

in the past shown that large predatory fish contribute to the bulk of

the catches [4]. Our study corroborates such findings and adds to

the wider literature by showing that a proportionally greater

number of deep-water species tended to be targeted by fisheries

(probably because many shallow water species have no commer-

cial interest) whilst also revealing that species sharing some

functional traits (e.g. small mobile benthic invertivores) were

proportionally less targeted by commercial fishing. This indicates

that such groups of species (e.g. small invertivores) do not

constitute the bulk of commercial catches, and this may have

unexpected ecosystem-level impacts because it will strengthen the

distortion of species ratios (e.g. predator-prey ratio). The above

suggests that fishing has an exacerbated impact on functional

diversity due to its selective nature concerning the selected species

traits. It is unclear if our results can be extrapolated to other fish

communities (e.g. freshwater, deep-sea fish communities), but

results will likely depend on the numbers of species, the diversity of

ecological traits and on the selective nature of fishing for a given

community.

Our approach of removing species from regional species list as

a proxy for fishing effects appears rather dramatic. However, even

Table 1. Comparison of the effects of random versus exploited species removals on communities FD.

Community Richness (covariate) E vs. R (intercept) Slope Outcome

Argentina and Uruguay 1045.20** 86.33*** 24.30*** Slope R , E

Atol de las Rocas 598.55** 77.36*** 26.66** Slope R , E

Ascension 7009.90** 49.19*** 12.22* Slope R , E

Azores Islands 742.34** 0.032 0.57 No difference

Bermuda 914.80** 68.90** 21.95* Slope R , E

Canary Islands 1718.00*** 82.28*** 13.28* Slope R , E

Carolinian 770.26** 99.15** 30.07** Slope R , E

Cape verde 1933.60** 43.85** 11.19* Slope E , R

Eastern Caribean 1301.10** 437.54*** 101.19*** Slope R , E

Eastern Mediterranean 567.29** 374.55*** 40.41** Slope R , E

Fernando Noronha 2179.30*** 156.39*** 25.04** Slope R , E

Madeira Islands 969.58** 10.93* 5.27 R . E

NE Brazil 148.79** 43.43*** 1.15 R . E

NW Africa 510.67** 22.02* 1.44 E . R

South Africa – Benguela 399.27** 154.14*** 47.26** Slope R , E

South Africa – Cape 5225.50*** 1633.60*** 294.11*** Slope R , E

South Africa – Indian Ocean 2169.50** 272.21*** 75.94*** Slope R , E

SE Brazil 881.73** 71.64** 9.64* Slope R , E

St. Helena 2950.20** 8.47 0.39 No difference

St. Paul Rocks 300.89** 17.24* 10.72* Slope R , E

São Tomé 2516.90*** 156.24*** 33.08*** Slope E , R

Trinidad 1155.30** 55.35* 13.35* Slope R , E

Tropical West Africa 4181.90*** 71.71*** 34.71** Slope E , R

Western Caribean 955.57*** 532.47*** 130.84** Slope R , E

Western Mediterranean 3350.30*** 714.92*** 117.45*** Slope R , E

One-way ANCOVA comparing the slopes and intercepts of regressions (between FD and community richness after the removal of 7, 15, 22 and 29 species) when species
were removed by selecting only exploited versus randomly (E vs. R) from the regional species pool. All terms tested against the residual. Table shows only F-values and
significance values as * P,0.05, ** P,0.01, and *** P,0.001.
doi:10.1371/journal.pone.0044297.t001
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though extinctions in the sea may be rare [43–45], impairment of

biological functions does not require extinctions to occur.

Accumulating evidence has shown that significant reductions in

the numbers and size of exploited species as a result of overfishing

can impair species role on ecosystem functioning [46] leading to

noticeable and long-lasting impacts on marine ecosystems [1,3].

Fishing has also been shown to affect important ecosystem

properties such as resilience [47–48]. For instance, empirical

evidence from tropical coral reefs shows that the reduction in size

of parrotfish species as a consequence of fishing has a detrimental

effect on their ability to control macroalgae [46], in turn affecting

the resilience of coral reef systems [49]. Given the perceived

importance of fish for community processes it is noteworthy that

the effects of species removals on communities’ functional diversity

Figure 4. Rate of FD loss and regional species richness. Rate of FD loss corresponds to the slope of the relationship between FD and
community richness after removal of 7, 15, 22 and 29 exploited species. A greater slope thus indicates that FD is lost faster as the number of species
removed increases.
doi:10.1371/journal.pone.0044297.g004

Figure 5. Magnitude of FD loss, regional species richness and fishing intensity. Variation in the magnitude of FD loss between random
versus exploited species removals with regional species richness for each level of fishing intensity (number of species removals).
doi:10.1371/journal.pone.0044297.g005
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were remarkably clear even when only a few species were

removed.

Materials and Methods

Data Acquisition
Species lists for a total of 25 regions haphazardly distributed

across the Atlantic were extracted from Floeter et al. [24].

According to these authors, these data provide the most

comprehensive species list for Atlantic reef communities and

include cryptic, rare and endemic species as well as common and

abundant ones [24]. This or part of this dataset has been

previously used in biogeographical [24,50]) and ecological [25]

studies. For further details regarding this dataset refer to the

above-mentioned literature.

Species were classified according to standard trophic groups (14

groups) and maximum depth (5 groups) as in Halpern and Floeter

[25] but we replaced their categorical classification of species

maximum body size by the species-specific maximum body size.

Unlike them, we used a continuous measure of functional

diversity, which avoids the classification of species into closed

functional groups and makes a better use of continuous variables

(e.g. maximum body size) in distinguishing among similar species

[26,51]. Calculation of functional diversity is not affected by the

simultaneous use of categorical and continuous variables since the

former are transformed into binary variables a priori.

The species traits used in determining functional diversity are

related to the acquisition and utilisation of resources: trophic

groups directly differentiate among groups of species based on

their diet and where and how they acquire their food (e.g. benthos

vs. water column); fish body size determines energetic require-

ments and is an important predictor of ecosystem processes [41];

depth is directly related to where species acquire resources. Fish

body size and depth help distinguish among species classified

within the same trophic group and are respectively related to

species a- and b-niches (sensu Ingram and Shurin [52]).

Species were identified as exploited or non-exploited by

commercial fisheries. Such information and species specific

maximum body-size was obtained using FishBase 2000 dataset

[53] and published literature.

Table 2. Comparison of the magnitude of FD loss and
regional species richness.

Source Df MS F P

Regional richness (RR) 1 4.8961022 30.01 ,0.01

Level of removal (LR) 3 5.5761023 3.42 ,0.05

RR 6 LR 3 7.1561023 4.39 ,0.05

Residual 92 1.6361023

One-way ANCOVA comparing the magnitude of the ratio between FD random
and FD exploited for different levels of species removals (7, 15, 22 and 29
species removals) as a function of regional species richness (logged). All terms
tested against the residual.
doi:10.1371/journal.pone.0044297.t002

Table 3. Numbers of exploited and non-exploited fish species for each trait.

Category Trait Non-exploited Exploited Test
Proportion of
species

Size Maximum size 17.0 (21.3) 62.3 (46.0) No overlap* E . NE

Depth Very shallow 234 37 40.38* E , NE

Shallow 259 44 40.58* E , NE

Mid 202 118 3.10 E = NE

Deep 207 152 12.20* E . NE

Very deep 250 209 26.02* E . NE

Diet Diurnal planktivores 66 24 1.43 E = NE

Excavators 1 3 3.24 E = NE

Macroalgal browsers 1 8 12.78* E . NE

Macro carnivores 50 124 101.57* E . NE

Mobile benthic invertivores 749 139 86.55* E , NE

Nocturnal planktivores 29 0 13.98* E , NE

General omnivores 74 87 29.60* E . NE

Strict piscivores 15 60 70.92* E . NE

Sand invertivores 65 73 23.12* E . NE

Scraper herbivores 22 18 2.67 E = NE

Coral/colonial sessile invertivores 44 16 0.97 E = NE

Spongivores 3 5 3.20 E = NE

Territorial herbivores 24 1 9.29* E , NE

Turf grazers 9 2 1.05 E = NE

Comparison of the numbers of exploited (E) and non-exploited (NE) species for each selected trait. The x2 test-of-independence was used for all tests but that of size,
which used the overlap of the 95% confidence intervals. The size of the exploited and non-exploited species groups was 560 and 1152 respectively. For size, values
indicate mean (6 s.d.).
*significant test (a =0.05). See Halpern and Floeter [25] supplementary online material for further details on traits.
doi:10.1371/journal.pone.0044297.t003
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Measuring Functional Diversity
For each region, functional diversity was calculated following

the procedures described by Petchey and Gaston [26,51].

Calculations were done using the software R and the code

provided in the authors’ webpage. In short, the species by trait

matrix was converted into a distance matrix to produce a dendro-

gram that depicts the functional relationships among fish

assemblages. Functional diversity (FD sensu Petchey and Gaston

[26]) is the total branch length needed to join all species in an

assemblage and is standardised to range between 0 (assemblages

composed of 1 species) and 1 [26,51].

FD aims to quantify resource use complementary and has been

suggested by Petchey et al. [14] to generally perform better as

a predictor of ecosystem functioning than alternative methods.

However, since methodological choices may affect estimates of

functional diversity [54], we tested different clustering and

resemblance methods as well as alternative measures of functional

diversity. However results were robust to methodological choices

(see File S1 and Table S1). For clarity, we present only results as

produced by FD based on the Euclidean distance and unweighted

pair-group method with arithmetic mean. For all analyses, the trait

matrix was standardized (mean = 0, variance = 1) so that all traits

were similarly weighted.

Data Analysis
For all analyses, calculation of FD after species removals was

done by creating 100 random communities from the pool of

species available (either the exploited or the entire species list) for

each region, while controlling for species richness. Visual

inspection of standard deviations confirmed that the 100 iterations

were sufficient to guarantee simulation stability. The mean FD

calculated from the 100 iterations was then used in the analyses.

To test the hypothesis that speciose regions are less susceptible

to species loss, we estimated the FD of the community after

removing one species at random (100 times for each region). The

difference in FD before and after the removal of one species (mean

FD loss) was then regressed against the regional species richness.

To test the hypothesis that fishing reduces communities’

functional diversity we estimated mean FD for each region after

the deletion of 7, 14, 22 and 29 species. These figures correspond

to approximately 25, 50, 75 and 100% of the commercially

exploited species in the most species-poor region. The maximum

level of species removals (29 species removed in each region)

corresponded, on average, to an overall reduction of 19.8% 62.7

(mean 6 SE, n = 25) of the regional species richness across all

regions. Removal of species was done in two distinct ways: either

by limiting the removal of species to the list of commercially

exploited species for each region, or by randomly removing species

from the entire species pool (including both exploited and non-

exploited species). This was important to distinguish the effects of

fishing from those of pure species loss.

Standard regression analyses were used to examine the re-

lationship between mean FD and fishing intensity (7, 15, 22 and 29

species removed) for each region. Analysis of covariance

(ANCOVA) was used to test for differences in slope and intercept

between the two distinct ways via which species were removed

(exploited vs. random). Slopes of the relationship between mean

FD and species loss were then regressed (polynomial regression)

against regional species richness (logged-transformed to meet the

assumption of linearity [55]) to test the hypothesis that the rate of

FD loss (slope) varied with regional species richness the prediction

being that FD loss is faster in species-poor regions than in speciose

ones. We further used ANCOVA to test if the magnitude of the

difference in FD loss between the selective (exploited) and random

species removals (mean FD random/mean FD exploited) differed

among fishing levels (numbers of species removed) across the

gradient of regional species richness.

To examine the effects of fishing on the distribution of species

functional traits the x2-test of independence was used to compare

the proportional number of exploited and non-exploited species

for each individual categorical trait. For maximum size (a

continuous trait), this comparison was done using the mean and

the overlap of the 95% confidence intervals.
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