
TCEPR data and benthic habitats

Tables and plots showing the estimated swept areas for the each species overlain on the BOMEC areas are in Appendix 3 (tables are in files <species id>_footprint_stats.pdf and <species id>_footprint_stats.xls, e.g., barracouta data are in BAR_footprint_stats.pdf and BAR_footprint_stats.xls; plots are in files <species id>_BOMEC_fig_part<number>.pdf, e.g. BAR_BOMEC_fig_part1.pdf. See file README.doc for more information). Results are provided for each species for each fishing year and for the period 1989/90 to 2009/10.

In total, the 15 BOMEC classification areas cover 2 627 073 km², approximately 64% of the EEZ and TS. The total swept area within the BOMEC for all species for the period 1989/90 to 2009/10 is estimated to be 384 376 km², about 15% of the total BOMEC classification area (Figure 29). The swept area for all species for the 2009/10 fishing year is 49 695 km², covering about 1.9% of all BOMEC zones.

Analysis of the estimated swept area within individual BOMEC zones could be used as an indication of the scale of potential benthic effects by trawling. This analysis shows that, for the period 1989/90 to 2009/10, more than 60% of BOMEC classes 3 and 9 are estimated to have been contacted by bottom trawling; more than 40% of BOMEC classes 1, 5, 7 and 8 are estimated to have been contacted by bottom trawling; less than 10% of BOMEC classes 11, 13, 14 and 15 are estimated to have been contacted by bottom trawling.

BOMEC code	Area (km ²)	Swept Area (km ²)	Swept Area (%)
1	27 557	12 400	45%
2	12 420	3 324	27%
3	89 710	57 840	64%
4	27 268	9 592	35%
5	60 990	26 612	44%
6	38 609	6 691	17%
7	6 342	3 043	48%

8	138 551	68 389	49%
9	52 224	38 238	73%
10	311 361	71 594	23%
11	1 289	14	1.1%
12	198 577	54 337	27%
13	233 825	18 503	8%
14	493 034	11 369	2%
15	935 315	2 431	0.3%
TOTAL	2 627 073	384 376	15%

Figure 29: The BOMEC classification and trawl footprint for all species, 1989/90 to 2009/10 (top) and associated area and swept area (km²) statistics (bottom).

BOMEC 10 has the largest swept area, followed by BOMEC 8 (Figure 30). However, in terms of the percentage of the BOMEC zone that has been swept, BOMEC 9 is the highest at over 70%, followed by BOMEC 3 at 63%. The remaining BOMEC zones have less than 50% swept area, including those with the largest swept area (BOMEC 8 and 10).

The fishing effort in the BOMEC areas has varied with time (Figure 31). For example, the swept area in BOMEC 9 (light green line in Figure 32) was maximal in 1999/2000 at 37% and has decreased in recent years and in 2009/10 it was less than 20%.

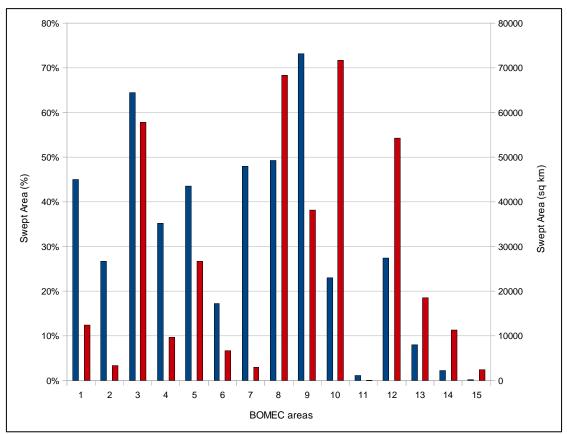


Figure 30: Swept area in each BOMEC zone as a percentage (blue), and in square kilometres (red).

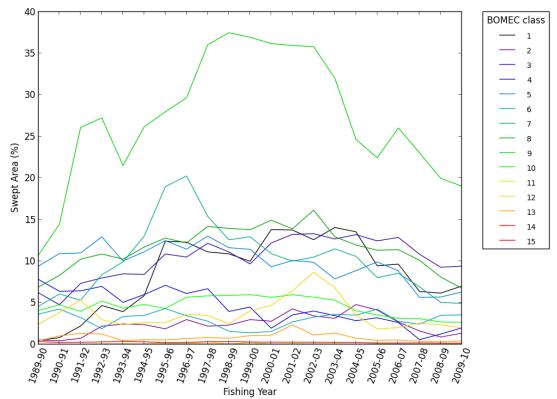


Figure 31: Swept area for all species (as a percentage of the BOMEC zone) as a function of time.

The results for individual fish species highlight the variability of their preferred habitats. Figure 32 shows that both total swept area and diversity of fishing effort varies considerably among the BOMEC areas, most likely influenced by the habitat preferences of the different target species, which is driven mainly by depth but also by latitude. The areas generally less than 250 m depth (i.e. classes 1–6) are dominated by minor species, BAR, JMA and SQU; classes 7–10 and 12–13 range from 250–1200 m depth and are dominated by HOK, and class 14, deeper than 1000 m, is dominated by ORH.

It is possible to monitor changes in fishing effort for a species across BOMEC classes. For example, the results for silver warehou show that the total swept area has fluctuated over the last five years, and the trends are not the same in all BOMEC areas (Figure 33). The results show large increases in the swept area in BOMEC class 8 in 2006/07 and 2007/08, and closer examination of the data indicates that this was likely to have been due to a very slight shift in the distribution of trawling off Banks Peninsula during these two years, rather than a response to a change in their abundance.

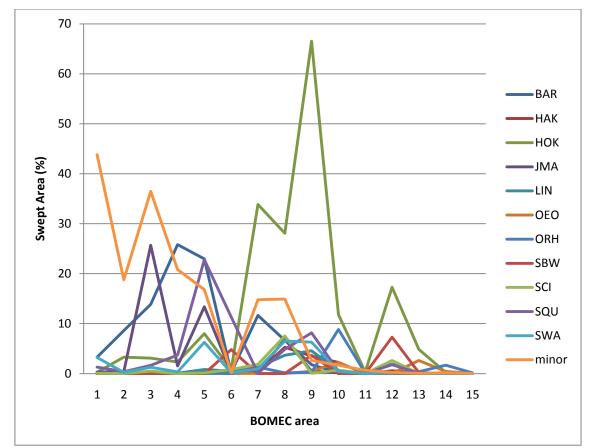


Figure 32: Percentage of BOMEC areas swept by trawls for each of the 11 major species considered by this report for fishing years 1989/90 to 2009/10.

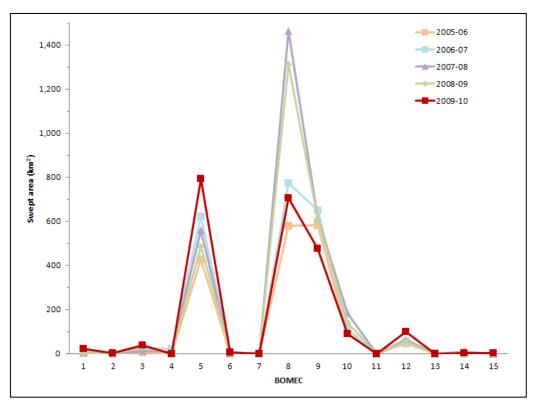


Figure 33: Swept area in the 15 BOMEC classes for silver warehou over the last five fishing years.

Trawl Footprint Analysis - Trends

The edited database can be used to estimate the area of sea floor trawled annually (Figure 34). The estimated area of sea floor trawled each year varies from about 50 000 km² to about 105 000 km², with an average of about 76 000 km². The area generally increased until the 2002/03 fishing year, and then declined by about 50% by 2009/10.

Figure 34: Estimated annual area of sea floor (km²) contacted by trawling each year.

The database can also be used to examine what proportion of the cumulative trawl footprint had previously been trawled (Figure 35). This shows that there has been a gradual decrease in the area of seafloor trawled that had not previously been trawled. By 2009/10 only 3 208 km² of seafloor was trawled that had previously been untouched,

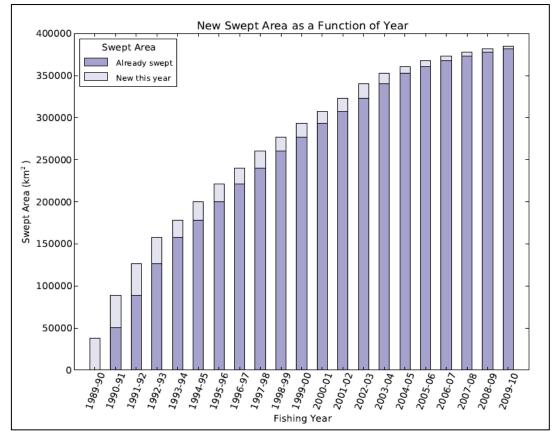


Figure 35: Cumulative trawl footprint, showing the area that had previously been trawled, and the area that had not been trawled until that year.

The results for individual fish species can be more variable. Figure 36 shows the estimated area of sea floor contacted by hoki trawling (the fishery with the most bottom-contact). Data indicates an increasing trend in annual area until the 2002/03 fishing year, followed by a decline. For 2009/10, the seafloor contacted was less than one third of that in 2002/03. Similarly for orange roughy (Figure 37), the 2009/10 footprint was approximately a third of that during the peak in 1998/99.

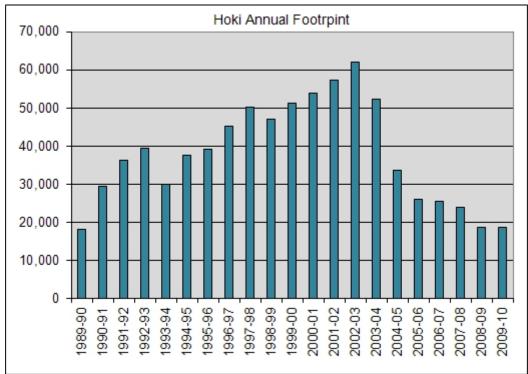


Figure 36: Estimated annual area of sea floor (km²) contacted by trawling for hoki.

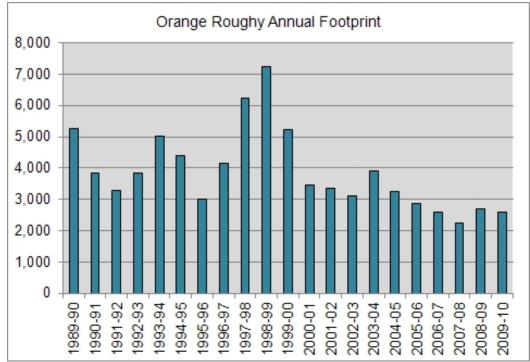


Figure 37: Estimated annual area of sea floor (km²) contacted by trawling for orange roughy.

DISCUSSION

The aggregate swept area and extent of the trawl footprint and frequency of trawl effort by year and by depth zone, based on analysis of TCEPR data, have previously been reported by Baird et al. (2011) for the 16-year period from 1989/90 to 2004/05, as well as in relation to the BOMEC areas (Baird & Wood 2009). The Baird et al. (2011) analyses were by species group (eight groups, covering a total of 31 species) and vessel category (four size categories) and also provided descriptive effort distribution by Statistical Area for catches reported on CELRs (e.g. inshore trawl catches and scallop and oyster dredging). The present study has had a slightly different approach, with emphasis on analysing the aggregate swept area and trawl footprint for 11 key middle-depth and deepwater species/species aggregates, and for the aggregate of all other species (a total of 89 minor species), reported as target species on TCEPRs. TCEPR records for the 11 key species made up 77% of all TCEPR records in the database and were represented as follows: HOK 30%; SQU 14%; ORH 9%; SCI 8%; JMA; BAR and OEO 4%; HAK, SBW; SWA & LIN 1%.

Individual trawl footprint analyses for key inshore species would be useful as some of these are well represented in the TCEPR database, including: snapper 7% of all TCEPRs; tarakihi 4%; trevally 3%; red cod 2%; gurnard 2%; john dory and gemfish 1%.

A summary of trawl tows reported on TCEPRs, CELRs and TCERs indicates that for the 11 key species during the period between 2005/06 and 2010/11, the proportions of tows recorded on TCEPRs was: SCI and SBW 100%; HAK 99%; ORH 98%; OEO and SWA 97%; SQU 95%; HOK 93%, BAR 84%; JMA 78%; LIN 61% (Appendix 2). This high proportion of trawl tows reported using TCEPRs for these key species provides a level of comfort that the trawl footprint estimated through this study is representative of the overall trawl footprint in the EEZ, although somewhat less so in the Territorial Sea where smaller vessels have a higher incidence of reporting using CELRs and, more recently, TCERs.

Baird et al. (2011) estimated an overall trawl footprint for the 16-year period, based on 960 420 tows, to be 328 360 km² in a total of 36 792 fished cells. For the same time period, (i.e. 1989/90 to 2004/05), this study estimated the total trawl footprint to be slightly greater, at 360 929 km², based on a total of 913 883 tows (i.e. a 9% greater footprint from 5% fewer tows). These differences will have been influenced by the following:

- The current study rejected tows for which start and end co-ordinates were the same (approx. 30 000 tows), whereas Baird et al. (2011) calculated swept areas for these based on tow duration and average tow speed;
- Baird et al (2011) did not identify vessels towing twin-trawl rigs, which will have led to a slight under-estimate of the trawl footprint;
- Baird et al (2011) assigned door spread values on the basis of vessel size and target species while the current study assumes a standard door spread based on target species only, regardless of vessel size, leading to a slight over-estimate of the footprint;
- The current study includes a random offset 'jitter' of between -0.5 and +0.5 minutes to start and end co-ordinates, which effects a slight footprint increase.

The full 21-year study period, from 1989/90 to 2009/10, was based on 1 109 924 tows and provided an aggregate trawl footprint estimate of 385 032 km², 56 672 km² greater than the estimate for the 1989/90 to 2004/05 period. However, this increased swept area has not been

accompanied by increases in annual trawl footprint area. In fact, the annual trawl footprint has declined by 33%, from 75 000 km² in 2004/05 to around 50 000 km² in 2009/10.

It is evident that the change in annual trawl footprint has been strongly affected by changes in the hoki TACC, as reflected by the similar trend in the total footprint for all species combined (Figure 34) and in the hoki footprint (Figure 35), both of which peaked in 2002/03 and then declined steadily through to 2008/09 before stabilising in 2009/10.

It is interesting to note that while the hoki TACC was reduced by 50 000 t (20%) from 1 October 2001, the hoki footprint continued to increase for a further two years, peaking in 2002/03. This may have been a reflection of the increased use of twin-rig trawl gear during this period when stock biomass was at an all-time low (MPI, 2012). The implication here is that swept area may be more sensitive to changes in CPUE than to changes in TACC.

Number and frequency of cells traversed:

The analysis by frequency of trawling within 5×5 km cells during the 21-year period 1989/90 to 2009/10 demonstrated that the total number of cells trawled was 3198 greater than for the 16-year period 1989/90 to 2004/05 (i.e. an increase from 36 792 to 39 990 cells). This indicates that new areas have continued to be explored, despite a substantial overall decline in the annual trawl footprint. Figure 38 illustrate that the extent of 'new area' subjected to trawling in each successive year has continued to decline throughout the time series and in 2009/10 amounted to 3208 km², which is 4% of the 2009/10 trawl footprint of 79 512 km² and less than 1% of the cumulative swept area for the period 1989/90 to 2009/10 of 385 032 km².

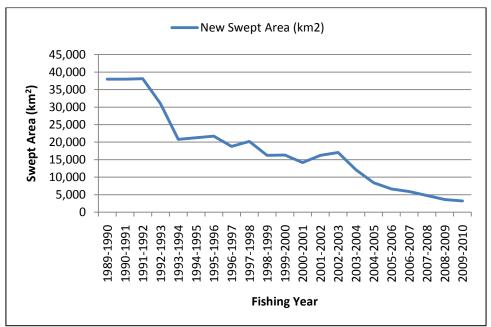


Figure 38: New swept area (km²) in each successive year during the period 1989/90 to 2009/10.

In the most recent five-year period, the mean frequency with which 5×5 km fished cells have been contacted by trawling in the 0–400 m and 400–800 m depth zones has been similar and has ranged from 16 to 21 times per annum (Figure 16). The 400–800 m depth zone is heavily dominated by hoki trawling, while in the 0–400 m depth zone trawling targeted at the

group of minor species dominates, followed in order by trawling for barracouta, jack mackerel, hoki and squid (Figure 22).

The most heavily fished cells in the 0–400 m depth range have been contacted between 449 and 941 times per annum during the most recent five-year period, while for the 400–800 m depth range the highest tow frequencies in cells have ranged between 302 and 564 times per annum, indicating that a small proportion of cells are fished at a much higher level than the average for all fished cells. The frequency of tows in the most heavily fished cells in the 800–1200 m and deeper than 1200 m depth zones ranged between 105–210 and 43–154 times per annum, respectively, during this period, indicative of a considerably lower rate of contact in these deeper zones (Figure 39).

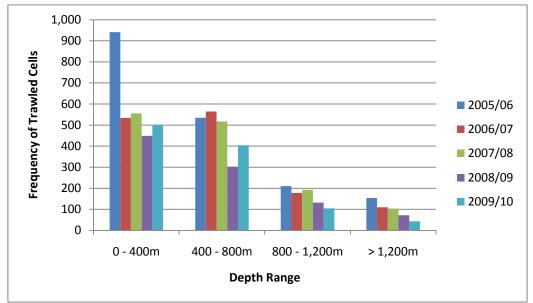


Figure 39: Maximum tow frequencies within 5×5 km cells by depth zone during the period 2005/06 to 2009/10.

BOMEC classes:

Class 9 has the highest proportional swept area, of 73%, for all years combined. However, from 2005/06 to 2009/10 this has been much reduced compared to previous years and has ranged between 26% and 19%. This is one of the smaller BOMEC areas, which overlaps with fishing grounds mainly on the western and southern edges of the Chatham Rise, south-east of Stewart Island along the Stewart-Snares shelf and on the Bounty Plateau. Of these three areas, the Bounty Plateau area appears least affected, while the Chatham Rise area appears to be the most affected by trawling. Further analyses could be undertaken to reveal whether the swept areas within Class 9 in recent years fall within or outside of the previous footprint.

Class 3 had the second largest proportional footprint over all years, of 64%. Over the most recent five year period it has ranged between 13% and 9%. As this class falls in water generally shallower than 250 m and includes northern areas (FMAs 1 and 9) where small vessels operate and which report using CELRs and TCERs, the footprint will be an underestimate (Baird & Wood 2009).

The BOMEC classes with the largest swept areas are 10 and 8 (71 594 km^2 and 68 389 km^2 , respectively). These are both large classes which occur in fishable depths in the productive

waters of Chatham Rise and around North Island, and also off the West Coast and Challenger Plateau. By proportion, their swept areas are small, ranging between 11% and 7% for class 8 and at 3% for class 10 over the last five years.

MANAGEMENT IMPLICATIONS

The database of the trawl footprint by year, depth zone, BOMEC class and by trawl frequencies within the 5×5 km cell grid, provides a powerful tool for application in any future work designed to assess the scale and effects of trawling on the benthic environment. Assessment of the footprint in the shallower coastal waters is under-estimated and will not be improved unless provision is made for reporting of tow start and end co-ordinates on the reporting forms used by vessels fishing in these areas. The coastal and shelf grounds (i.e. shallower than 200 m depth) are probably the most intensely fished of all New Zealand waters and warrant greater scrutiny. This is supported by an earlier study by Leathwick et al. (2006), who demonstrated that for the period 1989/90 to 2007/08, based on TCEPR tows only, the cumulative areas trawled in Coastal and Shelf demersal fish community classes (e.g. Northern Coastal and Northern Shelf) were as high or higher than for areas typically fished by deepwater trawlers (e.g. Challenger Plateau, Campbell Plateau and Chatham Rise). Considering that the number of trawl tows reported using CELR and TCER forms (not used to estimate swept area), amounted to between 46% and 64% of the total number of tows reported, the swept area in the inshore areas, where these form types are most used, will have been under-estimated to a greater extent.

The BOMEC system was developed as a tool for use in the management of the spatial effects of fishing in the EEZ and TS (Baird & Wood 2009). However, ground-truthing the modelbased BOMEC zones using direct sampling methods has indicated that they are broadly representative at spatial scales greater than about 100 km, and may therefore have application for regional-scale assessments of benthic habitat distributions, but are less representative at the smaller scales characterised by several BOMEC classes (Bowden et al. 2011).

The two BOMEC classes with historically high rates of contact by trawl gear are class 3 (64.5% swept over entire study period), (shelf zone) and class 9 (73.2% swept over entire study period), (shallow upper slope zone). For the most recent five year period between 2005/06 and 2009/10 the swept areas in class 3 and class 9 are much lower, averaging 11% and 22% respectively.

There have been no studies investigating whether current trawling frequencies, as determined for the 5×5 km cell grid, have had adverse effects on the structure and function of benthic communities, or on the productivity of the associated fisheries. In the orange roughy fishery on the Chatham Rise, which is prosecuted primarily in the 800–1200 m depth zone, there is evidence that fishing effort has shifted geographically over time in response to changes in catch rates on individual hills (MPI 2012). However, the extent to which this might be linked to impaired benthic ecosystem functioning has yet to be determined.

Several studies have looked at the effects of bottom trawling on soft and hard sediments in New Zealand waters (MAF 2012). While these have revealed changes in biodiversity patterns, less is known about their effects on ecological processes or on the rates of recovery following contact by trawl fishing gear (Bowden et al. 2011).

ACKNOWLEDGMENTS

This project was funded by The Ministry for Primary Industries (MPI) under code DAE2010-04A. The Deepwater Group Ltd, MPI and Clement & Associates Ltd staff offered help and advice on the processing, presentation and interpretation of these data.

REFERENCES

- Baird, S.J.; Wood, B.A. (2009). Extent of coverage of 15 environmental classes within the New Zealand EEZ by commercial trawling with seafloor contact. Final Research Report, for Ministry of Fisheries project BEN2006-01, Objective 5. (Unpublished report held by Ministry for Primary Industries, Wellington). 39 p.
- Baird, S.; Wood, B.; Bagley, N. (2009). The extent of trawling on or near the seafloor in relation to benthic-optimised marine environment classes within the New Zealand EEZ. Final Research Report for Objective 5 of Ministry of Fisheries project BEN2006-01. (Unpublished report held by Ministry for Primary Industries, Wellington).
- Baird, S.J.; Wood, B.A.; Bagley, N.W. (2011). Nature and extent of commercial fishing effort on or near the seafloor within the New Zealand 200 n. mile Exclusive Economic Zone, 1989–90 to 2004–05. New Zealand Aquatic Environment and Biodiversity Report No. 73. 144 p.
- Black, J.; Wood, R. (2009). Analysis of New Zealand's Trawl Footprint, GNS Science Consultancy Report 2009/123. 11p. (Unpublished report held by GNS Science, Wellington).
- Black, J.; Wood, R. (in press). Analysis of New Zealand's trawl grounds for key middle depths and deepwater Tier 1 fisheries. *New Zealand Aquatic Environment and Biodiversity Report*. 35 p.
- Bowden, D.A.; Compton, T.J.; Snelder, T.H.; Hewitt, J.E. (2011). Evaluation of the New Zealand Marine Environment Classifications using Ocean Survey 20/20 data from Chatham Rise and Challenger Plateau. New Zealand Aquatic Environment and Biodiversity Report No. 77. 27 p.
- Francis, M.P.; Dunn, A.; Mackay, K.A.; Anderson, O.F. (2003). NABIS marine finfish species distributions. Final Research Report for Ministry of Fisheries Research Project ZBD2002/20 Objectives 1 and 2. (Unpublished report held by Ministry for Primary Industries, Wellington). 28 p.
- GEBCO (2010). General Bathymetric Chart of the Oceans: The GEBCO_08 global 30 arc-second grid. <u>http://www.gebco.net/data_and_products/gridded_bathymetry_data/</u>
- Leathwick, J.; Francis, M.; Julian, K. (2006). Development of a demersal fish community map for New Zealand's Exclusive Economic Zone. NIWA client report for project HAM2006-062. (Unpublished report held by NIWA, Wellington).
- Leathwick, J.; Rowden, A.; Nodder, S.; Gorman, R.; Bardsley, S.; Pinkerton; M., Baird, S.; Hadfield, M.; Currie, K.; Goh, A. (2012). A Benthic-optimised Marine Environment Classification (BOMEC) for New Zealand waters, *New Zealand Aquatic Environment and Biodiversity Report No* 88. 54 p.

- MAF (2012). Ministry of Agriculture and Forestry Aquatic Environment and Biodiversity Annual Review 2011. A summary of environmental interactions between fisheries and the aquatic environment. 196 p.
- MPI (2012). Report from the Fisheries Assessment Plenary, May 2012: stock assessments and yield estimates. Compiled by the Fisheries Science Group, Ministry for Primary Industries, Wellington, New Zealand. 1194 p.
- Snelder, T.H.; Leathwick, J.R.; Dey, K.L.; Rowden, A.A.; Weatherhead, M.A.; Fenwick, G.D.; Francis, M.P.; Gorman, R.M.; Grieve, J.M.; Hadfield, M.G.; Hewitt, J.E.; Richardson, K.M.; Uddstrom, M.J.; Zeldis, J.R. (2006). Development of an ecologic marine classification in the New Zealand region. *Environmental Management*, 39: 12–29.

APPENDIX 1 - MINOR TARGET SPECI	IES INCLUDED IN THE ANALYSIS
--	------------------------------

Count	Reporting Code	Common Name	Target Tows	Percentage of Total Target Tows
1	SNA	Snapper	72 393	6.53%
2	TAR	Tarakihi	47 804	4.31%
3	TRE	Trevally	36 312	3.27%
4	RCO	Red cod	17 422	1.57%
5	GUR	Gurnard	17 416	1.57%
6	JDO	John dory	15 202	1.37%
7	SKI	Gemfish	13 120	1.18%
8	BYX	Alfonsino	12 122	1.09%
9	CDL	Black cardinal fish	10 972	0.99%
10	WAR	Blue warehou	3 512	0.32%
11	WWA	White warehou	2 796	0.25%
12	BNS	Bluenose	1 936	0.17%
13	STA	Stargazer	1 677	0.15%
14	RBY	Ruby fish	1 223	0.11%
15	SPE	Sea perch	974	0.09%
16	SPD	Spiny dogfish	909	0.08%
17	FLA	Flatfish	895	0.08%
18	FRO	Frostfish	328	0.03%
19	LEA	Leatherjacket	220	0.02%
20	ELE	Elephant fish	218	0.02%
21	SCH	School shark	194	0.02%
22	EMA	Blue mackerel	169	0.02%
23	GSH	Ghost shark, dark	143	0.01%
24	SPI	Spider crab	142	0.01%
25	MOK	Blue moki	97	0.01%
25 26	SSK	Smooth skate	95	0.01%
20 27	CAR	Carpet shark	55	<0.01%
28	BCO	Blue cod	54	< 0.01%
20 29	RBT	Red bait	49	<0.01%
30	RSK	Rough skate	43	<0.01%
31	LDO	Lookdown dory	41	<0.01%
32	MDO	Mirror dory	39	<0.01%
33	SQX	Squid	37	<0.01%
34	PRA	Prawn	35	<0.01%
35	TRU	Trumpeter	32	<0.01%
36	SBO	Southern boarfish	31	<0.01%
37	SKA	Skate	31	<0.01%
38	PTO	Patagonian toothfish	30	<0.01%
38 39	SPO	Rig	22	<0.01%
39 40	SDO	Silver dory	20	<0.01%
40 41	OPE	Orange perch	19	<0.01%
41 42	SCO	Swollenhead conger	18	<0.01%
		-	17	<0.01%
43	HPB	Hapuku and bass	17	~0.0170

50 • Monitoring New Zealand's trawl footprint for deepwater fisheries: 1989/90 to 2009/10

Count	Reporting Code	Common Name	Target Tows	Percentage of Total Target Tows
44	MIX	Mixed fish	17	<0.01%
45	HOR	Horse mussel	15	<0.01%
46	RIB	Ribaldo	15	<0.01%
47	THR	Thresher shark	14	<0.01%
48	RSN	Red snapper	9	< 0.01%
49	BOA	Sowfish	8	< 0.01%
50	KAH	Kahawai	7	< 0.01%
51	OFH	Oilfish	7	< 0.01%
52	ASP	Tam 'O Shanter urchin	5	< 0.01%
53	HAP	Hapuku	5	< 0.01%
54	JAV	Javelin fish	5	< 0.01%
55	RAT	Rattail	5	< 0.01%
56	RBM	Rays bream	5	< 0.01%
57	SSP	Scallop spat	5	< 0.01%
58	TRA	Roughies	5	< 0.01%
59	BWS	Blue shark	4	< 0.01%
60	ESO	New Zealand sole	4	< 0.01%
61	BAS	Bass groper	3	< 0.01%
62	BAT	Large headed slickhead	3	<0.01%
63	GFL	Greenback flounder	3	<0.01%
64	LSO	Lemon sole	3	< 0.01%
65	PRK	Prawn killer	3	< 0.01%
66	SND	Shovelnose spiny dogfish	3	<0.01%
67	BRA	Short-tailed black ray	2	< 0.01%
68	MAK	Mako shark	2	< 0.01%
69	ROC	Rock cod	2	< 0.01%
70	SAU	Saury	2	< 0.01%
71	SKJ	Skipjack	2	< 0.01%
72	SNS	Sunset	2	< 0.01%
73	SSI	Silverside	2	< 0.01%
74	HOL	Tubeshoulder	1	< 0.01%
75	JGU	Japanese gurnard	1	<0.01%
76	MTP	Myctophum spp.	1	<0.01%
77	OSD	Smooth dog shark	1	<0.01%
78	SCA	Scallop	1	<0.01%
79	SCC	Sea cucumber	1	<0.01%
80	SCL	Scales	1	<0.01%
81	SPF	Scarlet wrasse	1	<0.01%
82	SQI	Squirrelfish	1	<0.01%
83	SWO	Swordfish	1	< 0.01%
84	TRG	Triggerfish	1	< 0.01%
85	YEM	Yellow-eyed mullet	1	< 0.01%
		Total "minor" target trawls	259 105	23.36%
		Total all target trawls	1 109 383	100.00%

APPENDIX 2 – Catch by reporting form type as provided by Dave Foster (MPI)

PROPORTION OF ESTIMATED CATCH OF TIER 1 SPECIES (PLUS SWA AND BAR) BY RETURN TYPE

Table 1. Types (
Return	Description	Completed by
abbreviation	-	
TCEPR	Trawl catch, effort,	Trawlers >28m in overall length or trawlers that
	and processing	the chief executive has advised to complete this
	returns	return
TCER	Trawl catch effort	Trawlers 6-28m in overall length or trawlers that
	return	the chief executive has advised to complete this
		return
CELR	Catch, effort, and	Vessels using methods not covered by other
	landing returns	returns
LCER	Lining catch effort	Bottom longliners >28m in overall length or
	return	longliners that the chief executive has advised to
		complete this return
LTCER	Lining trip catch	Bottom longliners 6-28m in overall length or
	effort return	longliners that the chief executive has advised to
		complete this return
NCER	Netting catch effort	Set netters >6m in overall length.
	returns	

 Table 1. Types of return

Hoki

Table 1AEstimated catch of hoki (tonnes) by form type for the period 2005/06 –2010/11

Fishing year	TCEPR	TCER	CELR	Others	Total
2010/11	107,443	8,351	14	14	115,822
2009/10	97,905	7,253	8	19	105,185
2008/09	81,247	6,317	16	17	87,598
2007/08	80,083	7,376	1	15	87,475
2006/07	90,452	-	7,328	10	97,790
2005/06	96,431	-	5,553	0	101,984
Total	553,561	29,297	12,920	76	595,854

Table 1B. Proportion	of	estimated	catch	of	hoki	by	form	type	for	the	period	2005/06	5 –
2010/11													

Fishing year	TCEPR	TCER	CELR	Others
2010/11	93%	7%	<0.1%	<0.1%
2009/10	93%	7%	<0.1%	<0.1%
2008/09	93%	7%	<0.1%	<0.1%
2007/08	92%	8%	<0.1%	<0.1%
2006/07	92%	-	7%	<0.1%
2005/06	95%	-	5%	<0.1%

101a1 95% $5%$ $2%$ $<0.1%$

Hake

Table 2A. Estimated catch of hake (to	onnes) by form type for the pe	eriod 2005/06 – 2010/11
---------------------------------------	--------------------------------	-------------------------

Fishing year	TCEPR	TCER	Others	Total
2010/11	4,892	46	38	4,977
2009/10	3,885	32	29	3,946
2008/09	9,134	19	21	9,175
2007/08	5,129	18	20	5,166
2006/07	9,697	-	32	9,730
2005/06	8,887	-	29	8,916
Total	41,625	115	170	41,910

Table 2B. Proportion of estimated catch of hake by form type for the period 2005/06 - 2010/11

Fishing year	TCEPR	TCER	Others
2010/11	98%	1%	1%
2009/10	98%	1%	1%
2008/09	100%	<1%	<1%
2007/08	99%	<1%	<1%
2006/07	100%	-	<1%
2005/06	100%	-	<1%
Total	99%	<1%	<1%

Ling

Table 3A. Estimated catch of ling (tonnes) by form type for the period 2005/06 - 2010/11

Fishing	TCEPR	LCER	LTCER	CELR	TCER	NCER	Total
year							
2010/11	6,047	1,877	2,088	75	917	82	11,095
2009/10	6,055	2,857	1,745	131	699	109	11,595
2008/09	6,728	2,593	1,462	188	563	101	11,636
2007/08	9,614	2,857	2,045	206	510	99	15,331
2006/07	10,153	2,566	-	1,818	-	133	14,670
2005/06	8,605	2,512	-	1,701	-	-	12,819
Total	47,202	15,272	7,340	4,119	2,688	524	77,146

Table 3B. Proportion of estimated catch of ling by form type for the period 2005/06 - 2010/11

Fishing	TCEPR	LCER	LTCER	CELR	TCER	NCER
year						
2010/11	55%	17%	19%	1%	8%	1%
2009/10	52%	25%	15%	1%	6%	1%
2008/09	58%	22%	13%	2%	5%	1%
2007/08	63%	19%	13%	1%	3%	1%
2006/07	69%	17%	-	12%	-	1%
2005/06	67%	20%	-	13%	-	-
Total	61%	20%	10%	5%	3%	1%

Ministry for Primary Industries

Southern blue whiting

All estimated catch information for the last six years is reported on TCEPRs.

Jack mackerel (all stocks)

Table 4A	Estimated catch of jack mackerel (tonnes) by form type for the period 2005/06 – 2010/11
I able III	Louinded edten of juck indekerer (tonnes) by form type for the period 2000/00 2010/11

Fishing year	TCEPR	CELR	TCER	Others	Total
2010/11	29,825	8,296	159	4	38,285
2009/10	31,860	9,030	153	4	41,048
2008/09	28,921	9,781	129	6	38,837
2007/08	34,933	11,368	103	3	46,407
2006/07	32,519	5,168	-	6	37,693
2005/06	31,520	9,641	-	-	41,161
Total	189,580	53,282	544	23	243,430

Fishing year	TCEPR	CELR	TCER	Others
2010/11	78%	22%	<1%	<0.1%
2009/10	78%	22%	<1%	<0.1%
2008/09	74%	25%	<1%	<0.1%
2007/08	75%	24%	<1%	<0.1%
2006/07	86%	14%	-	<0.1%
2005/06	77%	23%	-	-
Total	78%	22%	<1%	<0.1%

Orange roughy

Table 5A	Estimated catch of orange roughy (tonnes) by form type for the period 2005/06 – 2010/11
----------	---

Fishing year	TCEPR	TCER	CELR	Total
2010/11	5,931	15	-	5,946
2009/10	8,735	66	-	8,802
2008/09	10,576	86	-	10,661
2007/08	12,077	27	-	12,105
2006/07	12,777	-	312	13,089
2005/06	14,152	-	497	14,649
Total	64,249	195	808	65,252

Table 5B	Proportion of estimated catch of orange roughy by form type for the period 2005/06 – 2010/	/11

Fishing year	TCEPR	TCER	CELR
2010/11	100%	<1%	-
2009/10	99%	1%	-
2008/09	99%	1%	-
2007/08	100%	<1%	-
2006/07	98%	-	2%
2005/06	97%	-	3%
Total	98%	0	1%

Oreos

Fishing year	TCEPR	TCER	CELR	Others	Total
2010/11	13,737	2	1	<1	13,740
2009/10	16,418	50	<0.1	<0.1	16,468
2008/09	14,622	649	-	<0.1	15,271
2007/08	15,217	525	134	<1	15,875
2006/07	15,129	-	704	-	15,833
2005/06	15,253	-	972	<0.1	16,225
Total	90,376	1,225	1,810	<1	93,411

 Table 6A
 Estimated catch of oreos (all species, tonnes) by form type for the period 2005/06 – 2010/11

 Table 6B
 Proportion of estimated catch of oreos (all species, tonnes) by form type for the period 2005/06

 - 2010/11

Fishing year	TCEPR	TCER	CELR	Others
2010/11	100%	<0.1%	<0.1%	<0.1%
2009/10	100%	<0.1%	<0.1%	<0.1%
2008/09	96%	4%	-	<0.1%
2007/08	96%	3%	1%	<0.1%
2006/07	96%	-	4%	<0.1%
2005/06	94%	-	6%	<0.1%
Total	97%	1%	2%	<0.1%

Scampi

All estimated catch information for the last six years is reported on TCEPRs.

Squid

Table 7A	Estimated catch of squid (tonnes) by form type for the period 2005/06 – 2010/11

Fishing year	TCEPR	SJCER ³	TCER	CELR	Others	Total
2010/11	33,703	1,414	226	1	<0.1	35,344
2009/10	29,574	891	367	2	<0.1	30,834
2008/09	43,489	1,032	189	2	<0.1	44,712
2007/08	51,922	1,371	736	<1	<0.1	54,028
2006/07	63,261	2,278	-	1,221	-	66,760
2005/06	62,915	5,844	-	918	-	69,677
Total	284,863	12,830	1,518	2,145		301,356

Table 7B	Proportion of estimated catch of squid by form type for the period 2005/06 – 2010/11

Fishing year	TCEPR	SJCER	TCER	CELR	Others
2010/11	95%	4%	1%	<0.1%	<0.1%
2009/10	96%	3%	1%	<0.1%	<0.1%
2008/09	97%	2%	<1%	<0.1%	<0.1%
2007/08	96%	3%	1%	<0.1%	<0.1%
2006/07	95%	3%	-	2%	-
2005/06	90%	8%	-	1%	-
Total	95%	4%	1%	1%	<0.1%

³ Squid jig catch, effort return

Barracouta

Fishing year	TCEPR	TCER	CELR	Others	Total
2010/11	20,576	4,206	57	3	24,841
2009/10	22,452	3,801	100	1	26,354
2008/09	20,094	4,381	202	2	24,679
2007/08	21,512	4,234	63	6	25,815
2006/07	24,424	-	3,045	3	27,472
2005/06	21,771	-	3,998	-	25,769
Total	130,829	16,621	7,464	16	154,929

 Table 8A
 Estimated catch of barracouta (tonnes) by form type for the period 2005/06 – 2010/11

Table 8BProportion of estimated catch of barracouta (tonnes) by form type for the period 2005/06 –
2010/11

Fishing year	TCEPR	TCER	CELR	Others
2010/11	83%	17%	<1%	<0.1%
2009/10	85%	14%	<1%	<0.1%
2008/09	81%	18%	1%	<0.1%
2007/08	83%	16%	<1%	<0.1%
2006/07	89%	-	11%	-
2005/06	84%	-	16%	-
Total	84%	11%	5%	<0.1%

Silver warehou

Table 9A Estimated catch of silver warehou (tonnes) by form type for the period 2005/06 – 2010/11

Fishing year	TCEPR	TCER	CELR	Others	Total
2010/11	6,828	258	1	2	7,090
2009/10	6,140	333	2	2	6,478
2008/09	7,635	303	4	2	7,945
2007/08	7,079	221	<1	3	7,303
2006/07	13,037	-	107	1	13,144
2005/06	9,902	-	130	-	10,031
Total	50,621	1,116	243	11	51,991

Table 9BProportion of estimated catch of silver warehou (tonnes) by form type for the period 2005/06- 2010/11

Fishing year	TCEPR	TCER	CELR	Others
2010/11	96%	4%	<0.1%	<0.1%
2009/10	95%	5%	<0.1%	<0.1%
2008/09	96%	4%	<0.1%	<0.1%
2007/08	97%	3%	<0.1%	<0.1%
2006/07	99%	-	1%	<0.1%
2005/06	99%	-	1%	-
Total	97%	2%	<1%	<0.1%

APPENDIX 3

COMPILATION OF SPREADSHEETS AND FIGURES –

Disk available upon request from Science Officer, Ministry for Primary Industries (<u>Science.Officer@mpi.govt.nz</u>).